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Abstract

A review is given of the orbital motion limited (O.M.L.) theory of cylin-
drical and spherical Langmuir probes. In many cases the O.M.L. theory 1s
invalid and the second orbital motion theory presented here, that of Bohm,
Burhop and Massey, shows that the concept of an absorption radius must
be introduced. The extensive numerical extensions to this theory are briefly
discussed.

Recent experimental work is referred to in which measurements of ion
currents to cylindrical probes showed better agreement with the ABR
(radial-motion) theory than with the calculations of Laframboise. It is sug-
gested that the mean free path must be greater than the probe radius by a
large factor if the calculations of the Laframboise are to apply: the numen-
cal value depends on the ratio of probe potential to ion temperature.

1. Introduction

The original orbital motion of probes, due to Mott-Smith
and Langmuir [1] considered particle orbits within the
space charge sheath surrounding a spherical or cylindrical
probe. The plasma outside the sheath was assumed to be
perfectly neutral, an assumption which was without founda-
tion. In these lectures the subject is introduced without the
concept of a boundary separating plasma and sheath
regions. The current-voltage characteristics are calculated
for both spherical and cylindrical probes, assuming that the
current is limited by orbital motion. Electron currents are
calculated for attracting (positive) probes and repelling
(negative) probes. Similar expressions apply for the positive
ion currents. In addition it is shown that the distribution of
electron energies, when it differs from the Maxwellian dis-
tribution, can be determined from the second derivative of
the current w.r.t. the voltage.

In many cases the above orbit motion limited (O.M.L.)
theory is inapplicable because it contains the implicit
assumption that some particles (of every energy range) graze
the probe surface. It is often the case that an absorption
radius exists, outside the probe, which in a sense replaces
the probe radius. Particles which cross this radius are des-
tined to hit the probe and be collected. The theory of Bohm,
Burhop and Massey [2] is described below because it was a
seminal paper, is instructive to read, but is apparently not
well-known. These authors considered monoenergetic ions
with an isotropic distribution of velocities. They also
restricted their attention to the “Plasma Solution”, i.e. the
case where a plasma fills essentially all the space surround-
ing the probe, although it is quasi-neutral and not an equi-
potential region.

The theory was extended by Bernstein and Rabinowitz
[3] who considered the full Poisson equation. It was later
further extended by Laframboise [4] who included a Max-
wellian distribution of attracted particles. The extensive
numerical work carried out by Laframboise is only briefly

referred to here because the basic physics is largely con-
tained in the Bohm, Burhop and Massey theory.

The final part of this paper, which hitherto has been tuto-
rial in nature, refers to some recent experimental work with
cylindrical probes in which the measurements of ion cur-
rents showed much better agreement with the simple ABR
radial motion theory [4] than with the more sophisticated
calculations of Laframboise. It is well-known that the two
theories give different results for cylindrical probes in the
case where T; — 0. This has been referred to as the cold-ion
paradox. The theories agree for a spherical probe as T; - 0.
A proposed explanation of the results 1s given in terms of
collisions. It is suggested that the angular momentum inher-
ent in the Laframboise theory (even for T, - 0) is lost in
collisions unless the mean free path of the ions 1s greater
than r(e| V,|kT)"? where r,, V, are the probe radius and
potential respectively and T; is the ion temperature.

2. Attracting potentials: The orbital motion limited theory

Let us consider the collection of electrons by an attracting
probe of cylindrical geometry i.e. one at a positive potential
with respect to the surrounding plasma. If the length of the
probe is large compared with its radius then the electrons
move in a central field of force. Conservation of energy then
gives

L = 12
smve = smvy - el

(D

where v is the velocity at the probe surface. Conservation of
angular momentum gives, for an electron at grazing inci-
dence,

mvh, = mr,v, (2)
where h is the impact parameter (see Fig. 1). Hence
hy =r (1 + Vy/Vo)''? (3)

where the initial energy of the electron is el[. The expres-
sion given by equation (3) represents an effective radius of

L'—er

Fig 1 Diagram illustrating the impact parameter # and the distance of
closest approach p
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498 J. E. Allen
the probe. The contribution to the current due to electrons
with a narrow velocity range will be given by

dI = 2mr le(1 + V,/Vy) *(v/7) dn (4)

where the quantity (v/n) dn represents the flux crossing unit
area considering electrons which move in planes perpen-
dicular to the probe axis. We are not interested in velocity
components parallel to the axis.

