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I. WHAT DO WE KNOW ABOUT “HERMITIAN” SYSTEMS?

e Standard form of a Hermitian system:

i0yu = Hu (H* = H). (1)

e We may assume
u(z,t) = f(t)e(z) = e™*'¢(x)
to convert (1) into a “dispersion relation”

(wl — H)p =0. (2)

e The eigenvalue problem (2) gives particular solutions of (1):
Uj(.CL', t) = eiwjt(pj(m) (.7 =12, ) (3)

Here we assume that u; has a finite energy (||¢;||* < o0).

e von Neumann’s theorem: The totality of the particular solutions (3), together
with singular (infinite energy) solutions with “continuous spectra”, is “complete” to

represent every solution to an “initial value problem (u(z,0) = ug(x)):
u(z,t) = 3 (), o) (4)
J
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To include continuous spectra, we have to generalize (4) as
u(@,t) = [ €y o) pudo(n), (5)

where ¢, may be a singular eigenfunction, w(x) is a monotone (non-decreasing) func-
tion of 4 € R (dw(u) = >°;6(wj — p) yields (4)). More appropriate representation

(e, t) = / B (1) uo (6)

where E(u) is the orthogonal projector onto a subspace parameterized by p such that

E(u)E(p') = E(min(u, 1))
e The solution operator (propagator)
et — /ei“tdE(u) (t€R)
constitutes a “one parameter group” of unitary transforms:
le™uoll = lluoll (¢ € R),
which implies the conservation of the wave quanta.

e The energy is also a constant of motion:

(u(t), Hu(t)) = constant (u(t) = e gy, t € R).

II. HOW IS NON-HERMITIAN SYSTEM INTERESTING (DIFFICULT)?

e There may exist (non-exponential) instabilities even if all w are real:

d w1

i—u = u = te Wt

Jordan block represents “resonance”. Modes with overlapping frequencies may interact

resulting in secular amplification.



e Energy principle is weakened. It is generally difficult to find the necessary and sufficient

conditions for (exponential) stability /instability.

Consider

Ou = 1Qu + T'u.

Let Ar denote an eigenvalue of the operator I'.

JAr > 0 = necessary for instability

VAr < 0 = sufficient for stability
(proof) Let u = e*p. Then,
O =(t)e  At) = e T
If VAR < 0,
d,o_d 2
S llull” = Zllell” = 2(p, 7 (8)p) = 2(p, Tp) < 0.

But, dAr > 0 is not sufficient for instability, because the unstable and stable phases

mix. The energy principle (being unaware of the  term) is, thus, weakened.

III. A CLASS OF NON-HERMITIAN SYSTEMS
e Let us consider a second-order dynamical system
02q = Q% (92 : Hermitian), (7)
which is formally equivalent to

0,6 = £iQ4. (8)

A rigorous interpretation of (8) is given by defining u = (g, p)*, and rewriting (7) as
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Denoting ¢ = p £ i€q, (9) reads

8, S I e (10)

6 0 —i )\ ¢
The evolution equation (10) is a Hamiltonian system: Defining

Hu) = = [(2,9°9) + (p,p)] (11)

NN

we may rewrite (10) in a canonical form

0 I q opH

-I0 P —O0,H

Adding a first-order term (representing the flow effect) to (7), we obtain a non-

Hermitian system

02q+ Lo,q = —Q%q (1L : Hermitian). (13)

Then, (12) modifies as

0 I
—I L

Hitherto, we consider a “non-canonical” Hamiltonian system such as

i0u = AHu, (15)

where A is a Hermitian operator (iA is an anti-symmetric operator), Hu = 9, H (H

is a Hermitian operator).
Note that AH is not self-adjoint when A and H do not commute.
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Conservation of the energy is the direct consequence of the anti-symmetry of ¢ A:

1
§<u, Hu) (= H) = constant.

The anti-symmetric operator ¢A is a generalization of ¢ in the Schrédinger equation

—itAH

(1). The propagator e (if it may be generated) is no longer a unitary operator,

and hence, the wave quanta may not be conserved.

The range R(A) of A may be smaller than the total Hilbert space. The orthogonal

compliment of R(A) is spanned by constants of motion that are called “Casimirs”.

