

SMR.1675 - 11

Workshop on Noise and Instabilities in Quantum Mechanics

3 - 7 October 2005

Ultracold atoms in periodic potentials

Francesco MINARDI
LENS
Laboratorio Europeo per la Spettroscopia Non Lineare
Universita' di Firenze
Dipartimento di Fisica
Via Nello Carrara 1
Polo Scientifico di Sesto Fiorentino
50019 Sesto Fiorentino Firenze
ITALY

These are preliminary lecture notes, intended only for distribution to participants

Ultracold atoms in periodic potentials

Francesco Minardi
CNR- INFM
LENS European Laboratory for Nonlinear Spectroscopy

Ultracold atoms in *periodic* optical potentials

Francesco Minardi
CNR- INFM
LENS European Laboratory for Nonlinear Spectroscopy

Introduction

MOTIVATIONS:

- Correlated Bosons and Fermions in optical potentials: potentially powerful model systems to study condensed-matter problems
- Quantum sensors
- Disorder
- Entanglement and decoherence

STRATEGY:

- study the dynamics and transport properties of atoms in several combined potentials
- adjust the interactions

Outline

- Trapping of ultracold atoms: the toolbox
- Transport of Bosons and Fermions in a corrugated harmonic potential: instabilities, conductors vs insulators...
- Fermions (and Bosons) in a corrugated linear potential: Bloch oscillations for interferometry
- Bosons in a random potential
- Control of the interactions: Fano-Feshbach resonances

Basic tools: MAGNETIC + optical potential

Trapping potential

Repulsive potential

Transitions at given RF and B values

Basic tools: magnetic + OPTICAL potential

Dipole Force

$$U \sim (I_{\parallel} / \Delta)$$

- propto intensity,
- inversely propto detuning

BLUE detuning, i. e. laser frequency above resonance — atoms seek LOW intensity

Basic tools: optical lattice = dipole force + standing wave

Typical experimental parameters: $\rm E_{_{R}} \sim 0.2~\mu~K$, $\lambda \sim 800~nm$

Our atomic systems

G. Modugno et al., *Science* **294**, 1320 (2001)

- single species Bose gas
- Bose Bose mixture (Rb + K)
- Fermi Bose mixture (Rb + K)
- non interacting Fermi gas (K)

One last ingredient: interatomic interactions

Low temperature: for many purposes, interatomic interactions described by contact potential, depending on a single parameter, the s-wave scattering length a_s

Bosons: weak interactions $(n a_s) \ll 1$, but non-negligible

Fermions: non-interacting particles, s-wave scattering suppressed by symmetry, (unless in different spin states)

1D dynamics: harmonic + periodic potential

Approximation: neglect the motion in remaining directions, (better fulfilled for high confinements freezing the degrees of freedom)

Single-particle energy spectrum in combined potential

Bosons: "dipolar" oscillations

Dipolar oscillations excited with a sudden displacement of the magnetic potential

$$\Delta x = 10 \div 20 \mu m$$

In presence of periodic potential the oscillation frequency decreases

Bosons: array of Josephson junctions

Frequency of the dipolar oscillation of a Bose condensate in combined potential

The oscillation frequency ω^* is rescaled with an effective mass

$$\omega^* = \sqrt{\frac{m}{m^*}}\omega$$

dependent on the tunneling rate K:

$$m^* = \frac{2h^2}{\lambda^2 K} m$$

F. S. Cataliotti et al., Josephson junctions arrays with BECs, Science, 293, 843 (2001)

Bosons: modulation instability

Nonlinear Schroedinger equation; complex frequencies in the eigenspectrum of the excitations →

Dynamical instability above a *critical velocity*

Non-linearity for EM waves in dielectric media: optical Kerr effect

$$i\frac{\partial E}{\partial z} = -\frac{k''}{2}\frac{\partial^2 E}{\partial \tau^2} + \frac{\omega n_2}{2c} |E|^2 E$$

