

The Abdus Salam International Centre for Theoretical Physics

SMR.1675 - 8

Workshop on Noise and Instabilities in Quantum Mechanics

3 - 7 October 2005

Quantum noise in algorithms and transport

Gabriel CARLO Universita' degli Studi dell'Insubria Dipartimento Sc. Chimiche, Fisiche & Matematiche Via Valleggio 11 22100 Como ITALY

These are preliminary lecture notes, intended only for distribution to participants

Quantum noise in algorithms and transport

Gabriel Carlo

Università degli Studi dell'Insubria Como, Italy http://scienze-como.uninsubria.it/complexcomo

Work done in collaboration with: Giuliano Benenti, Giulio Casati (Como) Dima Shepelyansky (Toulouse)

•

• Open quantum systems: master equation

•

- Open quantum systems: master equation
- Solving the master equation with quantum trajectories

•

- Open quantum systems: master equation
- Solving the master equation with quantum trajectories
- Noise models

- Open quantum systems: master equation
- Solving the master equation with quantum trajectories
- Noise models
- Noise in algorithms: teleportation and baker's map

- Open quantum systems: master equation
- Solving the master equation with quantum trajectories
- Noise models
- Noise in algorithms: teleportation and baker's map
- Noise in transport: quantum ratchets

- Open quantum systems: master equation
- Solving the master equation with quantum trajectories
- Noise models
- Noise in algorithms: teleportation and baker's map
- Noise in transport: quantum ratchets
- Possible experimental realization of a quantum ratchet

- Open quantum systems: master equation
- Solving the master equation with quantum trajectories
- Noise models
- Noise in algorithms: teleportation and baker's map
- Noise in transport: quantum ratchets
- Possible experimental realization of a quantum ratchet
- Ehrenfest explosions: a transition time scale measured with quantum trajectories.

- Open quantum systems: master equation
- Solving the master equation with quantum trajectories
- Noise models
- Noise in algorithms: teleportation and baker's map
- Noise in transport: quantum ratchets
- Possible experimental realization of a quantum ratchet
- Ehrenfest explosions: a transition time scale measured with quantum trajectories.

Future plans

Real systems interact with the environment, this leads to what is known as *quantum noise*. Open quantum systems cannot be described by means of a pure state, it is necessary to use the density operator. In general, a Markovian type of evolution is assumed (without memory effects):

 Real systems interact with the environment, this leads to what is known as quantum noise. Open quantum systems cannot be described by means of a pure state, it is necessary to use the density operator. In general, a Markovian type of evolution is assumed (without memory effects):

$$\dot{\rho} = -\frac{i}{\hbar} [H_s, \rho] - \frac{1}{2} \sum_{\mu} \{ L_{\mu}^{\dagger} L_{\mu}, \rho \} + \sum_{\mu} L_{\mu} \rho L_{\mu}^{\dagger}$$

 Real systems interact with the environment, this leads to what is known as quantum noise. Open quantum systems cannot be described by means of a pure state, it is necessary to use the density operator. In general, a Markovian type of evolution is assumed (without memory effects):

$$\dot{\rho} = -\frac{i}{\hbar} [H_s, \rho] - \frac{1}{2} \sum_{\mu} \{ L_{\mu}^{\dagger} L_{\mu}, \rho \} + \sum_{\mu} L_{\mu} \rho L_{\mu}^{\dagger}$$

 H_s is the system's Hamiltonian, $\{, \}$ denotes the anticommutator and L_{μ} are the Lindblad operators, with $\mu \in [1, ..., M]$ (the number *M* depending on the particular model of interaction with the environment)

•

• A pure state $\rho(t_0) = |\phi(t_0)\rangle\langle\phi(t_0)|$, evolves to:

$$\rho(t_0 + dt) = (1 - \sum_{\mu} dp_{\mu}) |\phi_0\rangle \langle \phi_0| + \sum_{\mu} dp_{\mu} |\phi_{\mu}\rangle \langle \phi_{\mu}|,$$

with the probabilities dp_{μ} given by: $dp_{\mu} = \langle \phi(t_0) | L_{\mu}^{\dagger} L_{\mu} | \phi(t_0) \rangle dt$, and the new states by:

$$|\phi_0\rangle = \frac{(1 - iH_{\text{eff}}dt/\hbar)|\phi(t_0)\rangle}{\sqrt{1 - \sum_{\mu} dp_{\mu}}} \quad and \quad |\phi_{\mu}\rangle = \frac{L_{\mu}|\phi(t_0)\rangle}{||L_{\mu}|\phi(t_0)\rangle||}$$

