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Abstract

The problem of the plasma-wall transition (PWT) layer in an unmagnetized plasma is con-
sidered.

In the first part of the lecture, a self-consistent two-scale formalism is presented and the
asymptotic (Ap/A — 0, where Ap is the electron Debye length and X is the ion mean free path)
presheath and sheath solutions are analyzed for the well-known hydrodynamic Tonks-Langmuir
PWT model: a plasma, consisting of Boltzmann-distributed electrons and singly charged ions, is
enclosed by two absorbing negatively charged walls. The ion gas, described in the hydrodynamic
approximation, is assumed to be collision-free. On the scale of the (quasi-neutral) presheath,
the sheath edge is distinguished as a singular point of the electric field, whereas on the scale of
the (non-neutral) sheath it is defined by the boundary condition of vanishing electric field. At
the sheath edge the Bohm criterion is fulfilled in the marginal (equality) form. The problem
of matching the presheath and sheath solutions is closely related to the consistent analysis of
the transition region near the sheath edge. Introducing an “intermediate scale”, for small but
finite ratios Ap/A, the presheath and sheath solutions can be matched smoothly. The eigenvalue
problem originating from the plasma balance (the ion loss to the wall must be balanced by the
ion production due to electron-neutral ionization collisions) is considered.

In the second part of the lecture, the problem of the PWT layer in a semibounded plasma
is considered whithout explicit splitting into sheath and presheath regions. The ion dynamics
is described by kinetic theory and includes ionization, recombination and charge-exchange col-
lisions. A condition is derived which must be fulfilled by the ion velocity throughout the whole
PWT layer in order to exclude oscillatory behaviour of the electrostatic potential. The resulting
system of equations is solved numerically. A comparison of recent experimental results with
a numerical solution of model presented here reveals that the model accurately describes the
transition from the bulk plasma to the wall.

The lecture is mainly based on the results of the following papers:

1. The plasma-sheath matching problem in the hydrodynamic Tonks-Langmuir model,

K.-U. Riemann, J. Seebacher, D.D. Tskhakaya sr., and S. Kuhn (submitted to Plasma Physics
and Controlled Fusion).

2. On the theory of plasma-wall transition layers,

D.D. Tskhakaya sr, B. Eliasson, P.K. Shukla and S. Kuhn, Phys. Plasmas 11, 3945 (2004).



1. Introduction

When a plasma is in contact with a surface, such as an electrode or a wall (e.g. in laboratory
discharges), the surface typically becomes negatively charged due to the absorption of fast mov-
ing electrons. The negatively charged surface repels electrons and attracts ions which are pulled
towards the surface [1]. This gives rise to charge separation near the surface, resulting in a strong
electric field. The problem of the plasma boundary layer is one of the oldest issues in Plasma
Physics. In the past, several investigations [2, 3, 4, 5] have dealt with this problem, and recent
experiments in weakly collisional plasmas [6] have been conducted and their results compared
with the theoretical predictions [7]. However, the problem of the plasma-wall transition (PWT)
layer is still the subject of numerous investigations and violent controversies [8, 9, 10, 11]. This
is due to the mathematical and physical difficulties related to the various competing nonlinear
effects and boundary conditions.

The plasma is shielded from the wall by a thin positive space-charge layer (“sheath”), ex-
tending over several electron Debye lengths Ap;. Usually the Debye length is small compared
with [,s - the relevant length scale of the presheath. Here A\ps(= [Tes/ (47rnesez)] 1/2) is the De-
bye length at the “sheath edge” or “sheath entrance” (indicated by the subscript s) . Pioneers
like Langmuir [12] and Bohm [13] used the plasma-sheath concept more or less intuitively. A
strict mathematical justification based on an asymptotic, € = Aps/lps — 0, two-scale formalism
was developed in [2]. During the last decades, the analysis of PWT layers on the basis of the
two-scale formalism was refined and extended to different complex conditions (see [5, 14] and
references cited there).

In the “asymptotic two-scale approximation” usually employed, the PWT layer is split into
two distinctly different sublayers, namely the collisional, quasi-neutral “preshath” and the colli-
sionless, non-neutral “sheath” adjacent to the wall [5, 14], [16]. It can be shown that for ¢ — 0
in a fluid description

ui(2) > e(2) = V(T5(2) + 75 Tis (2)) (1)
(the “fluid Bohm criterion”) must be satisfied in the entire sheath region, where u;(z) is the ion
fluid velocity, ¢(z) is the ion sound speed, T* = en./ [dn, (@) /dp] ™" is the “electron screening
temperature”, T; is the ion temperature, -y; is the ion “polytropic” coefficient, m; is the ion mass,
©(z) is the electrostatic potential, and n. (¢) is the electron density. Temperatures are given
in energetic units. The inequality sign in (1) holds inside the sheath, whereas the equality sign
applies as a limit at the sheath edge (the “marginal fluid Bohm criterion”), dictating that the
ions enter the sheath with the ion sound velocity u;s = ¢s = \/(T% + 7YisTjs) /mi. The criterion
(1), which in its original, strongly simplified form

U 2 Cs = \/ Te/mia (2)

was given by Bohm [13], ensures the potential distribution to be spatially non-oscillatory at the
sheath edge.n

The asymptotic two-scale approach allows one to avoid many of the mathematical difficulties
associated with more realistic situations characterized by finite e. The main potential drop takes
place in the sheath, whereas a residual electric field penetrates into the presheath and accelerates
the ions to the velocity c;, required by the marginal Bohm criterion at the sheath entrance. The
relevant presheath scale length [,s, which is the minimum of the various collision mean-free
paths (mfp) (ionization mfp A;,, and recombination mfp A.¢. for electrons, ion mfp for charge-
exchange collisions with neutrals Aegze, etc.) and the curvature radius R [14], is assumed to
be much larger than the Debye length. The asymptotic two-scale formalism implies neglecting
the space charge on the presheath scale (in the presheath region, the quasineutrality condition
holds) and collisions in the sheath region. In reality, however, the parameter ¢ defined above, is
always finite and the asyptotic two-scale approach may be expected to yield reasonable results
only if ¢ < 1. A common approach to take this into acocunt is to find separate solutions




for the presheath and sheath regions and join them in the “intermediate” region, i.e., in the
transition region between the presheath and the sheath [14, 8, 17]. At a first glance there is
no "region of common validity” representing the presheath-sheath interface. The asymptotic,
¢ — 0, preshath solution runs into a electric field singularity, Aion de/dz — o0, at the sheath
edge indicating that the subsequent sheath is infinitity thin on the presheath scale z/l,, . On the
sheath scale z/Aps, in contrast, the presheath is infinitely remote and, consequently, the sheath
edge is characterized by a zero electric field, Aps dp/dz — 0. The seeming incompatibility can
be resolved by reanalyzing the problem on an ”intermediate scale” accounting in lowest order
both for space charge and collision effects. This reanalysis requires to introduse a transition
layer (inermediate region), which connects the presheath and sheath regions and fills in the
region, where the presheath and sheath solutions differs from the exact solution. This procedure
is called the matching of the asymptotic two-scale solutions. It consists in (i) matching the
presheath solution with the intermediate solution and (ii) matching the intermediate solution
with the sheath solution.