If we consider a Maxwellian distribution of velocities then
the two-dimensional version of the distribution takes the
form

an= n°<2n2T>e_Mm2”v dv )
so that
dl = Z_rlo_kr%{mg vie ™UIT(1 4+ V/V)' 2 dv (6)

which can be written as

2kT 1/2 /
dl =4ngr, Ie(—m-—> xe *(x? + a?)? dx N

where x* = mv?/2kT and a® = eV, /kT.
The total current is now obtained by integration, so that

2kT

1/2 @
I =dngr, Ie<——) J- xe *(x? + a?)'/? dx ®)
M 0

The integral can be readily evaluated* to give

J f(x) dx = */TE (2—\—/'-7— + e erfc (ﬁ)) o)
s

The final expression for the current is now given by

kT \'Y2(2./n
I =2nngr, le(%) (—\7—\/;— + e" erfc ﬁ)

where n = eV, /kT.

Fig. 2 shows a plot of [(2\/5/\/77) + e" erfc \/ﬁ] together
with a plot of 2(1 + 1)"2/./x.

It is seen that the curves are indistinguishable for values
of n greater than 2. The expression for the current can there-
fore be written in the form

kT \'? 2 eV \1/?
I=2mngrlel =) —=(1+%®
"o T e<2rzm> \/n< * kT)

when eV, /kT = 2. A plot of I? versus ¥, should therefore be
a straight line. The slope of the curve yields n, and the inter-
cept on the current axis will then give T,, the value of ng
being known.

(10)

(11)

©

* Determination of the integral J xe " (x? 4+ a?)'? dx, let x? + a® + u?,

0

then 2x dx = 2u du
- . 2 -u2 2 1 “ —ul 2
ue * e dy = [~ jue v e ]ZJ+§ e du

/i

+ Tn erfc (a)e”

[za+“‘rf()]
— + e erfc (a
N

[ NS
“l\
=
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Fig. 2. A plot of the functional form of eq. (10) together with a plot of the
function 2 (1 -+ »)'"%/x''2_ 1t is seen that they are indistinguishable for # > 2

The corresponding expression for a spherical probe is
found to be

[ = drr? ng e(KT/mm) (1 + Vy/Vo) (12

It is clear that the corresponding equations for positive
1on collection are

. 2 eV \1?
[ =2nnyr, le(k T,/ 2n M)'/2 — (1 — —E) (13)
\/7t ) k’]i
and
I = 4nrlnge(kT,/2nM)"*(1 — eV, /kT;) (14)

for the cylindrical and the spherical probe respectively.

These equations were first derived by Mott-Smith and
Langmuir {1] for the case of a large “sheath”. The approach
used here is that of Lea and Allen [5].

3. Retarding potentials

3.1. Maxwellian velocity distribution

In the case of a retarding potential eq. (8) is replaced by
2kT 1/2 @
I= 4"0’919( “'—) j xe *(x? — a?)M? dx
. m a

The effective radius of the probe is less than r, and only
those electrons with an energy greater than (—eV,) can
reach the probe. In the above expression a? = —eVy/kT.,.

Let (x? — a?) = u?, then 2x dx = 2u du, and the above
equation can be written in the following form.

(15)

I =4nyr, le(2kT,/m)'"? J ule ¥* 7% du (16)
The integral can be readily evaluated 1o give
I = 2mr ng le(kT,/2nm) 2V o/ T, 17

This is the classical result obtained in a different way by
Langmuir. Note that we have not shown that the electron
density is reduced by a factor of exp (eV,/kT,). Our calcu-
lation refers to the current collected by the probe. Lang-
muir’s approach has been described in other lectures [6].