K. Tai et al., Phys. Rev. Lett. **56**, 135 (1986)

Non-linearity for matter waves: atom-atom interaction

$$ih\frac{\partial \psi}{\partial t} = -\frac{h^2}{2m}\frac{\partial^2 \psi}{\partial z^2} + \frac{g|\psi|^2 \psi}{g|\psi|^2}$$

L. Fallani *et al.*, Phys. Rev. Lett. **93**, 140406 (2004)

Bosons: modulation instability (2)

Measure the loss of atoms as a function of the relative velocity of the lattice w/ respect to the atoms

L.Fallani et al., Phys. Rev. Lett. **93**, 140406 (2004)

Bosons: modulation instability (2)

Bosons: Landau energetic instability

Even small *thermal fraction* → BEC lifetime much shorter

quasimomentum [q/k]

Onset of *Landau energetic instability* (inhomogeneous system), occurring in the presence of dissipative processes, as those provided by the thermal fraction.

L. De Sarlo et al., PRA **72** 013603 (2005)

Fermions: dipolar oscillations

Collective "dipole" oscillations

excitation: sudden displacement of the harmonic magnetic "bowl"

Fermions remain trapped on the side of the harmonic potential

Fermions: conduction and insulation

Fermions: conduction induced by collisions

Collisions lead to a decay of localized states: *scattering* is needed to estabilish a current

RF spectroscopy of localized states

Tighter lattices and larger magnetic field gradients: towards addressing of particles localized in individual lattice sites

H. Ott et al., Phys. Rev. Lett. 93, 120407 (2004).

1 D dynamics: periodic + linear potential

Simplest realization: vertical optical lattice + gravity, alternatively optical lattice + magnetic field gradient

Single-particle spectrum: Wannier-Stark states

Localized Wannier-Stark states in a tilted lattice:

$$\Delta x = 2\delta / F$$
 $\Delta E = \frac{mg\lambda}{2}$

Their interference oscillates at:

$$\omega_{\rm R} = mg\lambda/2\hbar$$

Semiclassical picture: Bloch oscillations

BenDahan et al. Phys. Rev. Lett. **76**, 4508 (1996) (ENS, Paris) Morsch et al. Phys. Rev. Lett. **87**, 140402 (2001) (Pisa)

Dynamics in momentum space

Time-resolved Bloch oscillations of trapped, non-interacting fermions

G. Roati et al., Phys. Rev. Lett. 92, 230402 (2004).

A long lived Bloch oscillator

$$T_B = 2h/mg\lambda$$
 $T_B = 2.32789(22) \text{ms} \implies g = 9.7372(9) \text{m/s}^2$

Fermions trapped in lattices: a *force sensor* with *high spatial resolution* (presently 50 um, but no fundamental limitations down to a few lattice sites)

Decoherence: FERMI vs Bose

Main sources for fermions: lattice fluctuations, longitudinal curvature

Decoherence: Fermi vs BOSE

Main sources for bosons: interactions (Kasevich, 1998) use of Fano-Feshbach resonances (?)

Experimental realization of random potential

$$V(x,y) = \frac{3\pi c^2}{2\omega_0^3} \frac{\Gamma}{\Delta} I(x,y)$$

Stationary in time; Random variations in space (different realizations are possible)

Experimental realization of random potential

speckle pattern

Finite resolution of optical system: interspeckle distance along the BEC axis $> 8 \ \mu m$.

FFT speckle pattern

How the "speckle" random potential looks like

BEC in a "speckle" potential

BEC ground state, harmonic + speckle potential

Density profile after 18 ms of free expansion

No disorder

Speckle intensity

Moderate disorder $(V_s < \mu)$:

- long wavelength density modulations
- breaking phase uniformity

Strong disorder ($V_s > \mu$):

- broad unstructured gaussian
- localization in the speckles sites
- vanishing interference from not equispaced array

 μ chemical potential (1 kHz)

BEC in "speckle" potential

Loss of interference pattern simply due to loss of coherence, i.e. Heating?