• A pure state $\rho(t_0) = |\phi(t_0)\rangle\langle\phi(t_0)|$, evolves to:

$$\rho(t_0 + dt) = (1 - \sum_{\mu} dp_{\mu}) |\phi_0\rangle \langle \phi_0| + \sum_{\mu} dp_{\mu} |\phi_{\mu}\rangle \langle \phi_{\mu}|,$$

with the probabilities dp_{μ} given by: $dp_{\mu} = \langle \phi(t_0) | L_{\mu}^{\dagger} L_{\mu} | \phi(t_0) \rangle dt$, and the new states by:

$$|\phi_0\rangle = \frac{(1 - iH_{\text{eff}}dt/\hbar)|\phi(t_0)\rangle}{\sqrt{1 - \sum_{\mu} dp_{\mu}}} \quad and \quad |\phi_{\mu}\rangle = \frac{L_{\mu}|\phi(t_0)\rangle}{||L_{\mu}|\phi(t_0)\rangle||}.$$

• With probability dp_{μ} the system "jumps" to the state $|\phi_{\mu}\rangle$. With probability $1 - \sum_{\mu} dp_{\mu}$ there are no jumps and the system evolves according to $H_{\text{eff}} = H_s + iK$, where $K = -\hbar/2 \sum_{\mu} L_{\mu}^{\dagger} L_{\mu}$. This suggests to simulate the equation by means of the quantum jumps scheme (quantum trajectories).

• We take an initial pure state $|\phi(t_0)\rangle$

•

• We take an initial pure state $|\phi(t_0)\rangle$

•

• At intervals dt we choose a random number ϵ

• We take an initial pure state $|\phi(t_0)\rangle$

•

- At intervals dt we choose a random number ϵ
- If $\epsilon < dp$, where $dp = \sum_{\mu} dp_{\mu}$, there is a "jump" to a state $|\phi_{\mu}\rangle$

• We take an initial pure state $|\phi(t_0)\rangle$

- At intervals dt we choose a random number ϵ
- If $\epsilon < dp$, where $dp = \sum_{\mu} dp_{\mu}$, there is a "jump" to a state $|\phi_{\mu}\rangle$
- If $\epsilon > dp$, the state evolves according to $H_{\rm eff}$

- We take an initial pure state $|\phi(t_0)\rangle$
- At intervals dt we choose a random number ϵ
- If $\epsilon < dp$, where $dp = \sum_{\mu} dp_{\mu}$, there is a "jump" to a state $|\phi_{\mu}\rangle$
- If $\epsilon > dp$, the state evolves according to $H_{\rm eff}$
- We renormalize

- We take an initial pure state $|\phi(t_0)\rangle$
- At intervals dt we choose a random number ϵ
- If $\epsilon < dp$, where $dp = \sum_{\mu} dp_{\mu}$, there is a "jump" to a state $|\phi_{\mu}\rangle$
- If $\epsilon > dp$, the state evolves according to $H_{\rm eff}$
- We renormalize

• We repeat this $n_{\rm steps} = \Delta t/dt$ times

- We take an initial pure state $|\phi(t_0)\rangle$
- At intervals dt we choose a random number ϵ
- If $\epsilon < dp$, where $dp = \sum_{\mu} dp_{\mu}$, there is a "jump" to a state $|\phi_{\mu}\rangle$
- If $\epsilon > dp$, the state evolves according to $H_{\rm eff}$
- We renormalize