For a Hermitian operator
+00
H=[ " udB() (16)
let us define
H'Y? = HY? + g (17)
g2 — Hoo dE 12 [° d
0= VedE(p) HZT= [ /-pdE(p). (18)
Then, we observe

oo ] 0 1
H-Y2— g7V gty —dE(u —i/ ——dFE(p).
" o VAW Rt

Denoting H'/?u = 1), we may rewrite (15) as

iOpp = HY2PAHY . (19)

The generator H'/2AH'? may be decomposed into the real and imaginary parts:

H'PAHY? = (HY?AHY? — HY?AHY?) +i(HY?AHY? + HY?AHY?)

Here, both L; and L5 are self-adjoint.



Note that Ly = 0 (H'/2AH'? is Hermitian) if H is positive H? =0 (or negative

H i/ ? = 0). An instability is due to the couping of positive and negative energy modes.

Generating e~%1, we define
h(t) = e ().
Then, (19) reads as
Op = Lo(t)p  (Lo(t) = 1 Lye 52), (21)

Since e "L is a unitary transform, the spectra of £,(t) is the same as that of L, for

every t. However,

t
ef Lo(s)ds
may not glow even when some spectra are positive.

IV. LYAPUNOYV STABILITY

Equilibria are the extremers of constants of motion, i.e., isolated points of the levelsets

of the constants of motion.

The minimum of the “Hamiltonian” is often a trivial equilibrium (for example, the

minimum of (p? + w?q¢?®)/2 (harmonic oscillator) is the stationary point).

Combination of some other constants of motion (than the energy), which is often called
Casimirs, yields a diversity of nontrivial equilibria. Then, a “Lyapunov function”
(= combination of constants of motion) may give the necessary condition for the

stability [12].

In an infinite-dimension Hilbert space, we have to check the “coercivity” of the Lya-

punov function.



e Example: Beltrami state

— Ideal MHD system:

v+ (v-V)v—(VxB)x B+ Vp=0,

B -V x (vx B)=0.
We assume boundary conditions
n-v=0 n-B=0 onl
and flux conditions

n-Bds=K, ({=1,---,m),

X
where the fluxes through the cuts are given constants.

— The dynamics allows three important constants of motion:
Hy = [[v||* +[|B|I* (energy),
H, = (PA,B) (magnetic helicity),
Hy; =2(v,B) (cross helicity).
— The variational principle
5(H0 — i Hy — MQHZ) =0
gives Beltrami fields defined by

(1-p3)VxB=muB,

V= /J,QB

(22)

(23)

(24)

(25)

(26)
(27)

(28)

(29)

(30)

(31)



— We find that the integral

G(B,v) = ||o]* + |BI]* — i (PA, B) - 2112(v, B) (32)

is a constant of motion for the perturbations B and satisfying the nonlinear
equation (22)-(23), or their linearized equations. The flux condition (25) demands
B e 1%(0).

— We now prove the inequality
(PA,B) < |\"Y|BI1%, (33)

where |A| = min; [A;] [A\; (j = 1,2,---) are the eigenvalues of the self-adjoint curl
operator|. Invoking the spectral resolution theorem due to Yoshida-Giga [11], we
expand u = Y (u,9;)p; (Yu € Li(Q)), where 1, is the eigenfunction of the

self-adjoint curl operator belonging to an eigenvalue \;, and write
B =Y (B, ;)
and
PA =Y (B, 9P,/
leading to the promised inequality

(PA,B) <|PA|-|B|
= [2B,,20] (B, )]
< N (B ;)
= A7BIP.

—-1/2

— Using

2(9, B) < of|3|* + o Y| B|* (Vo >0),



we observe

5 - - kol Jmal) | 2
6(B,) = (1~ alpal) 917 + (1~ 22 - Il (34
The choices o = 1/|pa|, and a = |ua|/(1 — |p1|/|A|) convert (34) to
~ W -
6B = (13- ) 1317 )
and
I T 2
68,0 > (1- L2 ol (36
1—{ual/IA|

respectively. If 1 — u3 — |uy|/|A| > 0, then (35) and (36) give bounds for the

energy associated with the magnetic (B) as well as the velocity (v) fluctuations.
— The “sufficient condition” for the stability, therefore, consists of the simultaneous

inequalities

py < 1. (37)

<Al (38)

where ¢ stands for the eigenvalue of the Beltrami equation (30) for p; > 0.
The first stability condition requires that the flow velocity must not exceed the
local Alfvén speed [see (31)], while the second condition demands that o must not

exceed the minimum of |A;| (A; is the eigenvalue of the self-adjoint curl operator).
e General theorem:

