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I� WHAT DO WE KNOW ABOUT �HERMITIAN� SYSTEMS�

� Standard form of a Hermitian system�

i�tu � Hu �H� � H�� ���

� We may assume

u�x� t� � f�t���x� � e�i�t��x�

to convert ��� into a �dispersion relation�

��I �H�� � �� �	�

� The eigenvalue problem �	� gives particular solutions of ����

uj�x� t� � ei�jt�j�x� �j � �� 	� � � ��� �
�

Here we assume that uj has a �nite energy �k�jk
� � ���

� von Neumann�s theorem� The totality of the particular solutions �
�� together

with singular �in�nite energy� solutions with �continuous spectra�� is �complete� to

represent every solution to an �initial value problem �u�x� �� � u��x���

u�x� t� �
X

j

ei�jth�j � u�i�j ��

�



To include continuous spectra� we have to generalize ��� as

u�x� t� �
Z
ei�th��� u�i��d����� ���

where �u may be a singular eigenfunction� ���� is a monotone �non�decreasing� func�

tion of � � R �d���� �
P

j ���j � �� yields ����� More appropriate representation

is

u�x� t� �
Z
ei�tdE���u� ���

where E��� is the orthogonal projector onto a subspace parameterized by � such that

E���E���� � E�min��� �����

� The solution operator �propagator�

e�itH �
Z
ei�tdE��� �t � R�

constitutes a 	one parameter group
 of unitary transforms�

ke�itHu�k � ku�k �t � R��

which implies the conservation of the wave quanta�

� The energy is also a constant of motion�

hu�t�� Hu�t�i � constant �u�t� � e�itHu�� t � R��

II� HOW IS NON�HERMITIAN SYSTEM INTERESTING �DIFFICULT��

� There may exist �non�exponential� instabilities even if all � are real�

i
d

dt
u �

�
BB�
� �

 �

�
CCAu � te�i�t

Jordan block represents 	resonance
� Modes with overlapping frequencies may interact

resulting in secular ampli�cation�

�



� Energy principle is weakened� It is generally di�cult to �nd the necessary and su�cient

conditions for �exponential� stability�instability�

Consider

�tu � i�u � 	u�

Let �� denote an eigenvalue of the operator 	�

��� � 
� necessary for instability

��� � 
� su�cient for stability

�proof� Let u � eit��� Then�

�t� � ��t�� ��t� � e�it�	eit��

If ��� � 
�

d

dt
kuk� �

d

dt
k�k� � ���� ��t��� � ����	�� � 
�

But� ��� � 
 is not su�cient for instability� because the unstable and stable phases

mix� The energy principle �being unaware of the � term� is� thus� weakened�

III� A CLASS OF NON�HERMITIAN SYSTEMS

� Let us consider a secondorder dynamical system

��
t
q � ���q ��� � Hermitian�� ���

which is formally equivalent to

�t� � �i��� ���

A rigorous interpretation of ��� is given by de�ning u � �q� p�t� and rewriting ��� as

�



�tu � �t

�
BB�
q

p

�
CCA �

�
BB�

� I

�I �

�
CCA

�
BB�
�� �

� I

�
CCA

�
BB�
q

p

�
CCA � ���

Denoting �� � p� i�q� ��� reads

�t

�
BB�
��

��

�
CCA �

�
BB�
i� �

� �i�

�
CCA

�
BB�
��

��

�
CCA � ����

The evolution equation ���� is a Hamiltonian system� De	ning

H�u� �
�




h
hq���qi� hp� pi

i
� ����

we may rewrite ���� in a canonical form

�tu �

�
BB�

� I

�I �

�
CCA �uH � �t

�
BB�
q

p

�
CCA �

�
BB�

�pH

��qH

�
CCA ��
�

� Adding a 	rst�order term �representing the ow e�ect� to ���� we obtain a non�

Hermitian system

��t q � L�tq � ���q �iL � Hermitian�� ����

Then� ��
� modi	es as

�tu �

�
BB�

� I

�I L

�
CCA �uH� ����

� Hitherto� we consider a �non�canonical� Hamiltonian system such as

i�tu � AHu� ����

where A is a Hermitian operator �iA is an anti�symmetric operator�� Hu � �uH �H

is a Hermitian operator��

Note that AH is not self�adjoint when A and H do not commute�

�



� Conservation of the energy is the direct consequence of the anti�symmetry of iA�

�

�
hu�Hui �� H� � constant�

� The anti�symmetric operator iA is a generalization of i in the Schr�odinger equation

