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Knowledge of the strength and type of noise (e.g., unitary control errors, 
decoherence from the environment, etc) affecting a prototype quantum 
processor is crucial for:

• Engineering of the device design 
-To determine the physical mechanisms responsible for the noise
-To benchmark various implementation schemes
-Etc.

• Optimizing algorithmic error-correction methods
- To determine the “block-size” of correlations
- To identify the presence of decoherence free subspaces
- Etc. 

Noise Determination 
for Quantum Information Processing 



Full characterization of the noise can be achieved via Quantum 
Process Tomography (QPT) – this procedure is not scalable:

QPT requires O(24n) experiments (n = number of qubits).
Analysis of the tomographic data is complex and inefficient, requiring 

manipulation of matrices of dimension 22n £ 22n 

The Difficulty of Noise Determination

Recent implementation of QPT for 3 qubits using NMR:
Y. Weinstein, J. Emerson, N. Boulant, M. Saraceno, D. Cory, 
Quantum Process Tomography of the Quantum Fourier Transform
J. of Chem. Phys. 121, 6117 (2004).

Question: Can we measure a benchmark fidelity of the implementation without 
requiring an exponentially large number of experiments? 

Answer: Yes, using random unitary operators! 



• The “natural” measure that defines random unitary operators is the 
(unique) invariant group measure (ie., the Haar measure) for U(D):

µH(dU) = µH (W dU V)

where W and V are arbitrary unitary operators.

• An operator drawn from this measure is an element of the Circular 
Unitary Ensemble (CUE) - it is “Haar-random”.

• Given some function f on U(D), we can define the Haar-average as,

h f(U) i = sU(D) µH(dU) f(U)

• Note that the Haar-average is often analytically tractable.

Random Unitary Operators
Some basic concepts



• The Haar-average is useful because of the “concentration of measure”
effect:

For a wide class of test functions, (e..g, eigenvalue fluctuations), most unitary 
operators give values that are close to the Haar-average, i.e., 

h f(U)2 i - h f(U) i2 = O(1/Da),   with  a > 0   (D=2n). 

• A similar “concentration of measure” effect holds for the Haar-induced 
measure on the space of pure quantum states:

h f(ψ) i = s µ(dψ) f(ψ)

h f(ψ)2 i - h f(ψ) i2 = O(1/Da),   with  a > 0. 

Random Unitary Operators 
Some basic concepts



The intuitive idea was that the inner product between two states, one evolved under
the system dynamical operator U, and one under the perturbed operator Up , would 
decrease more rapidly with the number of iterations t when the system U is classically 
chaotic.

It turns out this wasn’t exactly right – often regular systems can exhibit a faster rate 
of decay - but it is still a very useful way to characterize stability!

Fidelity Loss under
Imperfect Motion Reversal
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The fidelity loss (instability) under perturbation was proposed initially by Peres 
(1984) as a means of characterizing the presence of quantum chaos for a 
dynamical system.

)exp( pp iVUU −=



Universal Fidelity Loss for a Random Unitary

( )2/1)()( −+= DOtFtF ψψ

A fundamental conjecture of quantum chaos is that a classically chaotic 
quantum system may be modeled by a random unitary matrix.

For a random unitary matrix, the fidelity loss is tightly concentrated about the 
Haar-average:

Due to this concentration of measure, the fidelity loss under imperfect motion 
reversal is universal for any typical or generic unitary operator and a generic 
initial state: 
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FGR Fidelity Loss for a Chaotic System 
Modeled as Random Matrix

Under certain conditions, the fidelity loss for a classically chaotic unitary operator is 
given by the “Fermi Golden Rule” (P. Jacquod et al , PRE, 2001):
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The decay rate depends only on the 2-norm of the perturbation operator Vp .

Note: The random matrix assumption often fails!
For example, if the perturbation operator has a semi-classical interpretation, then the 
FGR decay may not be observed, e.g., instead one sees a perturbation-independent 
Lyapunov decay (Jalabert and Pastawski, PRL, 2001). 



Measurement of the Fidelity Loss 
under Imperfect Motion Reversal

The fidelity loss can be estimated efficiently, e.g., via the following circuit:

Note: This provides one efficient solution to the “read-out” problem, ie, measuring 
how some system under study responds to a known perturbation. 

Note: Even a regular system can exhibit FGR decay when the perturbation is 
“complex” – so this is really a test of “relative randomness”.