Below we consider matching of solutions for the hydrodynamic version of the plane Tonks-
Langmuir model of the PWT layer: an one-dimensional collision-free plasma enclosed by two
parallel absorbing walls. In fact there is no need to specify the plasma model in detail, because
the mathematical description of the presheath-sheath transition is universal [14]; in particular it
makes no difference whether the presheath effect is based on geometry, collisions, or ionization.
For various reasons, however, it is convenient to investigate the hydrodynamic Tonks-Langmuir
model:

(a) first, this simple model is most suitable to exhibit and clarify the specific difficulties
originating from the coupling of the presheath-sheath analysis with the plasma eigenvalue prob-
lem. Physically the eigenvalue problem reflects the fact that the ion production rate due to
electron-neutral ionization collisions must be equal to the rate at which ions are lost on the wall
(”plasma balance”). For a given boundary condition (by prescribing the wall potential ¢,,) the
ionization frequency and the plasma dimension acquire a mutual dependence.

(b) second, the model is widely known and the asymptotic presheath solution is analytically
known.

Hence, the asyptotic two-scale formalism implicitly needs the smallness of the parameter ¢,
€ <€ 1. While such an approximation may have its merits if ¢ is still sufficiently small, an unified
treatment would be preferable both for fundamental scientific correctness and also for practical
applications when € can no longer be considered to be very small.

Below we present such a unified treatment. We investigate a PWT layer considering it as one
unit, without a priori splitting it into presheath and sheath regions. For the ions we use a self-
consistent kinetic treatment including ionization, recombination and charge-exchange collisions.
The spatial dependences of the electron and ion densities, the ion velocity, and the electrostatic
potential are investigated both analytically and numerically. A comparison of our numerical
results with recent experimental observations [6] reveals exellent quantitative agreement, This
experimental confirmation allows us to conclude that our model and the related assumptions
describe the PWT layer correctly even in parameter regions where simplified models fails.

In addition, we formulate a general condition which must be satisfied throughout the whole
PWT layer to ensure spatially non-oscillatory solutions even when the ion velocity goes to zero
far away from the wall (i.e., at distances 2 [,s).

Tonks-Langmuir model of PW'T layer
2. Basic Equations

The famous plane symmetric discharge model of Tonks and Langmuir describes a collisionless
plasma in front of two absorbing walls. Because of the symmetry of the system with respect to
the midplane z = 0 it is sufficient to investigate the half space occupied by plasma, 0 < z < L.
The cold fluid approach of the plane problem leads to the following dimensionless set of equations
[3],[13]



@(nu) = Ze
du dp Lou _,
dy dy ¢ n
A\ & i
where ¢ = —ep/T, is the potential, n_ = e~? represents the normalized electron density n_ =

ne/ne(0), n = ni/ne(0) designates the dimensionless ion density, and v = v;/cs = vi/\/Te/M;
denotes the dimensionless ion flow velocity. The natural way to normalize the space coordinate
z would be to normalize it with the dimension of the plasma, which is for the Tonks-Langmuir
model the distance L from the plasma center to the wall. In this case we normalize y = z/L
and obtain (3). The ionization frequency o is a left open parameter which is not known a priori.
It has to be determined from the solution of the problem, and is therefore an eigenvalue of the
problem. This ionization frequency o and the dimension of the plasma vessel L have a mutual
dependency, which physically reflects the so called plasma balance. It says that the rate, at
which ions are lost on the wall, must be equal to the ion production rate. For a given length L
the ionization frequency has to adjust to this length in the stationary case. A solution procedure
of (3) is shown in [3] but it is rather complicated. A more convenient way is to set Lo/cs = 1
and to normalize z in the following way - * = oz/cs (the presheath scale), which leads to the
system of equations

d
el — 9
dx(nu) e
du _ d$ u _,

udm - dx ne

d*¢

2 _
151 E = n—e 4 (4)

Now the length L becomes an eigenvalue of the problem and the wall position is not known
a priori. The common way to find a solution of (4) is to start the calculation at the plasma
center and to proceed until the boundary condition, ¢ = ¢,,at the wall is fulfilled (¢, is the
potential on the wall). The distance L from the plasma center to the wall can be determined
afterwards as a result of the calculation. Egs. (4) contain only one parameter € = Ap/A with
the Debye length A\p (= [T./ (47r62ne(0))]1/2) and A = ¢5/0. The length X is said to be the
plasma presheath scale, because in fact it characterizes the length from the plasma center to
the sheath edge, which will be defined later. So in this case A = I, (see the Introduction).
The parameter ¢ is called the smallness parameter because in most applications ¢ < 1. From
this fact it becomes clear why we can apply perturbation theory to find at least approximate
solutions. But Eqs.(4) represent a singular perturbation problem, because in the limit ¢ — 0
the highest derivative in (4) vanishes, and it is not possible to fulfill the boundary conditions at
the wall. From perturbation theory we know that another scale can be defined which is called
the sheath (inner) scale via £ = (z — 2,)/A\p = (x — z;) /e, which leads to

d _ e ?
E(nu) = ¢€e
d (u? U
3 (7—¢) = et
d2
d—;f = n—e_¢. (5)



The constant z,(or z,) is arbitrary, but later we will see, that it can be used to adjust the
position of the sheath. It should be mentioned that the sheath cannot be related to the wall in
our calculation because the wall position is not known.

From the physical point of view there is no difference between (4) and (5), we have only changed
the normalization of the space coordinate. Solutions can be found numerically. The results for
(4) are demonstrated for different values of € in Fig.1.
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Figure 1: Normalized potential curves for the plane Tonks-Langmuir model with finite € on the
presheath scale.

