
 

 

                                                                                                                                
 
 

SMR.1674- 15  
 
 
 
 
 
 

 
COLLEGE on SOIL PHYSICS 

 
12 - 30 September 2005 

 
 
 
 

 
 
 

 
Dimensional Analysis and Scaling 

 
 
 
 
 
 
 
 

K. REICHARDT 
Laboratory of Soil Physics 

Center for Nuclear Energy in Agriculture (CENA) 
University of Sao Paulo 

Piracicaba, SP 
Brazil 

 
 
 
 
 

 
 

 



1

DIMENSIONAL ANALYSIS AND SCALING
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Introduction

Dimensional analysis refers to the study of the dimensions that characterize physical

entities, like mass, force and energy. Classical Mechanics is based on three fundamental

entities, with dimensions MLT, the mass M, the length L, and the time T. The combination

of these entities gives rise to derived entities, like volume, speed and force, of dimensions

L
3
, LT

-1
, MLT

-2
, respectively. In other areas of Physics, other four fundamental entities are

defined, among them the temperature � and the electrical current I.

To introduce the topic of Dimensional Analysis, let us look at a classical example of

the romantic literature, in which Dean Swift, in “The Adventures of Gulliver” describes the

imaginary voyages of Lemuel Gulliver to the kingdoms of Liliput and Brobdingnag. In

these two places life was identical to that of normal persons, their geometric dimensions

were, however, different. In Liliput, man, houses, dogs, trees were twelve times smaller

than in the country of Gulliver, and in Brobdingnag, everything was twelve times taller.

The man of Liliput was a geometric model of Gulliver in a scale 12:1, and that of

Brobdingnag a model in a scale of 1:12.

One can come to interesting observations of these two kingdoms through

dimensional analysis. Much time before Dean Swift, Galileus already found out that

amplified or reduced models of man could not be like we are. The human body is built of

columns, stretchers, bones and muscles. The weight of the body that the structure has to
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support is proportional to its volume, that is, L
3
, and the resistance of a bone to

compression or of a muscle for traction, is proportional to L
2
.

Let´s compare Gulliver with the giant of Brobdingnag, which has all of his linear

dimensions twelve times larger. The resistance of his legs would be 144 times larger than

that of Gulliver, and his weight 1728 times larger. The ratio resistance/weight of the giant

would be 12 times less than ours. In order to sustain its own weight, he would have to make

an equivalent effort to that we would have to make to carry other eleven men.

Galileus treated this subject very clearly, using arguments that deny the possibility

of the existence of giants of normal aspect. If we wanted to have a giant with the same

leg/arm proportions of a normal human, we would have to use a stronger and harder

material to make the bones, or we would have to admit a lower resistance in comparison to

a man of normal stature. On the other hand, if the size of the body would be diminished, the

resistance would not diminish in the same proportion. The smaller the body, the greater its

relative resistance. In this way, a very small dog could, probably, carry other two or three

small dogs of his size on his back; on the other hand, an elephant could not carry even

another elephant of his own size !

Let´s analyze the problem of the liliputans. The heat that a body loses to the

environment goes through the skin, being proportional to the area covered by the skin, that

is, L
2
, considering constant the body temperature and skin characteristics. This energy

comes from the ingestion of food. Therefore, the minimum amount of food to be ingested

would be proportional to L
2
. If Gulliver would be happy with a broiler, a bread and a fruit

per day, a liliputan would need a (1/12)
3

smaller food volume. But a broiler, a bread, a fruit

when reduced to the scale of his world, would have volumes (1/12)
3

smaller. He would,

therefore, need twelve broilers, twelve breads and twelve fruits to be as happy as Gulliver.
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The liliputans should be famine and restless people. These qualities are found in

small mammals, like mice. It is interesting to note that there are not many hot blood

animals smaller than mice, probably in light of the scale laws discussed above, these

animals would have to eat such a large quantity of food that would be difficult to obtain or,

that could not be digested over a feasible time.

