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Plan

• Open quantum systems: master equation

• Solving the master equation with quantum trajectories

• Noise models

• Noise in algorithms: teleportation and baker’s map

• Noise in transport: quantum ratchets

• Possible experimental realization of a quantum ratchet

• Ehrenfest explosions: a transition time scale measured
with quantum trajectories.

• Future plans
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Open quantum systems

• Real systems interact with the environment, this leads to what is known as
quantum noise. Open quantum systems cannot be described by means of a pure
state, it is necessary to use the density operator. In general, a Markovian type of
evolution is assumed (without memory effects):

•

ρ̇ = − i~ [Hs, ρ]− 1

2

X

µ

{L†µLµ, ρ}+
X

µ

LµρL
†
µ

•
Hs is the system’s Hamiltonian, { , } denotes the anticommutator and Lµ are the
Lindblad operators, with µ ∈ [1, . . . ,M ] (the number M depending on the
particular model of interaction with the environment)
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Open quantum systems

• A pure state ρ(t0) = |φ(t0)〉〈φ(t0)|, evolves to:

ρ(t0 + dt) = (1−
X

µ

dpµ) |φ0〉〈φ0| +
X

µ

dpµ|φµ〉〈φµ|,

with the probabilities dpµ given by: dpµ=〈φ(t0)|L†µLµ|φ(t0)〉dt, and the new
states by:

|φ0〉 =
(1− iHeffdt/~)|φ(t0)〉q

1−Pµ dpµ
and |φµ〉 =

Lµ|φ(t0)〉
||Lµ|φ(t0)〉|| .

• With probability dpµ the system ”jumps” to the state |φµ〉. With probability

1−Pµ dpµ there are no jumps and the system evolves according to

Heff = Hs + iK, where K = −~/2Pµ L
†
µLµ. This suggests to simulate the

equation by means of the quantum jumps scheme (quantum trajectories).
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Solving the master equation

• We take an initial pure state |φ(t0)〉

• At intervals dt we choose a random number ε

• If ε < dp, where dp =
P
µ dpµ, there is a ”jump” to a state |φµ〉

• If ε > dp, the state evolves according to Heff

• We renormalize

• We repeat this nsteps = ∆t/dt times

• Average over different runs to recover, up to statistical errors, the probabilities
obtained using the density operator. Given an operator A, we can write the mean
value 〈A〉t = Tr[Aρ(t)] as the average over N trajectories:
〈A〉t = Tr[Aρ(t)] = limN→∞ 1

N
PN
i=1〈φi(t)|A|φi(t)〉

There is also an advantage in computation time: in general N ≈ 100− 500

trajectories are needed in order to obtain statistical convergence, there is an
advantage in computer time if the Hilbert space dimension N satisfies N > N
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Noise models

Amplitude damping (dissipation or energy loss)

|0〉s|0〉e → |0〉s|0〉e,
|1〉s|0〉e →

p
1− p |1〉s, |0〉e +

√
p |0〉s|1〉e

• We study in detail two possible generalizations of the amplitude damping to the
case of n qubits.

• Both consider one-qubit processes only.

• In the first case the jump probability for the system is fixed.

• In the other, the jump probability depends on the internal state.

• Each case corresponds to a different branching process.
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Noise models (A. damping 1)

ρ(t0 + dt) =

„
1− Γdt

~

«
|1011〉〈1011|+ Γdt

3~ (|0011〉〈0011|

+|1001〉〈1001|+ |1010〉〈1010|).

Define probability classes of probability Wk (nk = qubits “up” and nk = n0− k = m− k):

Wk =
(Γt/~)k
k!

exp

„
−Γt

~

«

Wm = 1−
m−1X

k=0

Wk

0 0.2 0.4 0.6 0.8 1
γ

0

0.2

0.4

0.6

0.8

1

W
1

2
3

4

0

5

6k
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Noise models (A. damping 2)

ρ(t0 + dt) =

„
1− 3Γdt

~

«
|1011〉〈1011|+ Γdt

~ (|0011〉〈0011|

+|1001〉〈1001|+ |1010〉〈1010|).

Evolution of Wk:

Wk =
n!

nk!

kX

i=0

(−1)(k−i)

i! (k − i)! exp

„
−ni Γt

~

«

Wm = 1−
m−1X

k=0

Wk

0 0.2 0.4 0.6 0.8 1
γ

0

0.2

0.4

0.6

0.8

1

W

0

1

2 3 4

5

6

k
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Noise models (P. flip)

Phase flip (information loss)

|0〉s|0〉e →
p

1− p |0〉s|0〉e +
√
p |0〉s|1〉e,

|1〉s|0〉e →
p

1− p |1〉s|0〉e −
√
p |1〉s|1〉e

Generalize like case 2; |ψ0〉, random complex numbers of modulus 1/
√

2n

F (t) =
1

2n
+
n!

