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Outline

• Kinetic equations for the photon gas;
• Wigner representation and Wigner-Moyal equations;
• Modulational instabilities of quasi-particle beams;
• Photon acceleration in a laser wakefield;
• Plasmon driven ion acoustic instability;
• Drifton excitation of zonal flows;
• Resonant interaction between short and large scale perturbations;
• Towards a new view of plasma turbulence.



Wigner approach

Schroedinger eq.
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Quasi-classical approximation 
(sin Λ ~ Λ, h —> 0)

Conservation of the quasi-probability
(one-particle Liouville equation)

Of little use in Quantum Physics (W 
can be directly determined from 
Schroedinger eq.)



Wigner-Moyal equation for 
the electromagnetic field

Field equation (Maxwell)

Kinetic equation

[Mendonca+Tsintsadze, PRE (2001)]
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Photon number density

For the simple case of plane waves:

(R=0 is the dispersion relation in the medium)

Slowly varying medium

(photon number conservation)



Dispersion relation of electron plasma waves in a 
photon background
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Resonant wave-photon interaction,

Landau damping is possible

[Bingham+Mendonca+Dawson, PRL (1997)]



Physical meaning of the Landau resonance

Non-linear three wave interactions
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conservation relations

Limit of low frequency and long wavelength
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Spectral features: (a) split peak, (b) bigger split, (c) 
peak and shoulder, (d) re-split peak

Simulations: R. Trines

Experiments: C. Murphy

(work performed at RAL)

Photon dynamics in a laser wakefield



Experimental Numerical 1D

Also appears in classical particle-in-cell simulations

Can be used to estimate wakefield amplitude

Split peak
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Anomalous resistivity for Fast Ignition

LASER Fast electron beam
Electron plasma waves
Transverse magnetic fields

Ultimate goal: ion heating



Theoretical model: 
Wave kinetic description of electron 
plasma turbulence

• Electron plasma waves described as a plasmon gas;

• Resonant excitation of ion acoustic waves

Dispersion relation of electrostatic waves



Electron two stream instability

Maximum growth rate

Total plasma current

Dispersion relation



Kinetic equation for plasmons

Plasmon occupation number

Plasmon velocity Force acting on the plasmons



Ion acoutic wave resonantly excited 
by the plasmon beam

Maximum growth rate

Effective plasmon frequency



Two-stream instability
(interaction between the fast beam and the return current)

Freturn

Ffast

Unstable region:

Plasmon phase velocity vph ~ c

Electron 
distribution 
functions



Plasmon distribution

Low group velocity plasmons: vph .vg = vthe
2

Vg ~ vthe
2 / c

Ion distribution         (ion 
acoustic waves are 
destabilized by the 
plasmon beam)

Npl

Vph/ionac ~ vg

Fion

Npl

[Mendonça et al., PRL (2005)]



Laser intensity threshold

For typical laser target experiments, n0e~1023 cm-3:

I > 1020 W cm-2

Varies as I-5/4

γ0 , u0e~ I1/2

Preferential ion heating regime

(laser absorption factor)



Experimental evidence

Plastic targets with deuterated
layers using Vulcan (RAL)

I = 3 ×1020 Watt cm-2

Not observed at lower intensities 
(good agreement with theoretical 
model)

[P. Norreys et al, PPCF (2005)]



We adapt the 1-D photon code to drift waves:

Two spatial dimensions, cylindrical geometry,

Homogeneous, broadband drifton distribution,

A Gaussian plasma density distribution around the origin.

We obtain:

Modulational instability of drift modes,

Excitation of a  zonal flow,

Solitary wave structures drifting outwards.

Coupling of drift waves with zonal flows



Fluid model for the plasma (electrostatic potential Φ(r)):

Particle model for the “driftons”:

Drifton number conservation;

Hamiltonian:

Equations of motion: from the Hamiltonian
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[R. Trines et al, PRL (2005)]

Quasi-particle description of drift waves



Excitation of a zonal flow for small r, i.e. small background density gradients; 
Propagation of “zonal” solitons towards larger r.

Simulations



Plasma Physics processes described 
by wave kinetics

Anomalous transportZonal flowsDriftons
(drift waves)

Anomalous heatingIon acoustic wavesPlasmons

Beam instabilities; photon 
Landau damping

Electron plasma 
waves

Photons

Photon accelerationIonization frontsPhotons

Physical relevanceLarge scalesShort scales



Other Physical Processes

Supernova explosionsElectron plasma 
waves

neutrinos

Gamma-ray burstsGravitational wavesPhotons

Tera-Hertz radiation in polar 
crystals

polaritonsPhotons

Self-phase modulation
Cross-phase modulation

Iaser pulse envelopePhotons

Physical relevanceLarge scalesShort scales



Conclusions

• Photon kinetic equations can be derived using the 
Wigner approach;
• The wave kinetic approach is useful in the quasi-
classical limit;
• A simple view of the turbulent plasma processes can be 
established;
• Resonant interaction from small to large scale 
fluctuations;
• Successful applications to laser accelerators (wakefield
diagnostics); inertial fusion (ion heating) and magnetic 
fusion (turbulent transport).