- We repeat this $n_{\rm steps} = \Delta t/dt$ times
- Average over different runs to recover, up to statistical errors, the probabilities obtained using the density operator. Given an operator A, we can write the mean value $\langle A \rangle_t = \text{Tr}[A\rho(t)]$ as the average over \mathcal{N} trajectories: $\langle A \rangle_t = \text{Tr}[A\rho(t)] = \lim_{\mathcal{N} \to \infty} \frac{1}{\mathcal{N}} \sum_{i=1}^{\mathcal{N}} \langle \phi_i(t) | A | \phi_i(t) \rangle$ There is also an advantage in computation time: in general $\mathcal{N} \approx 100 - 500$ trajectories are needed in order to obtain statistical convergence, there is an advantage in computer time if the Hilbert space dimension N satisfies $N > \mathcal{N}$

Noise models

Amplitude damping (dissipation or energy loss)

$$\begin{aligned} |0\rangle_{s}|0\rangle_{e} & \to & |0\rangle_{s}|0\rangle_{e}, \\ |1\rangle_{s}|0\rangle_{e} & \to & \sqrt{1-p} |1\rangle_{s}, |0\rangle_{e} + \sqrt{p} |0\rangle_{s}|1\rangle_{e}. \end{aligned}$$

- We study in detail two possible generalizations of the amplitude damping to the case of n qubits.
- Both consider one-qubit processes only.
- In the first case the jump probability for the system is fixed.
- In the other, the jump probability depends on the internal state.
- Each case corresponds to a different branching process.

Noise models (A. damping 1)

$$\rho(t_0 + dt) = \left(1 - \frac{\Gamma dt}{\hbar}\right) |1011\rangle \langle 1011| + \frac{\Gamma dt}{3\hbar} (|0011\rangle \langle 0011| + |1001\rangle \langle 1001| + |1010\rangle \langle 1010|).$$

Define probability classes of probability W_k (n_k = qubits "up" and $n_k = n_0 - k = m - k$):

Trieste '05 - p.7/3

Noise models (A. damping 2)

$$\rho(t_0 + dt) = \left(1 - \frac{3\Gamma dt}{\hbar}\right) |1011\rangle \langle 1011| + \frac{\Gamma dt}{\hbar} (|0011\rangle \langle 0011| + |1001\rangle \langle 1001| + |1010\rangle \langle 1010|).$$

Evolution of W_k :

•

$$W_{k} = \frac{n!}{n_{k}!} \sum_{i=0}^{k} \frac{(-1)^{(k-i)}}{i! (k-i)!} \exp\left(-\frac{n_{i} \Gamma t}{\hbar}\right) \ge 0.6$$

$$W_{m} = 1 - \sum_{k=0}^{m-1} W_{k}$$

$$0.4$$

$$0.2$$

$$0$$

$$0.4$$

$$0.2$$

$$0$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.8$$

$$1$$

Trieste '05 - p.8/3

Noise models (P. flip)

Phase flip (information loss)

•

$$\begin{aligned} |0\rangle_{s}|0\rangle_{e} & \to & \sqrt{1-p} |0\rangle_{s}|0\rangle_{e} + \sqrt{p} |0\rangle_{s}|1\rangle_{e}, \\ |1\rangle_{s}|0\rangle_{e} & \to & \sqrt{1-p} |1\rangle_{s}|0\rangle_{e} - \sqrt{p} |1\rangle_{s}|1\rangle_{e} \end{aligned}$$

Generalize like case 2; $|\psi_0\rangle$, random complex numbers of modulus $1/\sqrt{2^n}$

Noise in algorithms: teleportation

Initial state

•

$$\sum_{i_{n-1},\dots,i_2} c_{i_{n-1},\dots,i_2} |i_{n-1}\dots i_2\rangle \otimes \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

We take $c_{i_{n-1},...,i_2}$ (modulus $1/\sqrt{2^{n-2}}$, random phases).