One observes that the plasma region is resolved well on presheath scale but the sheath region
is not clearly visible to the observer. On the other hand the same solutions on the sheath scale
look quite different, as demonstrated in Fig.2. Now the gradients in the sheath region are clearly
visible. On both scales it is not possible to determine a distinct point where the presheath ends
and the sheath begins, which makes it difficult to distinguish a presheath region and a sheath
region.

To overcome this difficulty it is possible to introduce a third scale, which is called the
intermediate scale, with { = (z — z5)/l;, = (x — )/, where [, = )\4D/5)\1/5 and § = ¢*/5. In
Fig.3 there are plotted again the same results as shown in Fig.1 and in Fig.2, but now on this
intermediate scale. One observes a region where the curves for different values of € has a common
range of validity. In principle there is no distinct point which separates the presheath from the
sheath, but the common region of the different solutions shown in Fig.3 gives a reasonable hint
where the plasma ends and the sheath begins.

3. Asymptotic Analysis of the Presheath and Sheath scales

3.1 Asymptotic Presheath Scale Analysis
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Figure 2: Normalized potential curves for the plane Tonks-Langmuir model with finite € on the
sheath scale.

In the asymptotic limit ¢ — 0 the Poisson equation in set (4) collapses to the quasineutrality
condition. The resulting set of equations, presented in (6) can be solved analytically. In this
limit only the left boundary condition at the plasma center can be fullfilled and the solution for
the potential runs into a singular point on the right, which is called the sheath edge. The set of
equations from (4) is

%(nu) = ¢?
2
% (u2 - ¢) = —e%u/n
n = e? (6)

A detailed derivation of the solution of the upper set of equations can be found in [4]. The
solutions read

x = 2arctan(u) —u
¢ = In(l+u?)
n = 1/(1+u?) (7)

The sheath edge is defined as the point where ¢ = ¢s = In2, n = ny; = 1/2, and u = 1- the
marginal Bohm criterion. Therefore s = 7/2 — 1. At this point the electric field strength
becomes infinity.,

do 2u

dr ~ 1—u2 ®)

6
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Figure 3: Normalized potential curves for the plane Tonks-Langmuir model with finite € on the
intermediate scale.

The solutions (7) are the first parts which are needed for the matching procedure. Approaching
the sheath edge, 1 — u < 1, the potential profile may be approximated by the parabola

¢0i(x) = ¢s — V 2($8 - '7")7 T < Ts, (9)
called the ”inner expansion” of the presheath ("outer”) solution.
3.2 Asymptotic Sheath Scale Analysis

In the sheath the Debye length A\p is the characteristic scale, therefore it is natural to derive
equations valid in the sheath with the normalization £ = (z — 2,)/Ap (see Egs. (5) ). In the
limit € — 0 one obtains the following set of equations

%(nu) =0 (10)
d [u?
(z-9) -0
% = n—e?

The solution is independent of the source/sink terms and is said to be universal, in a sense that
it is valid for different problems. There cannot be found an analytical solution to the upper set
of equations, but usually one can derive the so called sheath equation [13]

d?x 1 1 _
= (=) -

7



where the new variable x = ¢ — In2 was introduced. This equation is homogenuous in space
that means that the solution can be shifted. Therefore the wall position cannot be determined
from this equation. On the sheath scale the plasma is extended infinitely far away, that’s why

we can choose the potential xy — 0, the electric field (%) — 0 and the ion velocity v — 1 at

¢ — —oo as the boundary conditions for the sheath. From (11) for the electric field we find

2
(Z—’g) =/1+2x+e X -2 (12)

We can generalize the boundary condition for the ion velocity choosing u — ug at £ — —oo.
Then the straightforward calculations lead to the Bohm criterion for the ion velocity ug at the
sheath entrance. Really, Eq. (12) we can replace by

dx 2 _
(%) — 14 2R e 1l (13)

Near the sheath entrance, where x < 1, we find

(&) -30-3)

and the positiveness of the left-hand side leads to the relation
ug > 1,

known as the Bohm criterion. In Egs. (11) and (12) the Bohm criterion is used in the marginal
form, ug = 1.

Expending Eq.(12) in the vicinity of the sheath edge, x < 1, we find the ”outer” expamnsion
of the sheath (”inner”) solution

12
— Xi =, < &. 15
The solution (15) corresponds to the decaying sheath field. &, is an integration constant
pointing to the fact that the sheath problem represented by Egs.(10) (with boundary conditions

(%) — 0 at x — 0) is homogeneous in space. Its numerical value depends, of course, on the

choice of the origin of the space coordinate & (see the definition of ¢ for Egs. (5)).
3.3 Intermediate Scale Analysis

The main idea for an intermediate scale is to find a description of the problem in the transition
region, where the quasineutrality condition, valid in the presheath, begins to be violated and in
which also the ionization is to be taken into account. In other words in the transition region
both the space charge and the ionization give small but finite contributions of the same order.
We start from (4) and expand the source term in the continuity equation and the last term in
the momentum equation into a Taylor series near the sheath edge. As in previous derivations
of the presheath and the sheath approximations we are still doing the asymptotic theory, so in
the limit ¢ — 0 we know the position of the sheath edge and the values of our variables at the
sheath edge. Near the sheath edge we can equate from (4) the following system

(nu) = 1/2
w' —¢ = -1 (16)
From these two equations one can easily find the ion density as a function of the potential.