From all we saw, it is important to recognize that, although being geometric models

of our world, Brobdingnag and Liliput could never be our physical models, since they

would not have the necessary physical similarity which is found in natural phenomena. In

the case of Brobdingnag, for example, the giant would be able to support his own weight

having the stature of humans, if he would be living in a planet of gravity (1/12)g.

Physical Entities and Dimensional Analysis

The parameters that characterize physical phenomena are related among themselves

by laws, in general of quantitative nature, in which they appear as measures of the

considered physical entities. The measure of an entity is the result of its comparison with

another one, of the same type, called unit. In this way, an entity (G) is given by two factors,

one being the measure (M) and the other the unit (U). When we write V = 50 m
3
, V is the

entity G, 50 is the ratio between the measures (M), and the unit U is m
3
. Therefore:

G = M (G) . U (G)

M(G) being the measure of G and U(G) the unit of G. In addition, the entity G has a

dimensional symbol, which is the combination of the fundamental units that built up the

entity. Some examples are given below:
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Entity (G) M (G) U (G)
Dimensional

symbol

Area 200 m
2

L
2

Speed 40 m s
-1

LT
-1

Force 50 N = kg m s
-2

MLT
-2

Pressure 1,000 Pa = kg m
-1

 s
-2

ML
-1

 T
-2

Flow 5 m
3
 s

-1
L

3
 T

-1

The International Units System has seven fundamental entities:

a) Mass (M): quilogram (kg);

b) Lenght (L): meter (m);

c) Time (T): second (s);

d) Electrical current (I): Ampere (A);

e) Thermodynamic temperature (�): Kelvin (K);

f) Light intensity (Iv): candela (cd);

g) Quantity of matter (N): mol (mol).

Derived Physical entities are, in general, expressed by a relation involving the

fundamental or derived entities X, Y, Z, ... which take part in their definition:

...........Z.Y.XkG cba=

where k is a non dimensional constant, and a, b, c, .... constant exponents.

If, for example, we would have doubts on the formula F = m.a, we could make a

check and admit, at least, that F is a function of m and a:
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ba Y.XkG =      or ba a.mkF =

since F has dimensions MLT
-2

, the right hand side member has also to have dimensions

MLT
-2

, that is:

( )b2a2 LT.MkMLT �� =

remembering that the dimension of acceleration is LT
-2

. So b2ba2 T.L.MkMLT �� = , and

we can see that the only possibility is k=1, a=1 and b=1, thus confirming F=m.a.

Products P are any products of the variables that involve a phenomenon. The fall of

bodies from an origin 0 with no initial velocity in the vacuum involves the variables space

S, acceleration of gravity g and time t, according to:

2t.g
2

1
S =

For this phenomenon we can write an infinite number of products P, as for example:

P1 = S
2
. t 

-2
.g  ,  with dimensions  L

2
.T

-2
. L .T

-2
 = L

3
.T

-5

P2 = S
0
. t 

2
.g  ,  with dimensions   1.T

2
. L .T

-2
 = L

P3 = S 
-3

. t 
4
.g  , with dimensions  L

-3
.T

4
. L .T

-2
 = L

-2
.T

2

P4 = S 
-2

. t 
4
.g

2
  , with dimensions  L

-2
.T

4
. (L .T

-2
)

2
 = L

0
.T

0
 = 1
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When a chosen product is non-dimensional, as P4, it is called a non-dimensional

product and is symbolized by �, in this case P4 = �4. A theorem states that: “given n

dimensional entities G1, G2, ...., Gn generated through products of k fundamental entities, if

a phenomenon can be expressed by F(G1, G2, ...., Gn) = 0, it can also be described by �(�1,

�2, ...., �n-k) = 0, a function with less variables.