Trieste '05 - p.10/3

teleportation

•

$$\rho_k^{(n)} = U_{\rm sw}^{k,k+1} \left[\sum_{\mu_1,\dots,\mu_k=0}^{\mathcal{M}} M_{\mu_k}^{(n)}(dt) \cdots M_{\mu_1}^{(n)}(dt) \right] \\ \rho_{k-1}^{(n)} (M_{\mu_1}^{(n)})^{\dagger}(dt) \cdots (M_{\mu_k}^{(n)})^{\dagger}(dt) \left] U_{\rm sw}^{k,k+1},$$

Fidelity of amplitude damping 2 (10 and 20 qubits):

Noise in algorithms: the baker's map

The baker's map acts on $0 \le q, p < 1$:

$$q_{k+1} = 2q_k - [2q_k],$$

 $p_{k+1} = (p_k + [2q_k])/2,$

Using the discrete Fourier transform

$$\langle q_k | F_n | q_j \rangle \equiv \frac{1}{\sqrt{2^n}} \exp\left(\frac{2\pi i k j}{2^n}\right),$$

the quantum map becomes

$$|\psi_{k+1}\rangle = B |\psi_k\rangle = F_n^{-1} \begin{bmatrix} F_{n-1} & 0\\ 0 & F_{n-1} \end{bmatrix} |\psi_k\rangle$$

Trieste '05 – p.12/3

the baker's map

Fidelity with p. flip $F = \exp(-n\gamma N_g) = \exp(-2\gamma n^3 k)$.

Noise in transport: quantum ratchets

- In recent years there have been several works in the field of periodic systems that present directed transport due to a broken spatio-temporal symmetry.
- This phenomenon, the "ratchet" effect, is important in technological applications such as rectifiers, pumps, particle separation devices, molecular motors in biology, etc.
- There have been several proposals in order to model this effect: systems with external noise, chaotic systems with dissipation and purely Hamiltonian ones.

- The system to be shown here presents asymmetry in the potential and dissipation.
- The presence of strange attractors is a common feature of chaotic dissipative systems.
- In quantum systems the fractal structure of the attractor is smoothed in the Planck scale.
- It is interesting to see how this fact affects quantum ratchets.
- Moreover, $\langle p \rangle_{-\phi} = -\langle p \rangle_{\phi}$ due to the fact that $V_{\phi}(x,\tau) = V_{-\phi}(-x,\tau)$.

We study the movement in one dimension [$x \in (-\infty, +\infty)$] with dissipation an potential

$$V(x,\tau) = k \left[\cos(x) + \frac{a}{2} \cos(2x + \phi) \right] \sum_{m=-\infty}^{+\infty} \delta(\tau - mT),$$

where T is the period. This is equivalent to the map:

$$\begin{cases} \overline{n} = \gamma n + k(\sin(x) + a\sin(2x + \phi)), \\ \overline{x} = x + T\overline{n}, \end{cases}$$

(we use p = Tn).

•

In the quantum case we have: $x \to \hat{x}$, $n \to \hat{n} = -i(d/dx)$, $\hbar_{\rm eff} = T$.

$$\dot{\hat{\rho}} = -i[\hat{H}_s, \hat{\rho}] - \frac{1}{2} \sum_{\mu=1}^2 \{\hat{L}^{\dagger}_{\mu} \hat{L}_{\mu}, \hat{\rho}\} + \sum_{\mu=1}^2 \hat{L}_{\mu} \hat{\rho} \hat{L}^{\dagger}_{\mu}.$$

Lindblad operators:

•

$$\begin{split} \hat{L}_1 &= g \sum_n \sqrt{n+1} \mid n \rangle \left\langle n+1 \right|, \\ \hat{L}_2 &= g \sum_n \sqrt{n+1} \mid -n \rangle \left\langle -n-1 \right|, \end{split}$$

with n = 0, 1, ... Ehrenfest theorem leads to $g = \sqrt{-\ln \gamma}$.

Phase space for K = 7, $\gamma = 0.7$, $\phi = \pi/2$, a = 0.7, after 100 kicks. Central region zoom; Poincaré (left) and Husimi (right).

Average momentum $\hbar_{eff} = 0.99, 0.33, 0.11, 0.037$ (left) and $\phi = \pi/2, 2\pi/5, 0, -2\pi/5, -\pi/2$ (right).