Expanding the resulting ion density n and the electron density n_ = e~® into a series one
observes that the deviation of n and n_ arises in the second order in ¢:

1/2(1 = x +3/2x%) + (z — =)
1/2(1 — x +1/2x%) (17)

Q

n

Q

n_



where again x = ¢ — In2. Inserting (17) into Poisson equation leads to the following equation
for the potential valid in the transition region

d*x
2 _ 2
2 (1/2)x" + (z — )
With a simple transformation z = z5+€*/°¢ and x = €2/5w we can derive a universal intermediate
scale equation, which is independent of €. Moreover it is universal in an extended sense, because

it describes the plasma-sheath transition in any sheath problem in fluid analysis,

d*w

az (1/2)w* +¢ (18)

This equation is known as Painleve equation of first kind and connot be solved analytically.
Boundary conditions for large negative ( can be found via an approach to the presheath region
(left side from the sheath edge), where we expect quasineutrality and (18) collapses to 0 =
1/2w? + ¢. The corresponding solution,

wi(¢) = —v =2, (19)

is obviously identtical with the ”inner” expansion (9) of the presheath solution. The approx-
imation (19) can be used to determine the boundary conditions for the numerical integration.
Differentiating (19) twice and inserting the result into (18) lead to

w? = 2(-20)7%% -2, (20)
w' o= (6(-20)7%2 - 2)/2w, (21)

by which we improve the boundary conditions by one iteration step. A large negative value of
¢ will give initial conditions for potential and its derivative, so that the Painleve equation can
be integrated. One observes that the solution runs into a singularity at (p, which lies in the
domain of interest. From the numerical results we find {y = 3.918982. Apart from the numerical
difficulties this singularity will become very important later on in positioning the sheath solution.
An approximation for w near (p (right side of the sheath edge) can be found if we neglect ¢ in
(18) and integrate

wr(¢) = 12/(¢ — ¢o)” (22)

Obviously it corresponds to the "outer” expansion of the sheath solution (15). For ¢ =
Ap/A — 0 the whole transition region, ¢ = O(1), w = O(1), in the presheath scale is mapped
into one pont (z — z) /A = (x — x5) ~ e 4% = 0, x = (p — ¢5) ~ €2/>w — 0: the sheath
edge. The correspinding sheath limit (z — z;)/Ap ~ e~ /°¢ = —o0, x — 0 confirms the sheath
boundary condition. The electric field in the transition region justifies the estimation

I T,e2/5 T
elm e/\2D/5)\3/5

(23)

Here the estimation y ~ €%/5 (at w = O(1)) for the potential in the transition region is used.
This expression for the electric field elucidates the limits

‘8{ T, €’’® -0 and (24)
ol eAE —9/5
i R 2
o T € — 00 (25)

of the vanishing sheath edge field on the sheath scale and an infinite field on the presheath scale
without any contradiction.

4. The Matching Problem



In Section 3 we have derived two solutions, one valid for the presheath region and the other
valid for the sheath region. These two solutions can not be matched directly because they don’t
have a common range of validity, which is expressed by the matching condition, given in [18],[19]:

Yz'o: 0t

In the special problem considered here one finds from Eqgs.(7) the presheath solution close to
the sheath edge (the inner expansion of the outer solution)

boi(z) — ¢ps = —/ —2(x — x5) (26)

From Eq.(11) we can also make an expansion to find the sheath solution near the sheath edge
(6 — —00, X — O)
12

Xio(§) = dio(§) — ¢s = =) (27)

with an arbitrary integration constant &y accounting for the space homogenity of Eq.(11). Ob-
viously the limiting expressions (27) and (26) are not identical and a direct smooth matching is
not possible. Another problem arises because in the derivation of (27) the integration constant
¢o cannot be detemined in the frame of the sheath scale analysis.

On the other hand Eq.(22) is identical with the ”outer” expansion of the the inner solution [see
Eq. (27)] if we define & = {:vs —zr + 64/5C0} e~1. The position of x;, can now be fixed with (g
and further the position of the sheath solution of equation (11) can also be determined.
Similarily we find that Eq.(19) represents Eq.(26) on the intermediate scale. From that we see
that the intermediate scale ( is necessary to bridge the gap between the plasma and the sheath
solution. The matching procedure for the full problem consists of two parts, namely matching
the plamsa solution with the intermediate solution and the intermediate solution with the sheath
solution. For this problem two matching conditions have to be fulfilled:

boi(@) — ps = Pw(¢) = Puw(e™ P (w — xy)), (28)
d’z‘o(&) —¢s = ¢z‘o($/€) —¢s = 52/5"111"(() = (29)

= 2P, (e74(z — x,)).

As it is mentioned above the second condition is fullfiled if we set £y = {xs —z, 4 Y 5C0} e~ L.
Now we can find the matched solution with the formula

B(z) = ¢o(x) — doi(z) + e w(e™(z — z,)) — Bio(x/€) + pi(z/e), (30)

which was given in [12],[7], but was never evaluated. In Fig.4 all parts needed to evaluate (30)
are shown on the presheath scale. The smallness parameter was chosen € = 0.01.

The presheath solution and its approximate solution (the parabola (26) ) exist only for
z — s < 0 and must be defined as equal to zero, ¢,(z) — ¢oi(z) = 0, for z > zs. Similarly
the intermediate solution w(¢) and its asymptote w,(¢) exist only for ¢ < {p. In the numerical
procedure the singularities lead to severe problems because of the necessity that the differences
bo(x) — boi(z) and €2/Sw(e=*/5(x — x,)) — pio(z/€e) must tend to zero at z — x, and ¢ — (o
respectively. To achieve good results analytic continuations have to be used at these special
points. The amazing results are shown in Fig.5. One can see that even for big values of ¢ a
smooth matching is possible.

5. The Eigenvalue problem

We have already said that the wall position z,, is not a priori given, but is an eigenvalue of the
problem. This eigenvalue is calculated by cutting the solution at that position x = x,, fullfilling

10
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Figure 4: Normalized potential curves in the vicinity of the sheath edge, outer expansion of the
sheath solution ¢;,, sheath solution ¢;, intermediate solution w, inner expansion of the presheath

solution ¢,;, presheath solution ¢, and the curve corresponding to the matched solution ¢ from
Eq. (30).

the wall boundary condition ¢ = ¢,,. We formulate the boundary condition by prescribing the
wall potential ¢,, and write formally

Ty :L(¢w55)- (31)

Our numerical evaluations refer to a wall potential ¢,, = 5.375 corresponding to the floating
potential in Argon [11]. The exact eigenvalue L(5.375,¢) = L(e) obtained by numerical integra-
tion of Eqgs.(4) are listed in Table (second column).