The problem mentioned in the introduction about the Kingdoms of Liliput and

Brobdingnag, is of physical similarity. Every time we work with models of objects in

different scales, it is necessary that there is a physical similarity between the model (a

prototype, in general smaller) and the real object of study. Depending on the case, we talk

about kinematic similarity, which involves relations of velocity and acceleration between

model and object; or about dynamic similarity, which involves relations between the forces

that act on the model and on the object . In the similarity analysis we use the � products,

like the known “numbers” of Euler, Reynolds, Froude and Mach. In this analysis we have:

OBJECT:

F(G1, G2, ...., Gn) = 0 �(�1, �2, ...., �n-k) = 0

PROTOTYPE:

F(G’1, G’2, ...., G’n) = 0 �(�’1, �’2, ...., �’n-k) = 0

and the Gi s can be different of G’i s. There will be physical similarity between object and

prototype, only if �1 = �’1; �2 = �’2; ...; �n-k = �’n-k.

This analysis is frequently used in hydrodynamics, studies of machines,

engineering, etc., and it has not many applications in Soil-Plant-Atmosphere systems. The

study of Shukla et al. (2002) which utilizes the non dimensional products � to describe



7

miscible displacement, is an exception. Texts of Maia (1960), Fox & McDonald (1995) e

Carneiro (1996) are good references on this subject.

Non dimensional entities, like the � products, have a numerical value k of

dimension 1:

1KTLM oooo =

It is also common to produce non-dimensional variables through the ratio of two

entities G1 and G2 of the same dimension: G1/ G2 = �. This is the case of the number � =

3,1416..... which is the result of the ratio of the length of any circle (�D, of dimension L)

and the respective diameter (D, also dimension L).

In the Soil-Plant-Atmosphere system, several variables are non dimensional by

nature (or definition), and are represented in % or parts per million (ppm). Soil water

content u (on mass basis), � (on volume basis), porosities, etc., are examples of � products.

Important is the procedure of turning dimensional variables into non dimensional ones.

The simplest case is dividing the variable by itself, in two different conditions. For

instance, in experiments using soil columns, each researcher uses a different column length

L. How can we compare results ? If the space coordinate x or z (along the column) is

divided by its maximum value L, we have a new variable: X = x/L, with the advantage that,

for any L, at x = 0, X = 0; at x = L, X =1, varying, therefore, within the interval 0 to 1.

This procedure can also be used for variables which already are dimensionless, like

the soil water content �. If we divide (� - �s) by its largest interval (�o - �s), where �s e �o

are, respectively, initial and saturation values, we obtain a new variable � = (� - �s)/(�o -
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�s), for which � = 0 for � = �s (dry soil) and � = 1 for � = �o (saturated soil). In this way,

for any type of soil, � varies from 0 to 1 and comparisons can be made more adequately.

Scales and Scaling

We already mentioned scales when presenting the “Adventures of Gulliver” and

discussing physical similarity between object and prototype. Maps are also drawn in scale,

for example, in a scale of 1:10,000, 1 cm
2

of paper can represent 10,000 m
2

in the field.

Entities that differ in scale cannot be compared in a simple way. As we have seen, there is

the problem of physical similarity, but if we desire to make a comparison without changing

the scale of each one ? One technique to do this is called “scaling”, frequently used in Soil

Physics. It was introduced into Soil Science by Miller & Miller (1956) through the concept

of similar media applied to “capillary flow” of fluids in porous media. According to these

authors, two media M1 and M2 are similar when the variables that describe the physical

phenomena that occur within them, differ of a linear factor �, called microscopic

characteristic length, which relates their physical characteristics. The best way to visualize

this concept is to consider M2 as an amplified (or reduced) photography of M1 by a factor �.