2n

nX

i=1

1

i! (n− i)! exp

„
−2i Γt

~

«

0 0.01 0.02 0.03
γ

10−4

10−3

10−2

10−1

F

0 0.01 0.02 0.03 0.04
γ

0

0.2

0.4

0.6

0.8

1

F
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Noise in algorithms: teleportation

012345678

System

Bob Alice

Environment

Initial state X

in−1,...,i2

cin−1,...,i2 |in−1 . . . i2〉 ⊗
1√
2

(|00〉+ |11〉).

We take cin−1,...,i2 (modulus 1/
√

2n−2, random phases).
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teleportation

ρ
(n)
k = Uk,k+1

sw

2
4

MX

µ1,...,µk=0

M
(n)
µk (dt) · · ·M (n)

µ1 (dt)

ρ
(n)
k−1 (M

(n)
µ1 )†(dt) · · · (M (n)

µk )†(dt)
i
Uk,k+1

sw
†
,

Fidelity of amplitude damping 2 (10 and 20 qubits):

0 0.1 0.2 0.3 0.4 0.5
γ

10−5

10−4

10−3

10−2

10−1

100

F

0 0.25 0.5γ
0.1

0.2

0.4

F
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Noise in algorithms: the baker’s map

The baker’s map acts on 0 ≤ q, p < 1:

qk+1 = 2qk − [2qk],

pk+1 = (pk + [2qk])/2,

Using the discrete Fourier transform

〈qk|Fn|qj〉 ≡
1√
2n

exp

„
2πikj

2n

«
,

the quantum map becomes

|ψk+1〉 = B |ψk〉 = F−1
n

2
4 Fn−1 0

0 Fn−1

3
5 |ψk〉
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the baker’s map

Fidelity with p. flip F = exp (−nγNg) = exp(−2γn3k).

Time scale (A = 0.9) kf = − lnA
2γn3 .

0 5e−05 0.0001 0.0002
γ 

10−1

100

F

2 3 5 10 20
n

100

101

102

103

k f
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Noise in transport: quantum ratchets

• In recent years there have been several works in the field of periodic systems that
present directed transport due to a broken spatio-temporal symmetry.

• This phenomenon, the ”ratchet” effect, is important in technological applications
such as rectifiers, pumps, particle separation devices, molecular motors in biology,
etc.

• There have been several proposals in order to model this effect: systems with
external noise, chaotic systems with dissipation and purely Hamiltonian ones.
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A model for quantum ratchets

• The system to be shown here presents asymmetry in the potential and dissipation.

• The presence of strange attractors is a common feature of chaotic dissipative
systems.

• In quantum systems the fractal structure of the attractor is smoothed in the Planck
scale.

• It is interesting to see how this fact affects quantum ratchets.

• Moreover, 〈p〉−φ = −〈p〉φ due to the fact that Vφ(x, τ) = V−φ(−x, τ).
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A model for quantum ratchets

We study the movement in one dimension [x ∈ (−∞,+∞)] with dissipation an potential

V (x, τ) = k
h
cos(x) +

a

2
cos(2x+ φ)

i +∞X

m=−∞
δ(τ −mT ),

where T is the period. This is equivalent to the map:

8
<
:

n = γn+ k(sin(x) + a sin(2x+ φ)),

x = x+ Tn,

(we use p = Tn).
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A model for quantum ratchets

In the quantum case we have: x→ x̂, n→ n̂ = −i(d/dx), ~eff = T .

˙̂ρ = −i[Ĥs, ρ̂]− 1

2

2X

µ=1

{L̂†µL̂µ, ρ̂}+

2X

µ=1

L̂µρ̂L̂
†
µ.

Lindblad operators:

L̂1 = g
P
n

√
n+ 1 |n〉 〈n+ 1|,

L̂2 = g
P
n

√
n+ 1 | − n〉 〈−n− 1|,

with n = 0, 1, ... Ehrenfest theorem leads to g =
√− ln γ.
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A model for quantum ratchets

Phase space for K = 7, γ = 0.7, φ = π/2, a = 0.7, after 100 kicks. Central region
zoom; Poincaré (left) and Husimi (right).
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A model for quantum ratchets

Average momentum ~eff = 0.99, 0.33, 0.11, 0.037 (left) and
φ = π/2, 2π/5, 0,−2π/5,−π/2 (right).

10−1 100

heff

10−1

100

δ<
p>

0 20 40 60 80 100
t

−0.4
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>
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t
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A model for quantum ratchets

10−3 10−2 10−1 100 101

ε

0

0.2

0.4

0.6

0.8

1

<p
>

CLASSICAL

hbar=0.11

hbar=0.33

hbar=0.99

Memoryless fluctuations in the kicking strength: K → Kε(t) = K + ε(t), ε(t) ∈ [−ε,+ε]
The ratchet effect survives up to a noise strength ε of the order of the kicking strength K
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Experimental realization

There is growing interest in using this phenomenon to transport Bose-Einstein
condensates in optical lattices. For that purposes it is convenient to use