J. Emerson, Y. Weinstein, S. Lloyd, D. Cory,  Phys. Rev. Lett. 89, 284102 (2002).

t
pU −0 tU

Projective 
measurement 
onto |0ih0|



How to Measure Unknown Device Noise 
via a “Perfect” Motion Reversal Circuit

Now suppose that the unitary is chosen at “random” and that the only perturbation is 
due to the actual (unknown) noise mechanisms of the device:

F ( U, Λ ) = ∑k h0|UyAkU|0ih0|UyAk
yU|0i

U 0 1−U

Projective 
measurement 
onto |0ih0|

where Λ (ρ)  = ∑k Ak ρ Ak
y is a CP map representing arbitrary (non-

unitary) noise. 
Note that this CP map corresponds to the cumulative noise occurring throughout
the implementation of the entire motion-reversal circuit.



Key Idea: Due to concentration of measure, the observed fidelity decay under this 
motion reversal experiment does not depend on the choice of random unitary (nor 
on the initial state), but depends only on the physical noise mechanisms affecting 
the implementation.  

The fidelity loss under the experiment is uniquely characterized by a single 
invariant of the noise, the noise strength parameter p.

Universal Fidelity Loss Under General Noise

J. Emerson, R. Alicki, and K. Zyczkowski, J. Opt. B: Quantum and Semiclassical Optics, 
7 (2005) S347-S352 (quant-ph/0503243).
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There is a growing body of work making use of Haar-randomization across 
quantum information theory:

Random unitaries lead to resource savings in remote state preparation
(Bennett et al., 2003)

Random unitaries enable superdense coding of quantum states
(Harrow et al., 2003)

Random unitaries provide approximate encryption and data-hiding of 
quantum states
(Hayden et al., 2003)

Random unitaries can be used in quantum simulations on a quantum 
processor to study the quantitative aspects of decoherence under 
engineered couplings to a complex environment 
(Ryan et al, 2005). 

Also, since random (and pseudo-random) numbers play a fundamental role in 
classical information theory, random (and pseudo-random) states and operators should 
play an equally fundamental role in quantum information theory. 

Randomization in Quantum Information



The implementation of Haar-random unitary operators on a quantum processor 
is useful for randomization in quantum information theory. 

Problem: any circuit generating Haar-random unitary operators requires 
exponential resources:

• O( n3 D2 ) quantum gates  (where D = 2n)

• D2 random classical input parameters.

Generating Haar-Random Unitary Operators on a 
Quantum Information Processor



Challenge: generate unitary operators that exhibit useful statistical features of 
uniformly random unitary operators but require only polylog(D) resources.  
Call these “pseudo-random” unitary operators.

Question: Is it possible to efficiently generate pseudo-random operators that are 
sufficiently randomizing for practical applications?

Remark: We can expect this to be possible in light of efficient simulation 
algorithms for quantum chaos [R. Schack (1998), Georgeot and Shepelyansky
(2001), Benenti et al (2001)].

Approach: generate maximally random circuits by drawing gates randomly from a 
universal gate set.

From Haar-Random to “Pseudo-Random” Unitary 
Operators



ψ {

How to Generate Pseudo-Random Unitary Operators 
using Random Circuits

Apply random 
SU(2) rotations on 
each qubit

Couple the qubits with 
any “convenient” or 
“natural” coupling.

Schematic of 2 iterations of a 
random circuit:



A Practical Circuit for Generating 
Pseudo-Random Unitary Operators in NMR

Note: This parameterized gate is universal for quantum computation.

Idea: Repeat this basic gate until the measure of random circuits can mimic (to 
within some e) any desired statistical feature of the Haar measure. 

Basic Gate: independent random SU(2) rotations on each qubit followed by scalar 
couplings between nearest-neighbor pairs:

J. Emerson, Y. Weinstein, M. Saraceno, S. Lloyd, D. Cory, Science, vol. 302, 2098 (2003).
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NMR Data for m=7 Iterations on 3 qubits

The number of gates 
required for generating 
pseudo-random unitary 
operators is accessible with 
current levels of control in 
NMR.

Histogram of the squared 
modulus of  the matrix 
elements of the random 
circuit:
y = D |Uij|2.

Solid line: P(y) from 
Haar-average.

D=8



Given an initial probability measure p on U(D), the measure for the circuit composed 
of a product of m elements drawn from p  is given by the convolution:

If the probability measure p that has support over a subset generating U(D), i.e, p
contains a universal gate set, then p*m converges exponentially to the Haar measure.

Conjecture: efficient random circuits provide an adequate means of generating
pseudo-random distributions of unitary operators.

Efficient means that m, the number of iterations of the random circuit, does not 
increase exponentially with n, the number of qubits.

Random Circuits Converge Exponentially to the Invariant 
(Haar) Measure

pppp m ∗∗= L*



Notes on the Proof of Convergence 

• The Peter-Weyl theorem provides a discrete Fourier representation for functions 
on compact groups in terms of the irreps of the group. 