For these media, the particle diameter of one is related to the other by: D2 = �D1. The

surface of this particle by: S2 = �2
S1, and its volume by V2 = �3

V1 (Figure 1). Under these

conditions, if we know the flow of water through M1, would it be possible to estimate the

flow through M2, based only on � ? Using artificial porous media (glass beads ), Klute &

Wilkinson (1958) and Wilkinson & Klute (1959) obtained results on water retention and

hydraulic conductivity that validated the similar media concept.
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r2 = 1.5 r1

         r1 = 3 cm                                                                       r2 = 4,5 cm

22
11 cm27.28rA =�= 22

22 cm62.63rA =�=

3
3

1
1 cm62.63

4

r3
V =

�
= 3

3
2

2 cm71.214
4

r3
V =

�
=

( ) 1
2

2

1

2 A1.5Aou5.12.2525.2
A

A
==�=

( ) 1
3

2
3

1

2 V1.5Vou5.13.3737.3
V

V
==�=

Figure 1 – Spheres seen under the similar media concept.

After this, contributions that appeared in the literature did not significantly push

ahead this concept. More than 10 years later, Reichardt et al. (1972) reappear with the

subject, having success even with natural porous media, i.e., soils of a wide range in

texture. They assumed that soils can be considered similar media, each one characterized

V1

V2

A1 r1

A2
r2
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by its factor � which, at the beginning, they did not know how to measure. They tested the

concept on horizontal water infiltration studies, using homogeneous soil columns of initial

soil water content �i, applying free water at the entrance (x = 0) so that at this point the

saturation water content �o was maintained thereafter:

� = �i  ,  x > 0 ,  t = 0                                         (1)

� = �o  ,  x = 0 ,  t > 0                                         (2)

( ) (3)
x

D
xt ��

�
�	

�

�

��
�

�

�
=

�

��

where D(�) = K(�).dh/d�; K(�) is the soil hydraulic conductivity and h the soil water matric

potential.

Since for any soil the solution of this boundary value problem BVP is of the same

type: x = �(�).t
1/2

, in which �(�) depends on the characteristics of each porous media,

would it not be possible to find a generalized solution for all media (considered similar) if �

of each would be known ? The procedure they used included the process of making all

involved variables dimensionless, using the similar media theory applied to each of the i

soils, each with its �1, �2, ......�i. The soil water content � and the space coordinate x were

transformed as indicated above:

( )
( )

(4)
io

i

���

���
=�

(5)
x

x
X

max

=
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The matric soil water potential h was considered to be only the result of capillary

forces: h = 2�/�gr or hr = 2�/�g = constant. If each soil i would have only capillaries of

radius ri, and if the characteristic length �i would be proportional to ri, we would have:

h1r1 =  h2r2  = ........=  hiri  = constant

If, among the i soils, we choose one as a standard soil, for which we make,

arbitrarily, �* = r* = 1 (one µm, or any other value), the constant above becomes h*r* = h*,

which is the matric potential h* of the standard soil (Figure 2). Through dimensional

analysis we can also make h* non-dimensional:

(6)
gh

........
ghgh

*h ii2211

�

��
==

�

��
=

�

��
=
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h1 = 14.4 cm

h2 = 9.6 cm

h3 = 7.2 cm

r1 = 0.1mm
r2 = 0.15 mm r3 = 0.2 mm

h1r1 = h2r2 = h3r3 = constant

14.4 x 0.1 = 9.6 x 0.15 = 7.2 x 0.2 = 1.44

Figure 2 – Similar capillaries in water.

The hydraulic conductivity K is proportional to the area (�2
) available for water

flow (k = intrinsic permeability, L
2
), and using the known relation K = k�g/� or K/k = �g/�

= constant, we have for the I soils:

===
i

i

2

2

1

1

k

K
...........

k

K

k

K
 constant

(7)
g

K
.........

g

K

g

K
*K

2
i

i

2
2

2

2
1

1

��

�
=

��

�
=

��

�
=
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where K* is the hydraulic conductivity of the standard soil, assuming �* = r* = k* = 1

(Figure 3).

=
�

=
�

=
� 2

3

3

2
2

2

2
1

1 KKK
 constant

( ) ( ) ( )
200

20.0

8

15.0

5,4

10.0

2
222
===

Figure 3 – Cross-sections of soil columns with their respective conductivities.