Vφ(x, τ) = k×

+∞X

n=1

[δ(τ − nT ) cos(x) + δ(τ − nT + 2/3T ) sin(x+ φ)] ,

in this case dissipation is given by the projection over a subspace of

the original Hilbert space.
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Experimental realization
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• Average momentum (left panel) 〈p〉 as a function of time n (measured in units of
T ). Solid curve is classical, dashed line is quantum for ~eff ' 0.16 and the dotted
one for ~eff ' 1. Initial conditions are inside the band p ∈ [−1; 1]. Average
momentum (right panel) 〈p〉, for the case φ = 0 (positive values), φ = π/2 (zero
value) and φ = π (negative values).
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Experimental realization

• Phase space pictures for k = 7 and φ = 0, at n = 20 kicks: classical Poincaré
sections (left panel), and quantum Husimi functions at ~eff ' 0.16 (middle panel).
Finally ~eff ' 1 (right panel). The displayed region is given by p ∈ [−20, 20] and
x ∈ [0, 2π) (x is taken modulus 2π). The color is proportional to the density: blue
for zero and red for maximal density.
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Ehrenfest explosions

The instability of classical dynamics leads to exponentially fast spreading of the quantum
wave packet on the logarithmically short Ehrenfest time scale

tE ∼
| ln ~|
λ

λ Lyapunov exponent, ~ effective Planck constant
After the logarithmically short Ehrenfest time a description based on classical trajectories
is meaningless for a closed quantum system
What is the interplay between wave packet explosion (delocalization) induced by chaotic
dynamics and wave packet collapse (localization) caused by dissipation?
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Dissipative chaotic dynamics model

Markovian master equation ˙̂ρ = −i[Ĥ, ρ̂]− 1

2

X

µ

{L̂†µL̂µ, ρ̂}+
X

µ

L̂µρ̂L̂
†
µ

Kicked rotator Hamiltonian Ĥ =
n̂2

2
+ k cos (x̂)

+∞X

m=−∞
δ(τ −mT )

Dissipation described by the Lindblad operators

L̂1 = g
X

n

√
n+ 1 |n〉 〈n+ 1|, L̂2 = g

X

n

√
n+ 1 | − n〉 〈−n− 1|

At the classical limit, the evolution of the system in one period is described by the
Zaslavsky map 8

<
:

nt+1 = (1− γ)nt + k sinxt,

xt+1 = xt + Tnt+1,
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Collapse to explosion transition

K = 7, ~ = 0.012, γ = 0.5 and γ = 0.01
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Classical-like q-trajectories

0 1 2 3 4 5 6
<x>

−12

−8

−4

0

4

8

12

f(
<x

>)

γ=0.5, K=7, hbar=0.012

f ≡ 〈p〉t+1 − (1− γ)〈p〉t, 〈p〉t = 〈x〉t − 〈x〉t−1

From classical dynamics we expect f(x) = K sinx - Quantum fluctuations ∝
√
~
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Wave packet dispersion

σt =
q

(∆x)2
t + (∆p)2

t , cumulative average σt ≡
1

t

tX

j=1

σj
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Localization-delocalization crossover
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σs ≡ σ/
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~ scaled dispersion
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Ehrenfest explosion

Due to the exponential instability of chaotic dynamics the wave packet spreads
exponentially and for times shorter than the Ehrenfest time we have σt ∼

√
~ exp(λt)

The dissipation localizes the wave packet on a time scale of the order of 1/γ

Therefore, for 1/γ � tE ∼ | ln ~|/λ, we obtain σ ∼
√
~ exp(λ/γ)� 1

In contrast, for 1/γ > tE the chaotic wave packet explosion dominates over dissipation
and we have complete delocalization over the angle variable

In this case, the wave packet spreads algebraically due to diffusion for t > tE : for
t� tE we have σt ∼

p
D(K)t, D(K) ≈ K2/2 being the diffusion coefficient; this

regime continues up to the dissipation time 1/γ, so that σ ∼
p
D(K)/γ
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Ehrenfest explosion

The transition from collapse to explosion (Ehrenfest explosion) takes place at

tE ∼
| ln ~|
λ
∼ 1

γ

Therefore, even for infinitesimal dissipation strengths the quantum wave packet is
eventually localized when ~→ 0: we have lim~→0 σ = 0; in contrast, in the Hamiltonian
case (γ = 0) lim~→0 σ =∞

Only for open quantum systems the classical concept of trajectory is meaningful for
arbitrarily long times; on the contrary, for Hamiltonian systems a description based on
wave packet trajectories is possible only up to the Ehrenfest time scale
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Future plans

• Understanding the dynamical aspects of the ratchet model at zero temperature
(linear stability study). Currently under way.

• Classical and quantum (semiclassical) mean current prediction.

• Experimental ralization of dissipative ratchets with Bose-Einstein condensates.

• Molecular transport applications, finite temperature models.

• General relation between noise models and branching processes. Applications.

• Effects of these models on quantum algorithms and maps.

• Bibliography:(quant-ph/0503081) accepted in Phys. Rev. Lett ; Phys. Rev. Lett (164101, vol.

94,(2005));Phys. Rev. A (052317, vol. 69, (2004)); Phys. Rev. Lett. (257903, vol. 91, (2003)).
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