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Diverse structures in flowing plasmas

Y ohkoh Y. Kiwamoto

Need new methods to describe and analyze
these phenomena



Complex transient phenomena
-- out of the scope of exponential laws

G.D. Chagelishvili, A.D. Rogava, D. Tsiklauri,
Phys. Plasmas 4 (1997), 1182-1195.




Secular amplification| in coupled
continuous spectra (KH-type modes)
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M. Hirota, T. Tatsuno, and Z. Yoshida,
""Degenerate continuous spectra producing
localized secular instability -- An example
in a non-neutral plasma“

J. Plasma Phys. 69, 397 (2003).
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Ballooning modes in a flowing tokamak
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M. Furukawa and S. Tokuda, Phys. Rev. Lett. 94, 175001 (2005).




What do we know about Hermitian systems?

We may assume

u(x, 1) = A)x) = exp(-itm)Hx)

to derive the dispersion relation (= eigenvalue problem).

The eigenfunctions (including singular eigenfunctions belonging to
continuous spectra) are complete

(von Neumann’s theorem).

The solution to an initial-value problem is given by a group {exp(-itH)} of
unitary transforms (propagators):

u(?) = exp(-itH)u(0).

The energy is a constant of motion:
< u(?), H u(r) > = const.




What cani happen in nen-Hermitian systems?

We may NOT assume
u(x,t) = f(H)o(x) = exp(-itm)((x)

The dispersion relation falls short to capture a variety of transient
phenomena.

-- may be unstable even when all ® are real.
-- may be stable even when the potential energy can be negative.

The eigenfunctions may NOT be complete.
Possible nilpotent (higher-order singularity).

The solution operators {exp(-itH)} may NOT be unitary
transforms. — wave number is not conserved.

The energy may NOT be a constant of motion.




Different classes of non-Hermitian generators

= Most pathological generators
-- not a “closed” system.




Some methods of analysis

Lyapunov: stability
-- sufficient for stability (necessary for instability)

Generalized “modes” (Kelvin’s method)
-- [ntegrable if the flow shear is linear.
-- non-conservative property — effective-mass(t)

-- non-integrable dynamics — energy transfer




Expansion of ballooning modes in rotating plasmas by

“stretching”™ eigenfunctions
Example of numerical solution

Wave equation for ballooning modes
in rotating tokamak plasmas
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ﬁ:onsider an eigenvalue problem \ ™
LE = )\hé' _ _ Well-known ballooning equation
The window function # is chosen in static plasmas, which yields

so that this equation becomes the continuous spectrum and
Sturm-Liouville type the corresponding singular

We obtain eigenvalues § and \_eigenfunctions at the stable side /

Keigenfunctions J

Then we can expand by the eigenfunctions as

(0.0 = > 05050, Ol (1) = [ " aophe;e,
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Energy transfer from an unstable mode to stable modes

Eigenvalues as a function of ¢ Shaded region is enlarged
only 0<A<0.002 is shown o |
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However, the energy is transferred
to stable modes successively when
the eigenvalues cross

(log scale)

Therefore, the unstable mode cannot
grow in the time average;
i.e., the ballooning mode is stabilized




SUMMARY

= Elementary processes of waves and instabilities
in flowing plasmas.

= [he theory must go far beyond quantum
mechanics (Hermitian operator theory).

= Non-canonical, non-conservative,
non-exponential properties.