�l = 0.10 mm

�2 = 0.15 mm

�3 = 0.20 mm

�l =2. 0 mm.dia-1

�2 =4.5 mm.dia-1

�3 =8. 0 mm.dia-1
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Through the definition of soil water diffusivity D = K.dh/d�, it is possible to verify

that the soil water difusivity D* is given by:

(8)
D

.......
DD

*D
i

i

2

2

1

1

��

�
==

��

�
=

��

�
=

To make equation 3 dimensionless it is now needed to make the time t

dimensionless. In accordance to all other variables, we can have a time t* for the standard

soil, as follows:

( ) ( ) ( )
(9)

x

t
........

x

t

x

t
*t

2

maxi

ii

2

max2

22

2

max1

11

�

��
==

�

��
=

�

��
=

It can now be seen that if we substitute � by � , x by X, t by ti and D by Di in

equation 3, we obtain the differential equation for the standard soil, which differs from the

equations of all other soils by factors �i, not seen in equation 10, but built-in the definitions

of  t* and D*:

( ) (10)
X

D
Xt

*

* ��

�
�	

�

�

��
�

�

�
=

�

��

subject to conditions:
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� = 0  ,  X � 0  ,  t* = 0                                  (11)

� = 1  ,  X = 0  ,  t* > 0                                  (12)

the solution of which is:

( ) ( ) (13)t.X
2/1** ��=

It is interesting to analyze equation 9, of the non dimensional infiltration time, in

light of the physical similarity of the kingdoms of Liliput and Brobdingnag, which shows

that to compare different soils (considered similar media), their times have to be different

and dependent of � which is a length ! We could even suggest that this fact contributes to

explain how time is considered the forth coordinate, together with x, y and z, in Modern

Physics.

By analogy with what was made with h and K, we can write:

( )
=

�

�
=�==�=�

2
max

*

ii2211

xt
t......tt constant

Once the theory was established, Reichardt et al. (1972) looked for ways to measure

� for the different soils. The “Columbus Egg” was found when they realized that if the

linear regressions of xi versus ti
1/2

for the position of the wetting front for each soil, should

overlap to one single curve for the standard soil (X versus t*
1/2

), and that the factors used to

rotate the line of each soil to the position of the line of the standard soil, could be used as

characteristic lengths �i. We know that straight lines passing through the origin: y = aix can
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be rotated over each other using the relation ai/aj of their slopes. Since in our case the lines

involve a square root, the relation to be used is:

(14)
a

a
2

*

i

*

i �
�

�
�
�

�
=

�

�

With this relation Reichardt et al. (1972) found the values �i for each soil, taking

arbitrarily as a standard the soil of fastest infiltration, for which they postulated �* = 1. In

this way, the slower the infiltration rate of soil i, the slower its �i. This way of determining

� as a scaling factor and not as a physical soil characteristic like the microscopic

characteristic length of Miller & Miller (1956), facilitated the experimental part of the study

and, more than that, opened the door for a much wider concept of scaling applied in other

areas of Soil Physics. Reichardt et al. (1972) had only success in scaling D(�) and a partial

success in scaling h(�) and K(�), the reason for this being the fact that soils are not true

similar media. The success of scaling D(�) lead Reichardt & Libardi (1973) to establish a

general equation to estimate D(�) of a given soil, by measuring only the slope ai of the

wetting front advance x versus t
1/2

:

( ) ( ) (15).087,8expa10x462,1D 2
i

5 �=� �

Reichardt et al. (1975) also presented a method to estimate K(�) through the

coefficient ai of equation (15); Bacchi & Reichardt (1988) used scaling techniques to

evaluate K(�) measurement methods, and more recently Shukla et al. (2002) used scaling
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to analyze miscible displacement experiments. Scaling has also widely been used in studies

of soil spatial distribution, assuming characteristic values of � for each point of a transect,

making particular curves to coalesce into a single one. An excellent review of scaling

techniques was made by Tillotson & Nielsen (1984), and, more recently, by Kutilek &

Nielsen (1994) and Nielsen et al. (1998).
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