���� The propagator e�itAH �if it may be generated� is no longer a unitary operator	

and hence	 the wave quanta may not be conserved�

� The range R�A� of A may be smaller than the total Hilbert space� The orthogonal

compliment of R�A� is spanned by constants of motion that are called 
Casimirs��

� For a Hermitian operator

H �
Z

��

��

�dE��� ����

let us dene

H��� � H
���
� � iH

���
�

����

H
���
� �

Z
��

�

p
�dE��� H

���
�

�
Z

�

��

p��dE���� ����

Then	 we observe

H���� � H
����
� � iH

����
�

�
Z

��

�

�p
�
dE���� i

Z
�

��

�p��dE����

Denoting H���u � �	 we may rewrite ���� as

i�t� � H���AH����� ����

The generator H���AH��� may be decomposed into the real and imaginary parts�

H���AH��� � �H
���
� AH

���
� �H

���
�

AH
���
�

� � i�H
���
� AH

���
�

�H
���
�

AH
���
� �

� L� � iL�� ����

Here	 both L� and L� are self�adjoint�

�



� Note that L� � � �H���AH��� is Hermitian� if H is positive H
���
�

� � �or negative

H
���
� � ��� An instability is due to the couping of positive and negative energy modes�

� Generating e�itL� � we de�ne

��t� � e�itL���t��

Then� ���� reads as

�t� � L��t�� �L��t� � eitL�L�e
�itL��� �	��

Since e�itL is a unitary transform� the spectra of L��t� is the same as that of L� for

every t� However�

e
R

t

L��s�ds

may not glow even when some spectra are positive�

IV� LYAPUNOV STABILITY

� Equilibria are the extremers of constants of motion� i�e�� isolated points of the levelsets

of the constants of motion�

� The minimum of the 
Hamiltonian� is often a trivial equilibrium �for example� the

minimum of �p� � ��q���	 �harmonic oscillator� is the stationary point��

� Combination of some other constants of motion �than the energy�� which is often called

Casimirs� yields a diversity of nontrivial equilibria� Then� a 
Lyapunov function�

�� combination of constants of motion� may give the necessary condition for the

stability �	��

� In an in�nite�dimension Hilbert space� we have to check the 
coercivity� of the Lya�

punov function�

�



� Example� Beltrami state

� Ideal MHD system�

�tv � �v � r�v � �r�B��B �rp � �� ����

�tB �r� �v �B� � �� ����

We assume boundary conditions

n � v � �� n �B � � on � ��	�

and 
ux conditions

Z
��

n �B ds � K� �� � �� � � � �m�� ����

where the 
uxes through the cuts are given constants

� The dynamics allows three important constants of motion�

H� � kvk� � kBk� �energy�� ����

H� � �PA�B� �magnetic helicity�� ����

H� � ��v�B� �cross helicity�� ����

� The variational principle

��H� � ��H� � ��H�� � � ����

gives Beltrami �elds de�ned by

��� ��
�
�r�B � ��B� ����

v � ��B� ����

�



� We �nd that the integral

G� �B� �v� � k�vk� � k �Bk� � ���P �A� �B�� �����v� �B� ����

is a constant of motion for the perturbations �B and �v satisfying the nonlinear

equation ���������	 or their linearized equations
 The �ux condition ���� demands

�B � L�

�
��


� We now prove the inequality

�P �A� �B� � j�j��k �Bk�� ����

where j�j � minj j�jj ��j �j � �� �� � � �� are the eigenvalues of the self�adjoint curl

operator�
 Invoking the spectral resolution theorem due to Yoshida�Giga ����	 we

expand u �
P
�u��j��j ��u � L�

�
���	 where �j is the eigenfunction of the

self�adjoint curl operator belonging to an eigenvalue �j	 and write

�B �
X

� �B��j��j�

and

P �A �
X

� �B��j��j��j�

leading to the promised inequality

�P �A� �B� � kP �Ak � k �Bk

�
hX

� �B��j�
����j

i
���� hX

� �B��j�
�
i
����

� j�j��
X

� �B��j�
�

� j�j��k �Bk��

� Using

���v� �B� � �k�vk� � ���k �Bk� ��� � ���

�



we observe

G� �B� �v� � ��� �j��j� k�vk
� �

�
��

j��j

�
�
j��j

j�j

�
k �Bk�� ����

The choices � � ��j��j� and � � j��j���� j��j�j�j� convert ���� to

G� �B� �v� �

�
�� ��

�
�
j��j

j�j

�
k �Bk�� ��	�

and

G� �B� �v� �

�
��

��

�

�� j��j�j�j

�
k�vk�� ��
�

respectively� If � � ��

�
� j��j�j�j � �� then ��	� and ��
� give bounds for the

energy associated with the magnetic � �B� as well as the velocity ��v� uctuations�

� The �su�cient condition� for the stability� therefore� consists of the simultaneous

inequalities

��

�
� �� ����

� �
j��j

�� ��

�

� j�j� ����

where � stands for the eigenvalue of the Beltrami equation ���� for �� � ��

The �rst stability condition requires that the ow velocity must not exceed the

local Alfv�en speed �see ������ while the second condition demands that � must not

exceed the minimum of j�j j ��j is the eigenvalue of the self�adjoint curl operator��

� General theorem�

� Let f�a� b� be a bilinear map� We de�ne F�u� � f�u� u�� and consider an abstract

nonlinear evolution equation

	tu � F�u�� ����

We further suppose that there are symmetric bilinear forms hj�a� b� �j � �� � � � � 
�

such that

hj�u�F�u�� � � �j � �� � � � � 
� �u�� ����

�



� It is easy to show that Hj�u� � hj�u� u� �u is a solution of ����� is a constant of

motion for the evolution equation �����

d

dt
Hj�u� � �hj�u� �tu�

� �hj�u�F�u�� � �� ��	�

Let u� be a stationary point �equilibrium� of ����
 i�e�
 F�u�� � �� We assume

that u� solves

�

�
�

�X
j��

�jHj�u�

�
� � � ����

with some �xed real numbers �j �j � 	� � � � � ��� We call such a u� as a Beltrami

�eld��

Remark �� If ���� has a unique �or isolated� solution u�
 then this u� is an

equilibrium of ����� Indeed
 any departure from u� will change the value of

G�u� �
P�

j�� �jHj�u�
 while G�u� is a constant of motion�

Theorem �� Suppose that u � u���u �u� is a Beltrami �eld� satis�es either ����

or its �linearized� equation

�t�u � f�u�� �u� � f��u� u��� ����

Then	

G��u� �
�X

j��

�jHj��u� ����

is a constant of motion�

�proof� Using ����
 we observe

� �
X

�jhj�u�F�u��

�
X

�jhj�u� � �u�F�u� � �u��

�
X

�jhj�u��F�u� � �u��

�
X

�jhj��u�F�u� � �u��� ����

	�



Since ���� implies
P

�jhj�u�� �� � � ����� the �rst sum in ���� vanishes	 Hence�

if u solves �
��� we obtain

d

dt
G��u� � �

X
�jhj��u� �t�u�

� �
X

�jhj��u�F�u�  �u�� � �� ����

We can rewrite ���� as

� �
X

�jhj��u� f�u�� �u�  f��u� u���


X

�jhj��u�F��u��� ����

By ����� the second term of ���� vanishes	 If �u is a solution of ��
�� we obtain

d

dt
G��u� � �

X
�jhj��u� f�u�� �u�  f��u� u��� � �� ����

�

� Although each functional Hj occurring in the sum that de�nes G is a constant

of motion for the total �eld u� it is only the special linear combination ���� that

is conserved for the perturbation� �u	 The coe�cients �j included in G are the

structure �Beltrami� parameters characterizing the equilibrium	

� If a continuous quadratic form F �v� satis�es �on a Hilbert space V �

F �v� � ckvk� ��v � V � ����

with some positive constant c �kvk is the norm of v in V �� F �v� is said to be

�coercive�	

Proposition �� If G�v� �
P�

j�� �jHj�v� with given �j is a coercive form� then

�� G�u� has a unique �minimizer� that is given by the variational principle �����

�� the minimizer u� of G�u� is a stationary point �equilibrium� of �	
��

	� the minimizer u� is �stable�� the norm of every perturbation �u is bounded by

a constant that depends upon G��ujt����

��



V� KELVIN�S METHOD �GENERALIZED EIGENFUNCTION FOR FLOWING

SYSTEMS

� Because of the non�Hermitian nature� conventional modal approach �spectral resolu�

tion of the generator� does not apply for shear��ow systems� Here� we invoke the idea

of Lord Kelvin ��� to derive particular solutions that describe deformation of 	modes


in a shear �ow� We use these solutions as 	�owing eigenfunctions
 in expanding �uc�

tuations�

� We explain the method using an abstract evolution equation� Let A be the generator

of a no��ow �v � �� system� Adding the convection term Fu � �v � r�u� we consider

an evolution equation governing a �uctuation u

�tu� Fu � Au� ����

The generator A�F is generally a non�Hermitian operator�

Solving

��t � F���x� t��� � �� ����

we determine the deformation of a function � in the �ow v� where � is a certain

parameter �quantum number�� If this � satis�es� for each t�

A��x� t��� � ��t�����x� t���� ����

we call � a 	�owing eigenfunction
�

� If the set

f��x� t���� � � �g

is an orthogonal complete system �for each t�� we may expand

��



u�x� t� �
Z
�
q�t�����x� t��� d�� ����

Then� the evolution equation ���� decomposes into independent ordinary di�erential