3.2. Determination of the velocity distribution function

Let us consider a spherical probe. The current collected can
be written as

1-:47rr§eJ‘ {1+ eV/F)qS(k)\/—-— - (18)

-eVg
where the energy distribution @(E) is arbitrary. We shall
now differentiate twice with respect to V,, recalling Lieb-
nitz’s rule, i.e. if
b

f(x, o) dx

*of(x, 0 d

1
ax (19)

dI db da
i (b, G)E—f(a,a)d—aﬂ-i
so that

d?I

W—O 0+ (20)

2E
———P-¢>(E)< ) dE
—eVp m
and
d?I

2e 12
o a2.2
oot )

Thus the distribution of electron energies can be found
from the second differential of the current with respect to
the voltage:

(21)

_ 172 42
—EmV> L 22)

2e dv;

This is known as the Druyvesteyn method [7]. It can be
shown to be valid for any shape of probe (excluding re-
entrant areas), but the velocity distribution function must be
spherically symmetrical. A simple derivation due to Kagan
and Perel [8] is reported in the textbook by Swift and
Schwar [9].

4. The concept of the absorption radius
4.1. Limitations of the O.M.L. theory

The theory described in the above paragraphs contains an
implicit assumption. It was assumed, when considering an
attracting probe, that some of the particles hit the probe at
grazing incidence. This may not be the case. An absorption
radius might exist, outside the probe, such that particles
which cross it are destined to hit the probe.

Let us consider the case of ion collection, and focus our
attention on ions within a narrow energy range. If all ima-
ginary cylindrical (or spherical) surfaces outside the probe
are ‘grazed’ by ions then the corresponding impact param-
eters must all be greater than &, 1e

L/ 1/2 ‘/ 1/2
(=5) el -4)
VO VO

Rearranging, the condition for no absorption radius to
exist can be written

2
VO—V><_{P_
Vo=V, r

(23)

(24)
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If this condition is to hold for all of the ions, including
those with small initial energies then

{25)

In a dense plasma this condition does not hold We then
have an absorption radius (for each ion energy) which in
effect replaces the probe radius. Whether or not the inequal-
ity holds in a particular case is difficult to say. We need to
solve Poisson’s equation.

4.2. The theory of Bohm, Burhop and Massey

We shall now discuss the theory for spherical probes devel-
oped by Bohm, Burhop and Massey [2] in which the ions
have a random motion in space, in the unperturbed plasma.
but they are still considered to be mono-energetic. We shall
now have to consider the orbital motion of the ions as illus-
trated in Fig. 1. The orbit is in the plasma field and not in
the sheath as in the historical paper of Mott-Smith and
Langmuir [1]. At any point of the orbit the kinetic energy
of the ion is e(V, — V) where eV}, is the initial energy of the
tons, the potential is taken to be zero far away from the
probe. At the distance of closest approach p the principle of
conservation of angular momentum states that

AV = p(V, — V)12 (26)

which is a relation between p and the impact parameter h.
We must now consider the case illustrated in Fig. 3 where
the impact parameter h has a minimum value h, for some
value of p, denoted by r,. lons with an impact parameter
greater than h_, will perform an orbit around the probe and
then leave the perturbed region. On the other hand ions
with smaller impact parameters have no distance of closest
approach and they will be accelerated towards the probe
and be captured. The minimum value h, is therefore the
radius of the effective target area of the probe. Figure 4 illus-
trates typical orbits. The ion current collected by the probe
will be the product of the “random” current density and the

h (impact parameter ]

e e — —

;
A
p (distance of closest approach)

Fig. 3. The function h = p{1 — V/V,)"'* showing the case where there is a
minimum 1mpact parameter for ions which describe an orbit with a dis-
tance of closest approach p
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Fig. 4. Diagram showing the orbits of ions which are deflected by the elec-
tric field but not captured by the probe, together with the orbit of an ion
which hits the probe. lons with an impact parameter h_ graze the
(mathematical) surface of radius r,

area of the effective target presented by the probe, these are
ny e(2eVy/M)'2/4 and 4nhZ respectively so that

I = nge(2eVo/M) 2 mh? 27)
or
I = nge(2eVy/M)2rri[1 — V(ry)/Ve] (28)

using equation (1) to obtain an expression for h,,.