• The Fourier transform of  p*m is given by the m’th power of the Fourier 
transform coefficient matrices (for each “irrep” s) of p ,

• It is possible to show that all eigenvalues of the Fourier coefficients are strictly 
less than 1. 

• The largest spectral gap in the eigenvalues of the Fourier coefficients 
determines the rate of exponential convergence.

msm pp ]~[ )(* ⇔

J. Emerson, E. Livine, S. Lloyd, quant-ph/0503210.



Convergence to the Uniform Measure
For p continuous and p2 L2(U(D)), only a finite set of coefficients are needed in 
the Fourier representation to demonstrate uniform convergence.

Warning: Exponential convergence (with respect to m) does not imply that 
random circuits are efficient because the exponent can depend on the dimension 
D =2n.

For example, for uniform convergence we know from simple counting 
arguments that the exponent must decrease at least as fast as O(1/D2) (since 
most unitary operators require an exponential number of gates).

This means that m, the number of iterations of the random circuit, 
must grow exponentially with the number of qubits n…

Of course, this isn’t a worry since uniform convergence is 
unnecessarily strong!



Convergence Conditions for Practical Applications
For practical applications we only require convergence with respect to some class of 
test functions (ie, convergence with respect to the weak topology). 

sg2 U(D) dµ(g) p*m(g) f(g) ! sg2 U(D) dµ(g) f(g) 

For polynomial test functions f, the degree of the polynomial implies a cut-off in the 
Fourier representation of p (the measure over random gates). 

Hence the lower  the degree of the polynomial, the smaller the number of Fourier 
coefficients that contribute to the rate of convergence. 

For example, the fidelity under motion reversal is just a 4th degree polynomial in 
the matrix elements of U,

F(U,Λ) = ∑k h0|UyAkU|0ih0|UyAk
yU|0i

h F(U,Λ) i / h Uij Ukl Umn* Upq* i



Numerical Test of Weak Convergence:
Average Subsystem Purity

As a benchmark consider the average subsystem purity of the pure states 
generated by a set of random circuits acting on the |0i-n state.

The subsystem purity of these states is also a 4th degree polynomial in the 
matrix elements of the unitary operators generating them, so it will have the 
same convergence rate as the “fidelity under motion reversal”.

A practical indicator is the average qubit purity:
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Distribution of Average Subsystem Purity 
Generated by Random Circuits

Symbols:
m = 16 (+) m 
= 24 (.)  m = 
32 (x)  m = 
40 (o)

P(Q) Random circuits on nq = 8 qubits



Saturation of exponential rate implies efficiency!

F. Cucchietti and J. Emerson, in preparation



Saturation of exponential rate suggests efficiency

F. Cucchietti and J. Emerson, in preparation



Connection between fidelity decay and decoherence:
DQC1 circuit:

)exp()0()()0()( 121212 ttFt Γ−≅= ρρρ ψ

t repetitions

With DQC1 we get the exact ensemble average for free: 

D. Poulin, R. Blume-Kahout, H. Ollivier, R. Laflamme, PRL (2003).



NMR Measurement of Decoherence Rates under for Arbitrary 
(Complex) Environment Dynamics 

Implementation of DQC1 circuit with liquid state NMR:

4 Carbon spins: 4 qubits prepared in identity state

Hydrogens: decoupled (each prepared in σz state)

Methyl Group: pseudo-pure spin-1/2.

C. Ryan, J. Emerson, C. Negreverne, 
D. Poulin, R. Laflamme, in preparation.

Crotonic Acid



Non-Universal Fidelity Loss (Decoherence) for 
‘Regular’ System (Environment) Dynamics 
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Red:    Theoretical average
Blue:   X perturbation
Green: Z perturbation

Environment dynamics:
H = ∑i ωi σz

I

+ ∑i Ji σz
i - σz

i+1

F(t)



Universal Fidelity Loss (Decoherence) for “Complex”
System (Environment) Dynamics 
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Red: Theoretical average
Blue: X perturbation
Green: Z perturbation

‘Complex’ environment dynamics: 
pseudo-random unitary operators from 
“random circuits” with 4 iterations. F(t)



Some Important Open Problems

1. Pseudo-Random Operators via Random Circuits: analytically determine the 
actual convergence rates for the weaker randomization conditions defined by 
noise-estimation and other randomization applications.

2. Generalized Noise Estimation Methods: develop generalized protocols for 
measuring additional parameters of the noise, e.g., correlation length-scales and 
time-scales of the noise.

Thank you for your attention!