First, condensate ...

BEC in "speckle" potential

Loss of interference pattern simply due to loss of coherence, i.e. Heating?

First, condensate; then, broad density distribution ...

BEC in "speckle" potential

Loss of interference pattern simply due to loss of coherence, i.e. Heating?

First, condensate; then, broad density distribution; finally BEC again.

NO HEATING

Dipolar oscillations in "speckle" potential

- Weak-medium disorder (60÷400 Hz): no change in dipole frequency within our experimental resolution (1%)
- Strong disorder (>1 kHz): no appreciable oscillation of the atomic cloud

Anderson localization with atoms?

Anderson localization

interference phenomenon occurring in waves propagating in a static disorder: waves localized in space as consequence of the interference among multiple elastic random scattering.

Some example for classical waves...

Propagation of light waves in very strongly scattering semiconductor powders.

D. S. Wiersma et al. Nature 390, 671 (1997)

...and quantum matter waves

Indirect evidence in electrons' diffusion in condensed matter systems. Due to the presence of defects in the solid, it behaves as an insulator.

T.Ando, H.Fukuyama, vol.28, Springer, Berlin (1988)

Anderson localization with atoms?

Anderson localization should be observable for ultra-cold atoms as matter waves propagating in a random potential with the advantage of *controllable* disorder and interactions.

- A classical particle:
 confined iff
 kinetic energy < potential depth
- A quantum particle / wave:
 partial reflections and transmission
 occur at each scattering
 - secondary waves, emitted at random positions, interfere
 - by destructive interference, localization in space over a length scale depending on the typical distance among scatterers

Phase diagram

ANDERSON LOCALISATION

- Long-range phase coherence
- High number fluctuations
- No gap in the excitation spectrum
- Vanishing superfluid fraction

BOSE-GLASS PHASE (BG)

- No phase coherence
- Low number fluctuations
- No gap in the excitation spectrum
- Vanishing superfluid fraction

Interactions

SUPERFLUID PHASE

- Long-range phase coherence
- High number fluctuations
- No gap in the excitation spectrum

MOTT INSULATOR PHASE (MI)

- No phase coherence
- Zero number fluctuations
- Gap in the excitation spectrum
- Vanishing superfluid fraction

Expansion of a BEC in a "speckle" potential

Search for Anderson localization in a low-density, i. e. low interactions, regime: free expansion

Condensate released and expanding in a randomly corrugated waveguide

Expansion of a BEC in a "speckle" potential

Anderson localization?

The density maxima are correlated with the intensity maxima of the speckle pattern (potential minima)

Anderson localization?

The density maxima are correlated with the intensity maxima of the speckle pattern (potential minima)

Repeat the experiment with a single optical "defect", i. e. a single potential well

Trapping in optical "defects"

Same behavior observed: a small component expands freely, while a large fraction is trapped in the defect.

Picture confirmed by dipole oscillations of the trapped condensate in presence of the "defect"

harmonic trap + defect

Trapping in optical "defects"

Picture confirmed by dipole oscillations of the trapped condensate in presence of the "defect"

NO QUANTUM REFLECTION NO ANDERSON LOCALIZATION

harmonic trap + defect

C. Fort et al., cond-mat/0507144, PRL (accepted).

Adjustable interactions in periodic potential

Optical lattice + homogenous magnetic field (to adjust the interactions)

Realization of attractive Bose-Hubbard model

$$\hat{H} = -t \sum_{i} \left(\hat{b}_{i}^{\dagger} \hat{b}_{i+1} + \hat{b}_{i+1}^{\dagger} \hat{b}_{i} \right) + \frac{U}{2} \sum_{i} \hat{n}_{i} (\hat{n}_{i} + 1)$$