€ L(e) Ly (e) Lo(e)

0 0.570796 0.570796 0.570796
le-5 0.57123 0.571236  0.571230
3e-5 0.57186  0.571884 0.571859
le-4 0.57365  0.573749 0.573643
3e-4 0.57780  0.578191 0.5777894
le-3 0.57952 0.571199 0.579516
3e-3 0.57640  0.572770 0.576481
le-2 0.57981  0.577242 0.570568

Tablel: Eigenvalue L(e) and approximations Li(¢) and Ly(e) [see Eq. (32) and Eq. (33)]

11
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Figure 5: Matched solution (30) (solid line) and numerical solution of the system (4) (dotted
line) for the potential ¢(z) on the presheath scale x.
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Physically the eigenvalue represents the ionization rate necessary to fulfill the plasma bal-
ance. The asymptotic analysis presented in the preceding sections gives us a tool to construct
approximate eigenvalues. In zero order, ¢ — 0, , we obtain

L():.'Es: —1,

s
2
i.e., the position of the wall and the sheath edge are identical. However we may obtain a better
approximation for small but finite € if we account for the finite extension of the intermediate
scale and the sheath:

1. The presheath extension (measured from the center to the sheath edge) is given by Ly = .

2. The extension of the intermediate scale (measured from the sheath edge to the intermediate
singularity) is given by £*/5¢.

3. The extension of the sheath (measured from the intermediate singularity to the wall) is
given by (& — &o)e.

Summarizing these contributions we obtain the approximation
s
Li=5-1+ 50 + (bw — &0)e. (32)

The sheath extension (&, — &) is obtained by cutting the sheath solution at the point where
the wall boundary condition is fullfilled. It depends on the wall potential ¢,, but not on e.
The approximation L;1(5.375,¢) = Li(e) is listed in the third column of Table. Obviously the
eigenvalue (i.e, the system extension) is overestimated for finite . This is in agreement with
the results shown in Fig.5, which suggest that the sheath solution must be shifted to the left to
obtain a better fitting.

Eq (32) appears to be the begin of a Taylor series in the scale ratio €'/5 of the sheath and
intermediate scales. This supposition is supported by the numerical results because the error
increases approximately with €%/, This means that we can improve L; and expect better
approximation by setting

Ly = g — 1+ Coe™/d + (& — Eo)e + ac®/s. (33)

This expectation is confirmed by the numerical results. In Table we have listed L2(5.375,¢) =
Ly(e) with a = —6.6. A more accurate determination of a from the numerical results is difficult
because we have to choose e so small that €7/5 can be neglected in comparison to €%/%. On the
other hand, for such small & the correction ac5/® is hardly significant.

PWT layer without its splitting

In this section we consider a PWT layer wich is one-dimensional in space along the z direction.
The bounding wall surface is assumed to be a plane perpendicular to the z axis and is placed
at z = 0, see Fig.6. It is negatively charged and all particles impinging on it are absorbed. The

plasma occupies the region z < 0.

6. General theory

The electrostatic potential ¢ is governed by Poisson’s equation,

—570(2) = 4" eanal(2), (34)
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Figure 6: The geometry of the plasma-wall transition (PWT)

where n, and e, are the density and the electric charge of particle species «, respectively; the
subscript « equals e for electrons and i for ions. The electron and ion charges are e, = —e,
(e > 0) and e; = e, respectively. The dynamics of the plasma particles is governed by the
Boltzmann (kinetic) equation,

0fa _ €a 090fa _ .
Uz 9z M 9z a’UZ = ;Caﬂ {fcwfﬂ}a (35)

where f, and fg are the distribution functions of particle species o and 3, respectively, Cog { fa, f5}
is the collision integral for collisions between species a and 3, 8 equals e and ¢ for the charged
particles and n for the neutrals, and m, is the mass of a species-a particle. The sum in Eq.
(34) is taken over the charged particles only (o = e, %), while the one in Eq. (35) also includes
neutrals (8 = e, i, n).

The density of particle species « is obtained by integrating the species-a particle distribution
function as

N, = / Falz,v)dv. (36)
Multiplying Eq. (34) by 0¢(z)/0z, we obtain
10 [0p()]” _ dp(2)
555 [ P ] —47rza:eana 5 (37)
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From the kinetic equation (35) it follows that

9p(2) 0 2 .
eanaw = _a/mavzfadv‘l‘zﬁ:ma/‘vzcaﬁ {faaf,é’}dv’ (38)

which we insert into Eq. (37) to obtain

ol 5] e )

=" ma / 0:Cap {fai 5} v, (39)
af

where the term on the right-hand side of Eq. (39) describes the momentum gain (or loss) by
a-particles due to collisions with S-particles.
According to standard gas kinetic theory we have [20]

/maugfadv :mana(z)ui (z) + na(z)Ta(z)a (40)

where the fluid velocity u,(z) and the temperature T, (z) of the gas of a-particles are defined
by

na(2)ualz) = / vsfadv, (41)
and

n(2) T (2) = / malvs — tia (2)2fadv. (42)

Inserting Egs. (40) and (41) into Eq. (39), we obtain

% {_817r [8(2(;)] + za: [mana(2)ul(2) + na(2)Ta(z)] }

= Zma/UzCa,B {fa;f/o’}dv' (43)
aff

We now estimate the contributions of the following collision processes:

e FElastic and ionization collisions of electrons with neutrals.

e Elastic and charge-exchange collisions of ions with neutrals, and increase of the ion number
density due to the ionization collisions of electrons with neutrals.

e Recombination of ions with electrons, which far away from the boundary (i.e., at distances
2 lps) balances the ionization processes.

According to the momentum conservation law, the elastic collision integrals satisfy the rela-
tions [20]

/ 930% {fai fa} d v =0, (44)

and
Ma /UZCZIQI {fa; fa/}dv+maf /szgl,a {fa/;fa} dv=0 where o # <. (45)

Therefore, in the summation over 8 on the right-hand side of Eq. (39), the only terms remaining
for the elastic collisions are the terms with 3 = n. Thus,

> ma / v:C {fai o} dv =) _maq / v:Ct { fai fa} v, (46)
af e}
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which describes the momentum loss by charged particles due to elastic collisions with neutrals.
The sum on the right-hand side of Eq. (43) can now be written in the form

Zma/vzoaﬂ {faafﬂ}dv =
ap

[ vo. [me (C2 0 £} + O i ) + CEe 1 1)) +
mi (Cfs (s u} + O {Fis fu} + O™ {fes fu} + CL S £3)] (47)

where we have assumed m; >~ m,,.
In what follows, we shall make the following assumptions enabling us to proceed analytically.