— Let f(a,b) be a bilinear map. We define F(u) = f(u,u), and consider an abstract

nonlinear evolution equation

By = F(u). (39)

We further suppose that there are symmetric bilinear forms h;(a,b) (j =1,---,v)
such that

hij(u, F(u)) =0 (j=1,--,v, Yu). (40)



— It is easy to show that H;(u) = hj(u,u) (u is a solution of (39)) is a constant of

motion for the evolution equation (39);

d

%H](u) = 2hj(u, 8{&)

= 2h;(u, F(u)) = 0. (41)

Let uy be a stationary point (equilibrium) of (39), i.e., F(ug) = 0. We assume

that ug solves

Y [i MjHj(U)] =0 (42)

with some fixed real numbers p; (j =1,--+,v). We call such a uy as a “Beltrami

field”.

Remark 2. 1f (42) has a unique (or isolated) solution ug, then this ug is an
equilibrium of (39). Indeed, any departure from wug will change the value of

G(u) = >27_, piH;(u), while G(u) is a constant of motion.

Theorem 1. Suppose that u = ug+4 (ug is a Beltrami field) satisfies either (39)

or its “linearized” equation
Ot = f(uo, @) + f(,up). (43)
Then,
G(a) = > _ p; H;(a) (44)

18 a constant of motion.

(proof) Using (40), we observe
0= pih;(u, F(u))
=Y pihi(ug + @, F(uo + @)
= >~ pihj(uo, F(uo + @)
+ > pihy(@, Fug + @)). (45)
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Since (42) implies Y p;hj(up,6) = 0 (V9), the first sum in (45) vanishes. Hence,
if u solves (39), we obtain

d
dt —ZZMJ (T, 0yi)

=2 pihi(a, F(up+ a)) = 0. (46)
We can rewrite (45) as

O—Zu] (@, f(uo, @) + (T, uo))
+ uihy(@, F(@). (47)

By (40), the second term of (47) vanishes. If @ is a solution of (43), we obtain

C;i ) =2 pihi(a, f(uo, @) + f(@,ug)) = 0. (48)

O

Although each functional H; occurring in the sum that defines G is a constant
of motion for the total field wu, it is only the special linear combination (44) that
is conserved for the perturbation, %. The coefficients p; included in G are the

structure (Beltrami) parameters characterizing the equilibrium.

If a continuous quadratic form F'(v) satisfies (on a Hilbert space V)
F(v) > cllol* (VweV) (49)

with some positive constant ¢ (||v|| is the norm of v in V'), F(v) is said to be

“coercive”.

Proposition 1. If G(v) = ¥%_, ujH;(v) with given p; is a coercive form, then
1. G(u) has a unique “minimizer” that is given by the variational principle (42),
2. the minimizer ug of G(u) is a stationary point (equilibrium) of (39),

3. the minimizer ug is “stable”; the norm of every perturbation u is bounded by

a constant that depends upon G(i|i—).
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V. KELVIN’S METHOD -GENERALIZED EIGENFUNCTION FOR FLOWING

SYSTEMS

e Because of the non-Hermitian nature, conventional modal approach (spectral resolu-
tion of the generator) does not apply for shear-flow systems. Here, we invoke the idea
of Lord Kelvin [6] to derive particular solutions that describe deformation of “modes”
in a shear flow. We use these solutions as “flowing eigenfunctions” in expanding fluc-

tuations.

e We explain the method using an abstract evolution equation. Let A be the generator
of a no-flow (v = 0) system. Adding the convection term Fu = (v - V)u, we consider

an evolution equation governing a fluctuation wu:

Ou+ Fu = Au. (50)

The generator A — F is generally a non-Hermitian operator.

Solving

(8t + ]—")cp(:z:,t; /1‘) =0, (51)

we determine the deformation of a function ¢ in the flow v, where p is a certain

parameter (quantum number). If this ¢ satisfies, for each ¢,

Ap(z,t; p) = At p)e(z, t; 1), (52)

we call ¢ a “flowing eigenfunction”.

o If the set

{o(x,t;p); peo}t

is an orthogonal complete system (for each t), we may expand
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u(z,t) Z/Gq(t; p)e(z,t;p) du. (53)

Then, the evolution equation (50) decomposes into independent ordinary differential

equations (ODE):

q'(t; ) = At; pw)g(t;m) (Vo € 0). (54)

While the differential equation (54) is “integrable”, the amplitude ¢(¢; u) may exhibit

rather complex behavior, because the eigenvalue A is a function of t.