It is now necessary to obtain an expression for the ion
current in terms of the local ion density. Some care is
required here because the expression depends on whether
r>r,orr<r,. When we consider r < r, we shall see ions
moving towards the probe, considering their radial velocity
components. On the other hand at radii greater than r,
there will be a two-way traffic because some ions are
deflected by the electric field, but not captured by the probe,
i.e. they do not hit the absorption surface (radius r,) shown
in Fig. 4.

The principle of conservation of angular momentum
states in general that

h(2eVy/M)''? = rv, (29)
and conservation of energy states that
IMVZ + IMVE = eV, —eV (30)

Where v, and v, are the radial the transverse components
of velocity and V is negative as usual. Combining (29) and
(30) gives

V 2\1/2
h=r<1——~—mv' (31)
Vo 2eV,
which can be substituted into equation (27) to give
Vo M2
= Vo2l — — - —+ 32
I = nye(2eVy/M) “nr ( Ve 2eVo> (32)

Differentiation with respect to v, at a fixed V(r) gives
dI = nye(2M/eVy)?rr?v, dv,

where we have dropped a negative sign. This increment of
current can be divided by 4nr?ev, to give

2M\1/?
dn; = Do (222 dv,
4 \eV,

Le. our velocity distribution function is constant, between
certain velocity limits to be discussed.
The maximum radial velocity relates to a particle collid-

(33)
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ing head-or, with no tangential velocity, viz.

22V N1/2 |74 1/2
um;«m = (_;2) (l I
M \ Vo

The critical radial velocity, i.e. that of the ions which just
reach the surface of absorption, corresponds to h = h,,, and
eq. (31) yizlds

S ELA R TR ATE YO N Y
crit ’w / VO r2 Vo

Let us first consider radii greater than r,. Integration of eq.
(33) gives

IMN\ V2 ve vm
n; = o -——) 2 dv, + dv,)
4 \z2V,, 0 Jve

where the first integral refers to the particles which are not
captured by the probe. The second integral refers to those
which are destined to hit the probe. Thus

ZM‘ 1/2
(—,—) (v + 72)

(34)

(35)

(36)

(37)

[o-5)-80-227)
\ Vo r 1A

for r>1,. Within the radius of absorption eq. (36) is
replaced by

ng (2M\12 [¥m
L= — | — d
n‘ 4 (eVO> Ve vf

because we have only one group of particles to deal with, i.e.
those moving towards the probe, thus

(38)

(39)

for r < r, . In both cases, outside and inside r, , we can write

(1 _ K(_'A’> % — 4eeV/kT=|:<l _ —V~>1/:z _ eeV/KTe]
V) r VO

where w:z have used (37) and (39) together with the plasma
condition that n; = n, = n, exp (eV/kT,). At r =r, eq. (40)
reduces 10

. /2
1 - V_('i! l = DeeV(ralkT,
h

which enables us to calculate V(r,) for a given ion energy
eVy.

The values of V, corresponding to eV,/kTe = 0.01 and
eVo/kT, =0.5 are —28V, and —0.79V, respectively. It is
interesting to note that V, - — 3V, as eV, /kT, - 0.

(40)

(41)
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Fig. 5. The variation of {r,/r)* with |eV /kT,| for the case where eVo/kT, =
0.01 (from eq. 40)

The plasma solution is obtained by solving eq. (40)
subject to the boundary condition first used by Tonks and
Langmuir [10] that dV/dr — oo at the plasma boundary, i.e.
at r = r,, radius of the probe. This can be done in the follow-
ing manner. Curves of (r,/r)? against eV/kT, can be plotted
as shown in Figs 5 and 6 for the two values of eVy/kT,.
These curves have maxima when dr/dV =0 or dV/dr = «©
so that the corresponding values of (r,/r)? yield the values of
(rA/rp)z. The numerical results are (rA/rp)2 =42 for
eVo/kT, = 001 and (ra/r,)* = 1.17 for eV,/kT, = 0.5. Equa-
tion (40) can now be plotted and the results are shown in
Figs 7 and 8.

The ion currents are readily computed from eq. (28) and
are

1 =057n,ekT,/M)"? A (42)
and
I =054n,ekT,/M)** 4 (43)

for eVy/kT, = 0.01 and 0.5 respectively. Thus the ion current
is very insensitive to variations in the energy of the ions. It
does in fact decrease slightly with increasing “ion tem-
perature”.