1. The number densities of the electrons and ions are much less than the number density of
the neutrals, viz. ne,n; < n,. The neutrals are assumed to be cold without drift velocity
so that f, = n,0(v), with the Dirac d-function d(v). In the weakly ionized plasma the
number density of the energetic neutrals, generated by charge-exchange collisions with the
accelerated ions, is small and hence can be neglected

2. In elastic electron-heavy neutral particle collisions, due to the extremely different masses
of scattering partners, the velocity vector of electrons is changed in angle but (almost)
not in magnitude. If elastic collisions are frequent and the electric field is not too high,
the drift velocity of electrons proves to be small compared to the chaotic thermal velocity.
This implies that the electron distribution is mostly spherical and isotropic in the velocity
space. Therefore the elastic and ionization collisions of electrons with neutrals we can
describe in the so-called “two term approximation” [21], and consider only the zeroth-order
collision terms [22, 23]. In this approximation, the electron collision term C¢ {f.; f,} and
Clon { f.: f.} are isotropic in the velocity space and the corresponding terms in Eq. (47)
vanish.

It should be also mentioned that due to the extremely different masses of eletron and
neutral particle, the therm of electron-neutral elastic collision term is negligible for most
discharges where the typical electron energy is of order of some eV.

3. The ionization process is realized by the electron-neutral collisions. We represent ionization
collision term C}%" { fc; fn} in the ion kinetic equation in a form which is commonly used

in the plasma sheath problem [15], [14, 16, 24],.

Ci {fei fu} = Vione(2)0(v), (48)

where v, is the frequency of electron-neutral ionization collisions. The appearance of
the d-function in (48) is due to the distribution function of neutrals. This collision term
satisfies the equality:

/dv miuch;;” {fe; fu} =0. (49)

4. For the recombination collision terms CLf¢{fe; fi} and Cie{fi; fe} we use the simple
models [15],

Cai “{fe; fi} = —yni(2) fe, (50)
Cz'reec {fu fe} = _'Yne(z)fia (51)

where 7y is the constant recombination coefficient. Due to m; > m. (see the coefficients at
Cre¢{fe; fi} and CI2{ fi; fe} in the right-hand side of (47)) the friction force connecterd
with CLf¢{ fe; fi} is much smaller than the force with C;2¢{f;; fe} -
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5. The cross-section of ion-neutral charge-exchange collisions is much larger than the cross-
section of ion-neutral elastic scattering [16, 25, 26], viz.

o > o, (52)

which leads to
RZ > RS, (53)

where the friction force acting on the ions due to their charge-exchange collisions with
neutrals and the force connected with the ion-neutral elastic collisions are defined as

RE = / dv mw, O {fi; fu} (54)
and

RSTlL:/dvmiszieTi {fzafn}

Similarly we define the friction force acting on ions due to the recombination,
R = /dv miv, Cis{ fis fe} - (55)

According to the above assumptions and Eq. (47), we obtain from Eq. (43)

a {_8% {&gfj)] + 3 mana(e)i(2) + m(z)Ta(z)]} - (56)

— R = RE+ R
We note that R{* < 0, R < 0 and R; < 0. According to Refs.[16, 27, 28], we have

e = / Vo [fn () [ V) = FaVa) Fies V)] [V = Va0 (v = val) . (57)

For the cold neutrals assumed we find

A"
R (2) = —/dvmivz#tll)fi(zav), (58)
where
Az = (nnofd [v]) ™! (59)

is the ion mean free path associated with charge-exchange collisions. The recombination collision
term, modeled in the form (51), leads to the following loss of ion momentum

RIS = —yng(2) / dv mivs fiz,v), (60)

This model corresponds to the recombination frequency vyec(z) = yne(2).

The relation (56) represents the balance of the electric field pressure force, the total particle
momentum flux, the gas kinetic pressure force, and the ion friction force.

Far away from the boundary (z — —o0), the uniform (9/0z = 0) plasma is characterized by
the quasi-neutrality condition, i. e., n, = n; = ngy, and by a balance between the ionization and
recombination of charged particles. In fact, the recombination we have introduced here in order
to avoid the accumulation of an infinite density of charged particles starting to move from large
distances towards the wall.
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Note that, although the friction force connected with ionization does not appear explicitly
in Eq. (56), we have to account for the ionization collisions in the ion kinetic equation in order
to calculate correctly the ion density and velocity.

Equation (56) is valid for any spatial point. It embraces both the presheath and sheath
regions of the plasma-wall transition layer and thus allows us to describe the layer without the
necessity of splitting it into these two regions.

8. The generalized Bohm criterion for a semi-bounded plasma

From the balance relation (56) we will now derive a generalized Bohm criterion. Let us
consider a semi-bounded plasma (see Fig.6), when the plasma extends to z — —oo with the
natural boundary conditions ¢(z) — 0, (0¢(2)/0z) — 0, ne(z) = neo, ni(2) = nio(= neo = no)
and u;(z) — 0. For the cold ions we neglect the ion thermal motion, 7; — 0. We also neglect
the fluid velocity of electrons in comparison with their thermal velocity, meu? < T.. After
integrating Eq. (56) over the interval (—oo, z), the nonnegativeness of (9y¢(z)/8z)% implies the
inequality

z
2 g 2 ne(2) 1 / /
W) > T 1=t 2 - e [ R (61)
—0

where co0(= /Teo/m;) is the ion sound speed, Ty is the electron temperature at z — —oo,
and R;(z) is defined in Eq. (56). In obtaining Eq. (61) we have assumed that the electron
temperature changes only slightly throughout the transition layer, and therefore we neglect its
change and take T,(z) = Teo.

Equation (61) has the form of a generalized Bohm criterion. As in the Introduction, it is
termed “non-marginal” or “marginal”, depending on whether the inequality or the equality sign
applies, respectively. We emphasize that, since it follows from Eq. (56), the generalized Bohm
criterion must be fulfilled in its non-marginal form at any finite z inside the PWT layer, and
tends to its marginal form only for z — —oo, where u;(z) — 0. Note that it has been obtained
without splitting the PWT layer into separate sheath and presheath regions [14, 16]. In other
words, we apply Poisson’s equation everywhere, rather than replacing it with the quasineutrality
condition in the presheath region. From Eq. (61) it follows that the friction force decreases the
threshold value of the ion fluid velocity in the Bohm criterion.