Memoryless fluctuations in the kicking strength: $K \to K_{\epsilon}(t) = K + \epsilon(t), \epsilon(t) \in [-\epsilon, +\epsilon]$ The ratchet effect survives up to a noise strength ϵ of the order of the kicking strength K

Experimental realization

There is growing interest in using this phenomenon to transport Bose-Einstein condensates in optical lattices. For that purposes it is convenient to use

$$V_{\phi}(x,\tau) = k \times$$

$$\sum_{n=1}^{+\infty} \left[\delta(\tau - nT)\cos(x) + \delta(\tau - nT + 2/3T)\sin(x + \phi)\right],$$

in this case dissipation is given by the projection over a subspace of

the original Hilbert space.

•

Experimental realization

• Average momentum (left panel) $\langle p \rangle$ as a function of time n (measured in units of T). Solid curve is classical, dashed line is quantum for $\hbar_{\text{eff}} \simeq 0.16$ and the dotted one for $\hbar_{\text{eff}} \simeq 1$. Initial conditions are inside the band $p \in [-1; 1]$. Average momentum (right panel) $\langle p \rangle$, for the case $\phi = 0$ (positive values), $\phi = \pi/2$ (zero value) and $\phi = \pi$ (negative values).

Experimental realization

Phase space pictures for k = 7 and $\phi = 0$, at n = 20 kicks: classical Poincaré sections (left panel), and quantum Husimi functions at $\hbar_{eff} \simeq 0.16$ (middle panel). Finally $\hbar_{eff} \simeq 1$ (right panel). The displayed region is given by $p \in [-20, 20]$ and $x \in [0, 2\pi)$ (x is taken modulus 2π). The color is proportional to the density: blue for zero and red for maximal density.

Ehrenfest explosions

The instability of classical dynamics leads to exponentially fast spreading of the quantum wave packet on the logarithmically short Ehrenfest time scale

$$t_E \sim \frac{|\ln \hbar|}{\lambda}$$

 λ Lyapunov exponent, \hbar effective Planck constant

After the logarithmically short Ehrenfest time a description based on classical trajectories is meaningless for a closed quantum system

What is the interplay between wave packet <u>explosion</u> (delocalization) induced by chaotic dynamics and wave packet collapse (localization) caused by dissipation?

Dissipative chaotic dynamics model

Markovian master equation
$$\dot{\hat{\rho}} = -i[\hat{H}, \hat{\rho}] - \frac{1}{2} \sum_{\mu} \{\hat{L}^{\dagger}_{\mu} \hat{L}_{\mu}, \hat{\rho}\} + \sum_{\mu} \hat{L}_{\mu} \hat{\rho} \hat{L}^{\dagger}_{\mu}$$

Kicked rotator Hamiltonian $\hat{H} = \frac{\hat{n}^2}{2} + k \cos(\hat{x}) \sum_{m=-\infty}^{+\infty} \delta(\tau - mT)$

Dissipation described by the Lindblad operators

•

$$\hat{L}_1 = g \sum_n \sqrt{n+1} |n\rangle \langle n+1|, \ \hat{L}_2 = g \sum_n \sqrt{n+1} |-n\rangle \langle -n-1|$$

At the classical limit, the evolution of the system in one period is described by the Zaslavsky map

$$\begin{cases} n_{t+1} = (1 - \gamma)n_t + k \sin x_t, \\ x_{t+1} = x_t + Tn_{t+1}, \end{cases}$$

Trieste '05 – p.25/3

Collapse to explosion transition

 $K=7, \, \hbar=0.012, \, \gamma=0.5 \text{ and } \gamma=0.01$

Classical-like q-trajectories

 $f \equiv \langle p \rangle_{t+1} - (1 - \gamma) \langle p \rangle_t, \quad \langle p \rangle_t = \langle x \rangle_t - \langle x \rangle_{t-1}$

From classical dynamics we expect $f(x) = K \sin x$ - Quantum fluctuations $\propto \sqrt{\hbar}$

Wave packet dispersion

$$\sigma_t = \sqrt{(\Delta x)_t^2 + (\Delta p)_t^2}, \quad \text{cumulative average } \overline{\sigma}_t \equiv \frac{1}{t} \sum_{j=1}^t \sigma_j$$

