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• Quantum Maps

• Open Quantum Maps

• Models of Noise

a) Diagonal noise in a phase space basis
b) Diagonal noise in a qubit basis

• Spectral Properties

• The quantum-classical correspondence
(a spectral perspective)

• Asymptotic decays

Phys.Rev.Lett.91,064101(2003); Phys.Rev.A70,062301(2004);
Phys.Rev.E69,056211(2004); quant-ph/0504211(2005)

with L. Aolita, I. Garcia-Mata, G. Carlo
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Models of Unitary Dynamics - Quantum Maps

•Area preserving maps model hamiltonian dynamics without the
need to integrate differential equations.

•Quantization leads to finite unitary matrices of dimension
N = (2π�)−1

•Maps are the simplest classical systems where chaos can occur.

•Many maps are available :

hyperbolic: baker, cats, sawtooth,....
elliptic: cats, FFT,
parabolic: shears, translations
mixed: kicked systems

•Many of these maps have efficient qubit circuit decompositions
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•The quantum Fourier Transform
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Unitary Spectrum

•Floquet spectrum of the quantum map

Û |φk 〉 = eiξk |φk 〉

•Propagation of the density matrix is ρ′ = ÛρÛ† = U(ρ). The
spectrum of U is unitary and given by

U(|φk 〉〈φj |) = ei(ξk−ξj) |φk 〉〈φj |
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Open Quantum Maps

In the Markovian Approximation open quantum systems are
described by the Lindblad equation

i�
dρ̂

dt
= [Ĥ, ρ̂] + i

∑
j

(L̂j ρ̂ L̂†
j −

1
2
L̂†

jL̂j ρ̂ − 1
2
ρ̂ L̂†

jL̂j)

whose solution for a finite time step has the Kraus form
L(ρ) =

∑
i M̂iρM̂†

i with
∑

i M̂†
i M̂i = 11

We consider the evolution split into a unitary step followed by a
noisy step L = $ ◦ U

U

E

S $
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Models of Noise

We choose an orthonormal basis Λα (the noise basis) for the space
HN2 . In this basis the most general action on density matrices is

$(ρ) =
∑
α,β

cα,βΛαρΛ†
β

cα,β ≥ 0 for complete positivity∑
α,β

cα,βΛ†
αΛβ = 11 for trace preservation

If cα,β is diagonalized with non-negative eigenvalues this form
reduces to the Kraus representation. Different models are obtained
by choosing a basis Λα and a matrix of coefficients cα,β .
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Quantum Mechanics on the Torus

•Classical phase space with periodic boundary conditions (2-torus)
•Hilbert space of finite dimension N (2π� = 1

N )
•Discrete values for position and momentum

| qi 〉 = | i/N 〉 | pj 〉 = | j/N 〉
〈 pj | qi 〉 =

1√
N

e−i 2π
N ij (DFT )

•Unitary translation operators T̂(q,p) (q, p = 0, N − 1)

T̂(q,p) is a set of N2 orthogonal operators that can be used to
expand an arbitrary operator as

Â =
∑
q,p

a(q, p)T̂(q,p) a(q, p) = tr[ÂT̂ †
(q,p)]

(the chord representation).
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Diagonal noise in the unitary translation basis

$ =
∑
q,p

c(q, p) T̂(q,p) ⊗ T̂ †
(q,p)

with
∑

c(q, p) = 1 to preserve the trace.

The spectrum of $ is easily obtained as

$
(
T̂(µ,ν)

)
=

∑
q,p

c(q, p)T̂(q,p)T̂(µ,ν)T̂
†
(q,p)

=
∑
q,p

c(q, p) exp
[
i
2π

N
(νq − µp)

]
T̂(µ,ν)

= c̃(µ, ν) T̂(µ,ν)

Different models can be specified either by c(q, p) or by c̃(µ, ν).
They all share the property that T̂(q,p) are eigenoperators of $.
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Depolarizing Noise

$dep = (1 − α)T̂(0,0) ⊗ T̂ †
(0,0) +

α

N2

∑
q,p

T̂(q,p) ⊗ T̂ †
(q,p)

The eigenvalues are c̃(0, 0) = 1 and c̃ε(µ, ν) = 1 − α otherwise.

Hyperbolic Elliptic Mixed
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Depolarizing Noise
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Phase Damping Noise

$phd = (1 − α)T̂(0,0) ⊗ T̂ †
(0,0) +

α

N

∑
p

T̂(0,p) ⊗ T̂ †
(0,p)

The eigenvalues are c̃(0, p) = 1 for p = 0, ...N − 1 and
c̃ε(µ, ν) = 1 − α otherwise.

This noise leaves invariant the diagonal elements of the density
matrix in the momentum basis and reduces by a factor 1− α the off
diagonal ones. Thus it leads to a classical distribution with the
momentum as a pointer basis.
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Hyperbolic Elliptic Mixed
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Phase Damping Noise
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Phase damping on a selected pointer basis

Using the symplectic invariance we can change at will the pointer
basis and produce the decoherence in a basis related to any line in
phase space.
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Dissipative noise

Dissipative processes can be modelled by non-unital channels.
They are characterized by Kraus operators that are not normal.
The operator

Γ̂ = $(I/N) − I/N =
∑

µ

[M̂µ, M̂†
µ]

is related in the classical limit to the local rate of phase space
contraction.