Obviously, in the appropriate limit the generalized Bohm criterion (61) has to yield the
original form of the Bohm criterion. This can be shown following the procedure described in
Refs. [16, 26, 5]. In Refs. [16, 5], the spatial scales for the presheath and sheath are assumed
to satisfy € = Ap,/l,s — 0 (asymptotic two-scale approximation, cf.the Introduction), and the
sheath is considered to be collisionless, so that R; ~ 0. The potential and the electric field at the
sheath edge are zero, the ions are assumed to be cold and, the electron fluid velocity is neglected.
Integrating Eq.(56) over the interval (2, z), where z; denotes the position of the sheath edge,

we obtain
1 [&p(z)

8 0z

where nqs, ujs and Ty, are the density, the fluid velocity and the temperature, respectively, of
the particle species a(= e, i) at the sheath edge. In (62), we have used the continuity equation

:| = M;NisUss [uz(z) - uis] + ne(z)Te (Z) — NesTes, (62)

ni(2)ui(2) = nistis (63)
for the ions. From the equation of motion, the ion velocity is obtained as
2 >
e
w(e) = [ - 2ot (69

The electron temperature is assumed to be unchanged throughout the sheath, viz. T.(z) = T¢s.
For the electron density we choose the Boltzmann distribution (68) with ng = nes.
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Substituting Eq.(64) and the electron density into Eq.(62) and expanding the right-hand
side in a Taylor series of powers of small |¢(z)| we obtain the condition (Bohm criterion) for the
existence of non-oscillatory solutions in the usual form

>c? (65)
where ¢ = (Tes/mi)% is the ion sound speed at the sheath edge.
9. The potential profile in the semi-bounded plasma

The electron thermal speed is much larger than the ion speed, Vr. >< v >;, where < v >;
is the ion averaged speed. Further we are interested in the case when

<V >;

= Vegy Viony Vrecs (66)
lps

where [, is the characteristic presheath scale introduced above. Consequently we have

VTe

lps

> Vions Vrecs (67)

and in the electron kinetic equation the ionization and recombination collisions can be neglected.
The inequality (67) means that the number of electrons being newly born (due to ionization)
or disappearing (due to recombination) during the time interval necessary for electrons to pass
the distance [, is negligibly small. By contrast, according to Eq. (66) the time interval for ions
to pass the distance /), is much larger and the number of newly generated and annihilated ions
can be considerable.
In the special case considered below, we will assume the electron density to follow the Boltz-
mann distribution
ne = ngexp {ep(z)/Te}, (68)

where 7 is the electron density for ¢ =0
We again consider, as in Sec.8, a semi-bounded plasma containing electrons, ions and neu-
trals, with a negatively charged wall at z = 0. For the ions we must solve the kinetic equation

Ofi | e dl(2)| dfi _ (%

%0: "m0z v, \ o )w + Vionte(2)0(vz) — Yne(2) fi, (69)

taking onto account ionization, recombination and charge-exchange collisions. By means of
fi(z,v,), to be found from Eq. (69), we will calculate the ion density n;(z), the ion fluid velocity
u;(2), and the friction force R{¥(z) according to Egs. (36), (41) and (58). Inserting the n;(z)
thus found and the n.(z) following from Eq. (68) into Eq. (34) and solving the latter, we will
find the potential profile.

As is well known, the charge-exchange collisions can be described, to a good approximation,
by a constant cross section [14, 25]. Therefore, we assume that the mean free path for charge-
exchange collision is constant, viz. A.; = const. Then we obtain from Eq. (58)

o0
1
REE(G) =~ [ doamaotfi(z,o.), (70)
CI 0
and the charge-exchange collision integral (57) takes the form

of; 1 i
ofi\  _ Ce = —6(v,) / VL filz, 0L dv, — ~Z fi(z, vs). (71)
6t c )\cg} 0 ACQ)
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Far away from the wall (z — —o0), where we assume the plasma to be quasineutral and
uniform, we have ¢ — 0, dp/dz — 0, 0f;/0z — 0, and the left-hand side of Eq. (69) must
vanish. For the distribution function we choose the boundary condition

fi(z = —00,v;) = npd(vy). (72)

In this asymptotic region, the ionization and recombination processes balance each other and
the recombination coefficient is given by
Vion

v=— (73)

no

In what follows, the recombination coefficient 7y will be replaced by the right-hand side of
Eqg. (73) and hence will not show up explicitly any more. In these conditions, the solution of
Eq. (69) reads

2¢ 2e
fi = mo—q/v2+ —p(2)d (vz - —_.‘P(Z)> %
z v !
z
o Jofim e,
g Acx o \/’Ug - 72n_i [‘P(ZI) - (p(z)]

v — ) 2 [l - so(z)]) x

z . "
X eXp _/dz" 1  Zion el
Aex o \/’Ug — TZn_ei [‘P(Z”) - (p(z)]

for 2y — —o0, (74)

where

8(z) = Aiwmz) T Vionntel(2)- (75)

Note that there are no ions with v, < 0. The ion flux J;(z) equals

/dvzvzfz Z,0;) /dz (—J )+ Vionne(zl)> (76)
z . "

X exp —/dz” L  Lion ne(#)
S Ve M0 o= 22 el — ()

where we have assumed that the ion flux vanishes at the point zy — —oo. For the ion density
we have

o0

_ S(=)
ni(z) = fi(z,v,)dv, = noA(|p(2) dz' (77)
0/ ° / 2 (o) — o(e)]
f " 1 Vion ne(2")
xexp | — [ dz" ¢ — +
Z/ Aew 10 fo2 = 2 [p(e) — ()]

where A(§) =1 at £ =0 and A(§) =0 for £ # 0. The first term on the right-hand side of this
equation defines the ion density at a single point in space zo(— —o0), where ¢(zp) = 0. It can
therefore safely be dropped, since it does not contribute to the electric field. One can show that

Ji(2) = vion / ne() [1- "2 (78)
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which relates the ion flux to the ion and electron densities; this will be used in the numerical
analysis of the problem.
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Figure 7: Normalized profiles of the potential (upper left panel), ion velocity u; = I;/N; nor-
malized by ¢s (upper right panel), and the electron and ion densities (lower panel), for A = 0.4
(solid lines) and A = 2.0 (dashed lines). For all cases Az /Ap = 20.