VI. LAGRANGIAN OF NON-CONSERVATIVE SYSTEM

We assume that the system is (approximately) Fourier analyzable in z and y. The
wave numbers p = (k;, k,) are “good quantum numbers”. We consider an ambient
flow with a constant shear such that v = sze, (s is a real constant number). For a

Fourier mode ¢ = e!(h=#+kyv) (51) yields a flowing eigenfunction

o(z,y,t; ky, k) = ellhemshyhethyy] (55)

In MHD models, the evolution equation (50), governing a vector-valued variable wu,
can be often cast into a second-order differential equation, and the corresponding
“dispersion relation”, for the case of v = 0, yields w = Q(k,, k,) such that w? is real.

Using the flowing eigenfunction (55), we obtain a second-order ODE such as [10,9]
q" +a(t)qd +w?(t)g = 0. (56)

The coefficients a(t) and w(t) depend on the quantum number p = (k,,k,) that is

fixed in (56). For example, a model of interchange modes yields [9]

25k, K, (1)
K. (t)? + k:;’
ky
K. (t)? + k:;’

a(t) = (57)

W2(t)=1—-G (58)

13



where

K, (t) = ky — skyt

and G is a positive parameter measuring the driving force of interchange instabilities.
By (58), we observe that the stretching effect of the shear flow (limy_, . |K.(t)| =
o0) finally removes the instability. The second term on the left-hand side of (56) is

analogous to a “friction”, which represents the phase mixing effect of the shear flow.

While the system (56) is non-conservative, it has a Lagrangian

= Vig,t), (59)

where we define

plt) = exp | Ca(t)dt, (60)
V(g,t) = p(t)”;(t)qz (61)

The “canonical momentum” is given by

oL

=ag ~ P07 (62)

p

In the Lagrangian formalism (59), the phase-mixing effect [the friction term of (56)] is
represented by a time-dependent “effective mass” p(t). When we observe the fluctu-
ations in the space (q,q'), the coefficient p(t)~! yields volume reduction. Using (57),

we estimate a(t) oc t=! for large ¢ [10,9], and hence, we obtain

p(t) xt (t— o0). (63)

We note that the volume reduction (non-conservative property) is not exponential, but

is algebraic [15].
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VII. KINETIC THEORY OF NON-HERMITIAN WAVE SYSTEM

e In the phase space (¢q,p), the system (56) is a standard Hamiltonian system; The

Hamiltonian is

H

“oat (64)

When w? > 0 and |a(t)| < |w|, we may invoke the adiabatic invariance of the action

1
Iz—f p dg,
27 JH=E

where the path integral is taken through an approximate closed orbit characterized by
H(q,p,t) = E [temporal change of H is assumed to be small during the one cycle of
the orbit (27 /w)]. The well-known relation I = F/w allows us to interpret I as the

number of wave quanta [8,3].
e Integrating over the quantum number p = (k,, k,), we obtain the wave field

u(e,t) = / W(t; kg, kel skl rhl g qr (65)

where the “mode amplitude”

ty kg, k
k) q( y) (66)
kxv k i
N qo(ke, ky) i [ wltikaky) db (67)
pO(kza ky)

is determined by the Hamiltonian (64). One may include a slow variation of the
frequency w as a function of (z, y), and then the energy density becomes inhomogeneous

in space. The energy density of the wave field is given by
E(z,y, t; ke, ky) = p(t)w2(x, Y, t; ke, ky)QO(kxa ky)z'

The action (number density of wave quanta) is
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E(z,y,t; kyy ky)
w(z,y, t; ke, ky)

I(z,y, t; kyy ky) =

This Z(z,y, t; k., k,) is an adiabatic invariant along the “eikonal” where the variation

of the phase

S(z,y,t; ke, ky)

= /—w(a:,y,t; ki, ky) dt + (k. — skyt)x + kyy

is minimized. The variational principle

0S(z,y,t; ky, ky) =0

yields the eikonal equation that defines the Cauchy characteristics of the wave kinetic

equation describing the adiabatic conservation of the action:

0
—7 OZY=0 68
J1+{a1)=0 (68)
where
oS
Q tiky, ky) = ——
(xvyv ) y) at

=w(z,y,t; ks, ky) + skyx

and { , } is the standard Poisson bracket.
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