Processes of this type, in conjunction with unitary maps lead to a
complex invariant state of a fractal nature.
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Diffusive noise - random gaussian

Dε =
∑
q,p

cε(q, p) T̂(q,p) ⊗ T̂ †
(q,p)

c̃ε(µ, ν) = e−
1
2 ( εN

π )2(sin2[πµ/N ]+sin2[πν/N ])

Hyperbolic Elliptic Mixed
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Action of diffusive noise

The action of the noise Dε is best seen in the chord representation.

ρ̂ =
∑
µ,ν

ρ(µ, ν)T̂µ,ν

Dερ̂ =
∑
µ,ν

c̃ε(µ, ν)ρ(µ, ν)T̂µ,ν

Long chords, corresponding to high frequency modes, are
suppressed by c̃ε(µ, ν).
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Spectrum of the Noisy Propagator

Lε(ρ) = Dε ◦ U(ρ)

•Lε(ρ∞) = ρ∞ ρ∞ = 1/N

•Spectrum is symmetric w.r. to the real axis
•Lε is not a normal linear operator, and has distinct left and right
eigenvectors.
•The N2 × N2 matrix is best diagonalized in the chord
representation

(Lε)µ,ν;µ′,ν′ = c̃ε(µ, ν) tr
[
T̂ †

(µ,ν)UT̂(µ′,ν′)

]
The unitary matrix U is effectively truncated by c̃ε(µ, ν) and the
resulting contracting submatrix yields the leading spectrum.
•To extract classical features of the map U we need to explore the
limits of this procedure when N → ∞ and ε → 0. These limits
should be taken toghether and they do not commute.
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Relationship with the classical propagator

Theorem:
(S.Nonnenmacher, Nonlinearity 16,1685 (2003).)
For smooth maps on the torus the spectrum away from zero of Lε

converges to the classical Perron-Frobenius Lε as N → ∞.

Consequences:
•From a practical point of view the classical spectrum can be
obtained from quantum mechanics with finite matrices.
•These are operator statements that are independent of the
particular representation (Weyl, Chord, Husimi, Kirkwood...)
•The behaviour and the distribution of eigenvalues of the quantum
operator is determined by classical properties of the map.
•For chaotic maps the classical spectrum consists of isolated
resonances with a finite spectral gap.
•For regular maps the spectrum accumulates on lines that touch
the unit circle.
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Asymptotic decays

The resonances are emergent classical properties of the quantum
map. They become manifest in the decay of correlations, the
Loschmidt echo and the growth of entropy and they result in rates
that are independent of ε and N

Sn = − ln tr(ρn − ρ∞)2 (Entropy)

Mn = tr[(ρn − ρ∞)(ρ′n − ρ∞)] (Echo)
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Both quantities show two distinct regimes independent of the
noise.
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Diagonal noise in a qubit tensor product basis

A very similar structure occurs in the tensor product basis
appropriate for a system of n qubits. One can define “translations”
as

T̂ (a,b) = XaZbei π
2 a·b ≡

≡ Xa0Zb0ei π
2 a0·b0 ⊗ . . . ⊗ Xan−1Zbn−1ei π

2 an−1·bn−1

with X, Z the usual Pauli matrices for each particle. The set of
these 2n × 2n unitary and hermitian operators is orthonormal and
complete. Its elements are labelled by a pair of binary strings

(a,b) = (a0, a1, . . . , an−1, b0, b1, . . . , bn−1)

•Composition: T̂ (a,b)T̂ (q,p) = phaseT̂ (a ⊕ q,b ⊕ p)

•Conjugation T̂ (a,b)T̂ (q,p)T̂ (a,b) = T̂ (q,p)eiπa·peiπq·b
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Diagonal noise in this basis is characterized by the superoperator

$ =
∑
a,b

c(a,b)T̂ (a,b) ⊗ T̂ (a,b)

The physical meaning is that all possible qubit noise (or errors)
occur with probability c(a,b). The spectral properties are again
very simple and explicit

$(T̂ (a,b)) = c̃(a,b)T̂ (a,b)

where now the eigenvalues c̃(a,b) are obtained as a Hadamard
transform of c(a,b).
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The depolarizing channel corresponds to c(a,b) = (1/2)2n and has
the same effect.

Phase damping channels are characterized by a set S of 2n

commuting translations.

$ = (1 − α)T̂(0,0) ⊗ T̂(0,0) + α
∑

a,b∈S

T̂ (a,b) ⊗ T̂ (a,b)

The set S defines a stabilizer basis. States in this basis are not
affected by this noise while coherences are damped. This basis is
the pointer basis for this channel.
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Conclusions

•We have studied some noise superoperators quite independently
from the specific physical processes that produce them with the
aim of extracting some general properties and how they modify
the unitary dynamics.

•Unital processes model diffusive behaviour, whose invariant state
is the uniform density matrix. Non-unital processes model
dissipative behaviour, possibly leading to complex invariant states
when acting on unitary maps.

•Spectral analysis of the superoperators is numerically accessible
in many cases and yields important information on the asymptotic
time evolution.

•It is possible to explore the classical limit of open quantum maps
by spectral techniques. For diffusive noise the spectrum reflects the
chaotic or regular features of the classical map and yields a
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different perspective on the classical-quantum correspondence.

•In chaotic systems, the Lyapounov regime lasts up to the
Ehrenfest time. A different regime, characteristic of the decay
towards the uniform density, sets in at later times and is
dominated by the spectrum of Ruelle-Pollicott resonances.

•The same techniques can be used to study the response to other
kinds of noise or for quantum maps representing algorithms of
interest to quantum information.

•Other phase space geometries (sphere, cylinder) can be explored.

(nlin.CD/0312062; nlin-CD0406001; quant-ph/0406236)

Thank you!
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