We now introduce the normalized (dimensionless) variables

=< X(:L‘) == ) NZ = _.a Ne = JZ = nOCin’ (79)

and rewrite the Poisson Eq.(34) as
»x
oz?

where the electron and ion densities N.(z) and N;(z) are given by Eqgs. (68), (77) and (79).
Introducing the dimensionless variables into Eq.(78) and differentiating we obtain

= N;(z) — Ne(z), (80)

V2 0
Ni(z) =1— AN.(z) 9z’ (81)
so that Eq.(80) becomes
Px V2 dI
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where N(z) = exp[—x(z)] and

Ii(z) = /zd:v' (:\\—ifi(:v')Jr%Ne(x')) (83)

Zo

1 N "
X exXp —)\—D(m —z') — EA dx" (z)

Acx o X(xll) - X(x,) .

By solving Eq. (82) we can find the normalized potential profile x (). In Eq. (83), which
represents an integral equation for finding the dimensionless ion flux I;(z), the parameter

A= pliendn _ o Ap [mi (84)

Cs Aion | Me

has been introduced.
10. Numerical results

In the numerical treatment, we solve the dimensionless Poisson equation (80) together with
the following boundary conditions: 9x/dz = 0 for £ = zy = —25 (i.e., far away from the
wall), and the potential on the wall (z = 0) is equal to x = xu = 2.0. We use the normalized
charge-exchange mfp A\.;/Ap = 20, while the ionization parameter A is varied.

The numerical results are displayed in Figs.7-9. In Fig.7 we considered the cases A = 0.4
and A = 2.0. We see that the scale length of the solution is longer for the lower ionization
rate A = 0.4, with the boundary layer extending into the plasma. The splitting of electron and
ion densities at the distance |z| ~ 10 for A = 0.4 and at the distance |z| =~ 6 for A = 2.0 is
clearly seen. These distances can be considered as the width of the ”sheath”, while the distances
|z| > 10 we can interpreted to be occupied by the “presheath”. The ion velocity vanishes at
increasing the distance from the wall. The point, where the ion velocity is equal to the ion-sound
velocity, in our case does not indicate the sheath edge. For such a indication it is necessary to
consider very small ratio (Ap/Ajon) (or very small values of the parameter A) [7].

We make a comparison between the theory presented here and recent experimental results
carried out by Oksuz and Hershkowitz [6]. The experimental results are displayed in Fig.8 and
our numerical results in Fig.9. In the numerical solution, we have used the same parameters as
in the experimental setup and shifted the numerical solution so that a direct comparison can be
made. In the experiment, the Debye radius was Ap = 0.25 cm and the ion-neutral collisional
mean-free-path was Ay = 7.0 cm, so that A;/Ap = 28; for the parameter A we used A = 0.33
(no values were given in the experiment). Furthermore, the electron temperature was 2.4 eV,
yielding the relation ¢ = —2.4x between the normalized potential x and the potential ¢ given
in Volts. In Fig. 9, we shifted the potential so that the potential of the bulk plasma was 2.5V,
similar as in the experiment displayed in Fig. 8. Panel (a) of Figs.8 and 9 show the whole
plasma volume, where the solid line in Fig.9 indicates the numerical solution. In panel (b), we
compare the potential obtained for the presheath in the experiment (Fig.8) and the numerical
solution (Fig.9). We see that in the numerical solution, the potential connects smoothly to
the bulk potential in a manner similar to what has been observed in experiments, while the
theoretical fit indicated by the solid line in panel (b) of Fig.8 deviates strongly from the bulk
plasma potential. This descrepancy is apparently due to the fact that the fit in question was
based on a theory which, contratry to our present model, does not include recombination effect.
In Fig.8(c) and 9(c) we compare the results for the transition region. Similar to the experimental
results, we obtain the potential 1V at the position z = —0.8 ¢m, and —5V at the position z ~ 0.4
cm, respectively. The experimental profile deviates slightly from the numerical one in that the
experimental result exhibits a “knee” at the position 0 ¢m, not seen in the numerical solution.
Fig.8(d) displays the measurement of the electron-free sheath, while the numerical solution is

22



a) b)* « experiment
0 -\_ D““DH.LEL_-D\ —o— fit
-10. " 5 B EEg
. -20 . presheath
2 -30 . .
s 23 4 0 ios b 420
=
5 o, @,
(o] "u .
a 0 .
- -10/

-20.electron-free
sheath

Position (cm)

Figure 8: Experimental measurements of the electrostatic potential over (a) the whole plasma,
(b) the presheath, (c) the transition region and (d) the electron-free sheath, all taken from
the paper of Oksuz and Hershkowitz [6]. The filled squares are measured data while the lines
show theoretical fits based on preaheath model by Riemann [7] [in (b)] and on the electron-free
“Child-Langmuir sheath” [in (d)]

displayed in Fig.9(d). Due to convergence problems of the numerical solution, we were not able
to cover the whole electron-free sheath, but we can still see that the values at the beginning
of the electron-free sheath are approximately the same for the experiment and our numerical
solution.

The numerical procedure used is as follows. The x space is divided into equidistant points
xg, 1, --., Tpar, where g is located at the edge x = —L of the plasma-wall transition layer and
zpr is located at the wall = 0. The dependent variables are discretized so that x(z;) ~ xj,
Ne(zj) = Ngj; and I;j(zj) ~ I; j. The second derivative of x on the left-hand side and the
first derivative of I; on the right-hand side (82) are approximated with centered difference
approximations. The resulting nonlinear system of equations for x in Eq. (82), with fixed values
for I;, is solved iteratively by means of Newton iterations. For fixed values of x, Eq. (83) is
Fredholm’s integral equation of second kind for unknown I;. After the discretization, the integral
equation is transformed to a linear system for the values in I;, which is solved for I; (by Gaussian
elimination) to obtain the solution I;. The new value is set to I = (1 — 8)I + I}, where 3, is
a parameter. This procedure is repeated until convergence, where £ is chosen small enough (in
the interval 0 < 8 < 1) for convergence. The integral I(z',z) = [, dz"N(z")/y/x(z") — x(z')
is approximated with the sum I(zp, zn) = Y p_, AT(Ne g1+ Ne )/ (VXk—1 — Xm++v/Xk — Xm)
with the step size Az = L/M. The integration is exact when N, is constant and x is a linear
function. The outer integral in Eq. (83) is approximated by the trapezoidal rule.
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Figure 9: Numerical solution for the electrostatic potential over (a) over the whole plasma, (b)
the presheath, (c) the transition region and (d) the electron-free sheath. The solid lines are our
numerical results, while the dotted lines mark the potential 2.5 V of the bulk plasma. The origin
of z-axis is shifted as in Ref. [6].
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