It is of interest to calculate
plasma boundary.

the quantity {1/v?> at the
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0-6
0-575f-

0-5
1eV/kJg

0up

03

0-2

01

(r/
Fig. 7. The potential distribution near a spherical probe for eV /kT, =

0.01; the modulus of eV/kT, is shown, V being negative. The calculation is
for the thin sheath case

Using eq. (33) this is seen to be given by

1
v

e
Choov

/)

¥m

<

dv, =

1

Ve Vi

(44)

Q 1

1

1

{

0 [}

02

03

04

0s

0-6

1
07
leV/kT |

08

Fig. 6. The variation of (r,/r)* with |eV/kT,| for the case where eV, /kT, =

0.5

where we have to substitute for the relevant values of v, and
Vg i€ those at r = r_. Thus

<~1;> = D]
vl

where the square brackets denote the values of v, and v,
given by eqs (35) and (34) respectively, evaluated at r = r,.
Differentiation of eq. (39) with respect to V' gives dn/dV in
the absorption region and putting dV/dr - oo to obtain

(45)

08
0-75

07
leV/KT,]

0-86

05

0-4

03t

G2k

01

(rir)

Fig. 8. The potential distribution near a spherical probe for eV,/kT, = 0.5;
the modulus of eV/kT, is shown, V being negative. The calculation is for
the thin sheath case
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dn;/dV at the plasma boundary one obtains

dm;  no [[ve] — [ve <2eV0 2

dV_“Vo{ [ondD] } M) (40
or

dn, ne @7

4V~ M[vvd

but in the plasma n, =n, = n, exp (eV/kT,) so that the
L.H.S. is equal to n;e/k T, and therefore

M[vpllv] = kT,
use of eq. (45) then gives the result

w(l)” -

r

kT, (48)

tal—

which is a generalized form of the Bohm criterion [11].
Thus the different results obtained for different values of
(eVo/kT,) do coalesce when expressed in this particular form.
We shall now verify an assumption made in the ABR
theory (Allen, Boyd and Reynolds, [12]) namely that the
velocities of initially cold ions are directed towards the
centre of the probe. It has already been pointed out that the
potential at the absorption radius tends to —3V, as
eVo/kT, - 0. It is also evident from eq. (28) that r, tends to
infinity at the same time. Now eq. (40) simplifies at poten-
tials which are numerically much greater than V, to give

V ,
<l - ﬂ)ri = 4r2eV kT — V| V,) 12 (49)
Vo
which on multiplication by n, becomes
V
no<1 - -—(Jf—))ri = 4nri(—=V/Vy)l? (50)
o]

remembering that n = ng exp (eV/kT,). Comparison of egs
(50) and (28) gives the result

= 4nrine(—2eV/M)'? (51)

which shows that the ions are moving radially towards the
probe, thus justifying the procedure adopted in the ABR
theory. Analogous calculations for the cylindrical probe give
a different result, the ions are found to have appreciable
tangential velocities in the cylindrical case.

The ABR (radial motion) theory for cold ions gives the
following result, for the thin sheath case,

[ =0.61nge(k T,/ M) 4 (52)

Comparison of eqn (42), (43) and (52) shows that the ion
current is very insensitive to the random ion energy so that
it is hardly worth while introducing the velocity distribution
of the ions. In some cases measurements of ion current may
be used, instead of measurement of electron current, to
determine the electron density in a plasma. The ion current
is much less than the saturation electron current, so that the
plasma is perturbed to a lesser extent and less heat is dissi-
pated at the probe. The electron temperature is required
and can be determined from the lower part of the semiloga-
rithmic plot of the electron current if not known from other
measurements. [t is interesting to note that the “plane”
probe which is commonly used will actually have a field
pattern, in the plasma, which is roughly hemispherical.
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Another point which is worth making is that Langmuir and
Mott-Smith [13] found that comparable ion currents were
received, ‘whichever way the prcbe was facing. The conclu-
sion reached was that the ions had a random motion
whereas we now see that field penetration was responsible.
Figures 7 and 8 show that the field penetrates the plasma
for about 3 or 4 rimes the probe radius.