 $(K = 7, \hbar = 0.012)$

Localization-delocalization crossover

•

 $\overline{\sigma}_s \equiv \overline{\sigma}/\sqrt{\hbar}$ scaled dispersion

Ehrenfest explosion

•

Due to the exponential instability of chaotic dynamics the wave packet spreads exponentially and for times shorter than the Ehrenfest time we have $\sigma_t \sim \sqrt{\hbar} \exp(\lambda t)$

The dissipation localizes the wave packet on a time scale of the order of $1/\gamma$

Therefore, for $1/\gamma \ll t_E \sim |\ln \hbar|/\lambda$, we obtain $\overline{\sigma} \sim \sqrt{\hbar} \exp(\lambda/\gamma) \ll 1$

In contrast, for $1/\gamma > t_E$ the chaotic wave packet explosion dominates over dissipation and we have complete delocalization over the angle variable

In this case, the wave packet spreads algebraically due to diffusion for $t > t_E$: for $t \gg t_E$ we have $\sigma_t \sim \sqrt{D(K)t}$, $D(K) \approx K^2/2$ being the diffusion coefficient; this regime continues up to the dissipation time $1/\gamma$, so that $\overline{\sigma} \sim \sqrt{D(K)/\gamma}$

Ehrenfest explosion

•

The transition from collapse to explosion (Ehrenfest explosion) takes place at

$$t_E \sim \frac{|\ln \hbar|}{\lambda} \sim \frac{1}{\gamma}$$

Therefore, even for infinitesimal dissipation strengths the quantum wave packet is eventually localized when $\hbar \to 0$: we have $\lim_{\hbar \to 0} \overline{\sigma} = 0$; in contrast, in the Hamiltonian case ($\gamma = 0$) $\lim_{\hbar \to 0} \overline{\sigma} = \infty$

Only for open quantum systems the classical concept of trajectory is meaningful for arbitrarily long times; on the contrary, for Hamiltonian systems a description based on wave packet trajectories is possible only up to the Ehrenfest time scale

•

 Understanding the dynamical aspects of the ratchet model at zero temperature (linear stability study). Currently under way.

•

- Understanding the dynamical aspects of the ratchet model at zero temperature (linear stability study). Currently under way.
- Classical and quantum (semiclassical) mean current prediction.

•

- Understanding the dynamical aspects of the ratchet model at zero temperature (linear stability study). Currently under way.
- Classical and quantum (semiclassical) mean current prediction.
- Experimental ralization of dissipative ratchets with Bose-Einstein condensates.

- Understanding the dynamical aspects of the ratchet model at zero temperature (linear stability study). Currently under way.
- Classical and quantum (semiclassical) mean current prediction.
- Experimental ralization of dissipative ratchets with Bose-Einstein condensates.
- Molecular transport applications, finite temperature models.

- Understanding the dynamical aspects of the ratchet model at zero temperature (linear stability study). Currently under way.
- Classical and quantum (semiclassical) mean current prediction.
- Experimental ralization of dissipative ratchets with Bose-Einstein condensates.
- Molecular transport applications, finite temperature models.
- General relation between noise models and branching processes. Applications.

- Understanding the dynamical aspects of the ratchet model at zero temperature (linear stability study). Currently under way.
- Classical and quantum (semiclassical) mean current prediction.
- Experimental ralization of dissipative ratchets with Bose-Einstein condensates.
- Molecular transport applications, finite temperature models.
- General relation between noise models and branching processes. Applications.
- Effects of these models on quantum algorithms and maps.

- Understanding the dynamical aspects of the ratchet model at zero temperature (linear stability study). Currently under way.
- Classical and quantum (semiclassical) mean current prediction.
- Experimental ralization of dissipative ratchets with Bose-Einstein condensates.
- Molecular transport applications, finite temperature models.
- General relation between noise models and branching processes. Applications.
- Effects of these models on quantum algorithms and maps.
- Bibliography:(quant-ph/0503081) accepted in Phys. Rev. Lett; Phys. Rev. Lett (164101, vol. 94,(2005)); Phys. Rev. A (052317, vol. 69, (2004)); Phys. Rev. Lett. (257903, vol. 91, (2003)).