equations �ODE�	

q��t��� � ��t���q�t��� ��� � ��� ��
�

� While the di�erential equation ��
� is �integrable�� the amplitude q�t��� may exhibit

rather complex behavior� because the eigenvalue � is a function of t

VI� LAGRANGIAN OF NON�CONSERVATIVE SYSTEM

� We assume that the system is �approximately� Fourier analyzable in x and y The

wave numbers � � �kx� ky� are �good quantum numbers� We consider an ambient

�ow with a constant shear such that v � sxey �s is a real constant number� For a

Fourier mode � � ei�kxx�kyy�� ���� yields a �owing eigenfunction

��x� y� t� kx� ky� � ei��kx�skyt�x�kyy�� ����

� In MHD models� the evolution equation ����� governing a vector�valued variable u�

can be often cast into a second�order di�erential equation� and the corresponding

�dispersion relation�� for the case of v � �� yields � � ��kx� ky� such that �� is real

Using the �owing eigenfunction ����� we obtain a second�order ODE such as ������

q�� � a�t�q� � ���t�q � �� ����

The coe�cients a�t� and ��t� depend on the quantum number � � �kx� ky� that is

�xed in ���� For example� a model of interchange modes yields ���

a�t� � �
�skyKx�t�

Kx�t�� � k�
y

� ����

���t� � ��G
k�
y

Kx�t�� � k�
y

� ����

��



where

Kx�t� � kx � skyt

and G is a positive parameter measuring the driving force of interchange instabilities�

By ����� we observe that the stretching e�ect of the shear �ow �limt�� jKx�t�j �

�� 	nally removes the instability� The second term on the left
hand side of ���� is

analogous to a �friction� which represents the phase mixing e�ect of the shear �ow�

� While the system ���� is non
conservative� it has a Lagrangian

L �
��t�q��

�
� V �q� t�� ����

where we de	ne

��t� � exp
Z t

�

a�t�dt� ����

V �q� t� �
��t����t�q�

�
� ����

The �canonical momentum is given by

p �
�L

�q�
� ��t�q�� ����

� In the Lagrangian formalism ����� the phase
mixing e�ect �the friction term of ����� is

represented by a time
dependent �e�ective mass ��t�� When we observe the �uctu


ations in the space �q� q��� the coe�cient ��t��� yields volume reduction� Using �����

we estimate a�t� � t�� for large t ������� and hence� we obtain

��t� � t �t���� ����

We note that the volume reduction �non
conservative property� is not exponential� but

is algebraic �����

��



VII� KINETIC THEORY OF NON�HERMITIAN WAVE SYSTEM

� In the phase space �q� p�� the system ���� is a standard Hamiltonian system� The

Hamiltonian is

H �
p�

���t�
�

��t����t�q�

�
� ��	�

When �� � 
 and ja�t�j � j�j� we may invoke the adiabatic invariance of the action

I �
�

��

I
H�E

p dq�

where the path integral is taken through an approximate closed orbit characterized by

H�q� p� t� � E �temporal change of H is assumed to be small during the one cycle of

the orbit ������� The well�known relation I � E�� allows us to interpret I as the

number of wave quanta �����

� Integrating over the quantum number � � �kx� ky�� we obtain the wave �eld

u�x� t� �
Z
��t� kx� ky�e

i��kx�skyt�x�kyy� dkxdky� ����

where the �mode amplitude�

��t� kx� ky� �

�
BB�
q�t� kx� ky�

p�t� kx� ky�

�
CCA ����

�

�
BB�
q��kx� ky�

p��kx� ky�

�
CCA e�i

R
��t�kx�ky� dt ����

is determined by the Hamiltonian ��	�� One may include a slow variation of the

frequency � as a function of �x� y�� and then the energy density becomes inhomogeneous

in space� The energy density of the wave �eld is given by

E�x� y� t� kx� ky� � ��t����x� y� t� kx� ky�q��kx� ky�
��

The action �number density of wave quanta� is

��



I�x� y� t� kx� ky� �
E�x� y� t� kx� ky�

��x� y� t� kx� ky�
�

This I�x� y� t� kx� ky� is an adiabatic invariant along the �eikonal� where the variation

of the phase

S�x� y� t� kx� ky�

�
Z
���x� y� t� kx� ky� dt� �kx � skyt�x� kyy

is minimized� The variational principle

�S�x� y� t� kx� ky� � �

yields the eikonal equation that de	nes the Cauchy characteristics of the wave kinetic

equation describing the adiabatic conservation of the action


�

�t
I � f�� Ig � �� ���

where

��x� y� t� kx� ky� � �
�S

�t

� ��x� y� t� kx� ky� � skyx

and f � g is the standard Poisson bracket�

��
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