5. Numerical solutions of Poisson’s equation

The last section described solutions obtained using the
quasi-neutral plasma equation. When the space charge
sheath is thin this method is very useful. If the sheath is not
thin it is usually best to abandon the model which considers
separate plasma and sheath regions. In principle one simply
solves the space-charge equation*

1y e

VY = - (53)

€o

The expressions previously found for the ion density, both
within and outside the absorpticn radius, can be used again,
together with the Boltzmann relation for the electron
density. Computations based on this model, i.e. for mono-
energetic ions, were carried out by Bernstein and Rabino-
witz [3] for both the spherical and the cylindrical probe.
These calculations were extended by Chen [14], who also
discovered a number of numerical misprints in the original
paper.

Laframboise [4] further extended the theory by including
a Maxwellian distribution of the attracted particles. The
results of these calculations are widely used and the report
issued by the University of Toronto is to be found in many
laboratories where Langmuir probes are employed. Analyti-
cal formualae which fit Laframooise’s numerical results, to
within about 3 per cent have been given by Kiel and by
Peterson anc Talbot [17].

6. Practical limitations of the Orbital Motion Theory

Mention will be made here of some experimental work with
cylindrical probes reported by Allen, Annaratone and Allen
{18]. A more detailed paper by Annaratone et al. is in the
press [19]. In experiments with R.F. discharges the probe
results (for ion collection) were found to be in good agree-
ment with the ABR theory, rather than the orbital motion
theory ciscussed above. The ABR theory assumes radial
motion only It was developed by Allen, Boyd and Reynolds
[12] and extended by Chen [14].

Comparison between both theories and the experimental
results was rade using a Sonin plot [20, 21, 22]. In the plot
shown in Fig. § the ion current is normalized in the follow-
ing way

I} =ilryn, lekT/M)"?]"! (54)

where I; is the normalized icn current, i is the measured
current and the other symbols have their usual meaning.
The notation of Annaratonz, Allen and Allen is followed

* In pract ce much numerical work. is required, [ shall not attempt to sum-
marize t1e results here.
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Fig. 9. The Sonin plot for a cylindrical probe; I} (- 15) is the normalized
ion current measured at 15kT /e below the space potential r, is the probe
radius and 4, = (g0 kT,/ng €?)'/%. The normalization is given by eq. (54). The
upper curve has been obtained from Chen’s numerical solutions for the
ABR (radial motion) theory. The lower curve shows the results of Lafram-

boise for T,/T, — 0. The experimental points are from Allen, Annaratone
and Allen [18]

1
102

closely here because different normalizing procedures are
used for different purposes. The Sonin plot consists of I}
measured at 15kT,/e below the plasma potential, plotted
against (rp/lD)ZI}. The lower plot corresponds to Lafram-
boise’s calculations, the horizontal part corresponding to
the orbital motion limited (O.M.L.) theory. The upper curve
is that calculated assuming radial motion (ABR theory). It is
seen that, for these particular experiments, the results agree
with the simple ABR theory, rather than with the more
sophisticated calculations of Laframboise.

Let us consider the orbital motion limited regime. The
angular momentum of an 1on collected by the probe 1s given
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by
J = MQ2Eo/M)' 2(1 = eV, /Eg)' *r, (55)
If the initial energy of the ion is small then
J = M(--2eV M) Py, (56)

Thus even it E, =0, the 1ons still have an angular
momentum! This is because the effective radius of the probe
for capture has become infinitely large. Clearly collisions
may render this result invalid in some practical situations.

The maximum value of the angular momentum assuming
that the m.fp. 4 is less than the linear dimensions of the
plasma, is given by
Jo = MQEy/ M)A (57

The orbital limited motion theory will fail if J, < J where
J has been estimated, as above, on the basis of a collision-
free plasma of infinite extent. Thus the O.M.L. theory will
fail if

A <r(—eV/kT)? (58)

In one particular experiment, using Argon at 0.5Pa,
A =385mm, r, = 0.25mm but the R.H.S. of the inequality
is 10.9 mm. Thus the O.M.L. theory fails. It is clear that care
must be taken in using the orbital motion kind of theory.
No plasma is entirely collision-free nor infinite in extent.
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