

The Abdus Salam International Centre for Theoretical Physics

SMR 1673/1

AUTUMN COLLEGE ON PLASMA PHYSICS

5 - 30 September 2005

On some questions in the theory of flowing plasmas

I. Non-Hermitian dynamics of waves in shear flows

Z. Yoshida University of Tokyo

In collaborations with S.M. Mahajan, T. Tatsuno, <u>M. Furukawa</u>, F. Volponi, M. Iqbal, A. Ito, S. Ohsaki, R. Numata<u>, M. Hirota</u>, D. Hori, <u>J. Shiraishi,</u> V. Berezhiani, N. Shatashvili, H. Saleem, R. Dewar, V. Krishan

On some questions in the theory of flowing plasmas

I. Non-Hermitian dynamics of waves in shear flows

Z. Yoshida University of Tokyo

In collaborations with S.M. Mahajan, T. Tatsuno, <u>M. Furukawa</u>, F. Volponi, M. Iqbal, A. Ito, S. Ohsaki, R. Numata, <u>M. Hirota</u>, D. Hori, <u>J. Shiraishi</u>, V. Berezhiani, N. Shatashvili, H. Saleem, R. Dewar, V. Krishan

Diverse structures in flowing plasmas

NRAO

Z. Lin, et al., Science (1998).

Yohkoh

Y. Kiwamoto

Need new methods to describe and analyze these phenomena

Complex transient phenomena -- out of the scope of exponential laws

G.D. Chagelishvili, A.D. Rogava, D. Tsiklauri, Phys. Plasmas **4** (1997), 1182-1195.

Secular amplification in coupled continuous spectra (KH-type modes)

M. Hirota, T. Tatsuno, and Z. Yoshida, "Degenerate continuous spectra producing localized secular instability -- An example in a non-neutral plasma" J. Plasma Phys. **69**, 397 (2003).

Ballooning modes in a flowing tokamak

With flow

Without flow

M. Furukawa and S. Tokuda, Phys. Rev. Lett. 94, 175001 (2005).

What do we know about Hermitian systems?

• We may assume

 $u(x,t) = f(t)\phi(x) = \exp(-it\omega)\phi(x)$ to derive the **dispersion relation** (= eigenvalue problem).

The eigenfunctions (including singular eigenfunctions belonging to continuous spectra) are complete (von Neumann's theorem).

The solution to an initial-value problem is given by a group {exp(-*itH*)} of unitary transforms (propagators): $u(t) = \exp(-itH)u(0).$

• The energy is a constant of motion: < u(t), H u(t) > = const.

What can happen in non-Hermitian systems?

We may NOT assume

 $u(x,t) = f(t)\phi(x) = \exp(-it\omega)\phi(x)$

The dispersion relation falls short to capture a variety of transient phenomena.

- -- may be unstable even when all ω are real.
- -- may be stable even when the potential energy can be negative.
- The eigenfunctions may NOT be complete. Possible nilpotent (higher-order singularity).
- The solution operators {exp(-*it*H)} may NOT be unitary transforms. → wave number is not conserved.
- The energy may NOT be a constant of motion.

Different classes of non-Hermitian generators

Most pathological generators
 -- not a "closed" system.

Energy-conserving systems

 generalized Hamiltonian systems.

Some methods of analysis

- Lyapunov stability
 - -- sufficient for stability (necessary for instability)
 - Z. Yoshida, S. Osaka, A. Ito, S.M. Mahayana, J. Math. Phys. 44, 2168 (2003).
- Generalized "modes" (Kelvin's method)
 - -- integrable if the flow shear is linear.
 - -- non-conservative property \rightarrow effective-mass(t)
 - Z. Yoshida, Phys. Plasmas 12, 024503 (2005).
 - non-integrable dynamics → energy transfer
 M. Furukawa, Z. Yoshida and S. Tokuda, Phys. Plasmas 12, 072517 (2005).

Expansion of ballooning modes in rotating plasmas by "stretching" eigenfunctions

Wave equation for ballooning modes in rotating tokamak plasmas

$$\bar{\rho}\left(\frac{\partial^2 \xi_{\perp}}{\partial t^2} - U\frac{\partial \xi_{\perp}}{\partial t}\right) = \mathcal{L}\xi_{\perp}$$

$$\mathcal{L}(\frac{\partial}{\partial\vartheta},\vartheta,t) := \frac{\partial}{\partial\vartheta} \left(f\frac{\partial}{\partial\vartheta}\right) - g$$

$$f, g, \rho, U \{(\vartheta, t) = \{f, g, \bar{\rho}, U\}(\vartheta + 2\pi, t + 2\pi/(\mathrm{d}\Omega/\mathrm{d}q))$$

Example of numerical solution

Consider an eigenvalue problem

 $\mathcal{L}\xi = -\lambda ar{
ho} h \xi$

The window function *h* is chosen so that this equation becomes Sturm-Liouville type We obtain eigenvalues λ_j and eigenfunctions ξ_j

Well-known ballooning equation in static plasmas, which yields the continuous spectrum and the corresponding singular eigenfunctions at the stable side

Then we can expand ξ_{\perp} by the eigenfunctions as

$$\xi_{\perp}(\vartheta,t) = \sum_{j=1}^{\infty} a_j(t)\xi_j(\vartheta,t) \quad a_j(t) = \int_{-\infty}^{\infty} \mathrm{d}\vartheta \bar{\rho}h\xi_j\xi$$

125

120

1e-92

1e-94

100

105

110

115

 t/τ_A

to stable modes successively when the eigenvalues cross

Therefore, the unstable mode cannot grow in the time average; i.e., the ballooning mode is stabilized

SUMMARY

 Elementary processes of waves and instabilities in flowing plasmas.

 The theory must go far beyond quantum mechanics (Hermitian operator theory).

 non-canonical, non-conservative, non-exponential properties.