- Tight binding approximation: in each site only lowest bound state occupied (already good approximation for s > 5)
- · Only nearest-neighbour coupling
- · t and U adjustable parameters

Adjust U: Fano-Feshbach resonances

Figure from: J.Williams et al, New Journal of Phys. 6, 123 (2004)

Energy of the unbound atoms = energy of bound state linked to different asymptotic states

Coincidence can be forced by applying external magnetic field

The scattering length undergoes a resonant dispersive behaviour

Molecular BECs have been formed

Fano-Feshbach resonances in K

Figure from: J. Bohn et al., Phys. Rev. A 58, 3660 (1999)

C. A. Regal and D. Jin., PRL 90 230404 (2003)

Calculations of FF resonances ab initio extremely difficult and hardly accurate — need to pinpoint parameters with experimental data

- FF between ⁴⁰K atoms already observed (JILA)
- FF between 40K and 87Rb atoms also observed (JILA, LENS)
- Predictions of FF ⁴¹K-⁴¹K and ³⁹K-³⁹K atoms in the range 50 to 100 Gauss

Status of experiment

- ✓ 2 dimensional MOT of Rubidium
- ✓ 2 dimensional MOT of Potassium
- ✔ Dual MOT
- X Magnetic trapping and evaporation
- X Potassium (and Rubidium) BEC
- X Fano-Feshbach resonances

2-Dimensional Magneto-Optical Trap (2D-MOT)

2D-MOT with bosonic Potassium, high efficiency:

atomic flux > 1e10 atoms/s mean velocity = 30-35 m/s

Transport behavior of Boson and Fermion atoms in combined potentials

• Bosons tunnel but the motion is hindered by atomic interactions above a critical quasi-momentum

Transport behavior of Boson and Fermion atoms in combined potentials

- Bosons tunnel but the motion is hindered by atomic interactions above a critical quasi-momentum
- Fermions localize in *Wannier-Stark*-like states

s=7

Transport behavior of Boson and Fermion atoms in combined potentials

- Bosons tunnel but the motion is hindered by atomic interactions above a critical quasi-momentum
- Fermions localize in *Wannier-Stark*-like states
- Non-interacting Fermions undergo long-lived Bloch oscillations

Transport behavior of Boson and Fermion atoms in combined potentials

- Bosons tunnel but the motion is hindered by atomic interactions above a critical quasi-momentum
- Fermions localize in *Wannier-Stark*-like states
- Non-interacting Fermions undergo long-lived Bloch oscillations
- Anderson localization requires steeper potential scatterers

Transport behavior of Boson and Fermion atoms in combined potentials

- Bosons tunnel but the motion is hindered by atomic interactions above a critical quasi-momentum
- Fermions localize in *Wannier-Stark*-like states
- Non-interacting Fermions undergo long-lived Bloch oscillations
- Anderson localization requires steeper potential scatterers
- Potassium offers the prospect of tuning interactions

Conclusions and OUTLOOK

Bosons and fermions in optical lattices are candidate systems for Quantum Simulators, Quantum Sensors and Quantum Information Processing

As for Quantum Sensors:

- principle demonstration of interferometry w/ trapped fermions, acceleration sensing with micrometric spatial resolution
- proposal for Heinsenberg-limited interferometrywith maximally entangled states (Schroedinger cats) or with number-squeezed states

FUTURE DIRECTIONS:

- Lattices in D > 1 NEW: Mott insulator observed in 3D lattice
- Creation of heteronuclear molecules (long-range interactions)
- Control of atomic interactions via Fano-Feshbach resonances, attractive condensates

Quantum Degenerate Gases team in Florence

Permanent members: C. Fort, FM, G. Modugno Massimo Inguscio Post-docs:

L. Fallani, F. Ferlaino, J. Lye, P. Maioli, M. Modugno, G.Roati

PhDs:

J. Catani, L. De Sarlo, E. De Mirandes, V. Guerrera, M. Zaccanti