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Outline

1. Motivation: Trapped ions for quantum simulation of many-body physics.

2. The physics of trapped ions: internal states (effective spins) and vibratinal 
modes (phonons).

3. Simulation of quantum interacting spins:

4. Interacting phonon models: 'Phonon Hubbard model', phonon superfluidity 

5. Conclusions

• Effective spin-spin interactions
• How to reach ground states
• Spin quantum phases in linear ion traps

• Analogy between phonons and bosons in an optical lattice
• How to reach ground states, how to prepare/measure phonon 

states
• Mott Insulator-Superfluid quantum phase transition of phonons



Introduction: 
Interacting quantum systems and 

trapped ions



Analog simulation of quantum phases

Quantum many-body physics has traditionally been aimed to the understanding of properties of materials:

Example: High-Tc superconductivity

Hubbard Hamiltonian

†
, , , ,

.
k k s k s j j
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H c c U n nε ↑ ↓= +∑ ∑

Quantum optical experimental systems offer us the posssibility to control matter at the microscopic scale 
and tune interactions. The process is, thus, inverted and a variety of many-body models can be realized in 
a controllable way in „quantum simulators“.

Some experimental and theoretical effort is aimed to the implementation of this idea with atoms in optical 
lattices.

Bose-Hubbard Mode        Fermionic-
Hubbard Model   Quantum spin 
interacting systems 

• Allows us to study models that cannot be simulated numerically

• Experimental study of quantum correlation/entanglement in many-
body systems



Trapped ions and quantum information

In the last years quantum information science has motivated accurate experimental techniques for the 
manipulation and measurement of trapped ions:

•Single qubit gates

•Several proposals and implementations of two-qubit gates (effective qubit-qubit interactions)

•Efficient preparation and measurement of internal quantum states at single ion level

•Trapping technology

Traditional Paul Trap: ions 
arrange themselves
in a Coulomb Crystal

Segmented Microtraps: equilibrium
positions are fixed by microscopic 
electrodes. Ions can be moved !!

Walther‘s group
(MPQ, Garching)

Blatt‘s group
(Innsbruck)

Wineland‘s group
(NIST, Boulder)



Trapped ions and many-body physics (motivation)

The basic idea behind proposal for quantum computation with trapped ions (Cirac & Zoller, 95) is                     
that internal states (qubits) are coupled by the motion (phonons)

Example: A laser couples internal states to the motion...

†
1 ( )z

IH F a aσ= +
†

2 ( )zF a aσ +
1 2
z ziJ tU e σ σ−→ =1 2

... which results in an effective qubit-qubit interaction.

By using similar experimental techniques, one can use trapped ions to simulate 
interacting quantum models. A few advantages are that:

•Internal states can be prepared and measured at single particle level (separation 
between ions >> wavelength of light, advantage with respecto to optical lattices).

•Our proposal is much less stringent than, for example, quantum computation, (no need 
for quantum gates, lower fidelity is required).



The physics of trapped ions



The physics of trapped ions: (1) Internal states

Internal transitions are two-level systems (qubits), and can be manipulated with lasers
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• single qubit quantum gates (preparation) 

• "Allways on"                   effective magnetic fields

IiH te− →
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Efficient measurement of averages and quantum correlations at single ion level (rutine for experimentalists)
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Blatt‘s group
(Innsbruck)



The physics of trapped ions: (2) Vibrational modes

Ions are trapped by harmonic potentials created by electromagnetic forces:

Linear traps: weak axial confinement Arrays of ion microtraps: individual trapping potentials
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Coulomb interaction couples the ions - 'Spring constants'

The motion of the ions around the equilibrium positions is described by a quadratic potential 
(coupled harmonic oscillators):

†
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n x y z
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α =

= Ω∑diagonalization → collective modes

radial
trapping

axial trapping
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The physics of trapped ions: (2) Vibrational modes

The characteristics of the modes (phonons) in each direction depend on the ratio between spring 
constants (Coulomb interactions) and trapping frequencies:
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3
0

/e m
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β ω=

1β soft limit: collective (axial 
modes in a linear trap)

1β hard limit: close to localized                                 
(radial modes and microtraps)

soft limit: small energy gap 
(acoustic phonons)

hard limit: large energy gap, small 
energy dispersion (optical phonons)
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β ω⊥ ⊥β ω
ω
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Simulation of quantum 
interacting spins with trapped 

ions

D. Porras and J.I. Cirac, Phys. Rev. Lett. (2004).

X. Deng, D. Porras and J.I. Cirac, in preparation.



Effective spin-spin interactions

Effective spin-spin interaction can be transmited by coupling the vibrational modes.

First, we have to couple the internal states to the motion of the ions: place the ions in an off-
resonant standing wave:

2
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ac Stark linearizek xH F xσ−
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⎠
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Level      experience an ac-Stark shift that depends on the 
position through the amplitude of the standing-wave:

↑

↓

e∆
auxiliary level

effective spin

↑

Thus, trapped ions are a system of effective spins coupled to phonons.

state dependent force on the 
ions (pushing gate, Cirac and 
Zoller, 2000)
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Effective spin-spin interactions

Under certain conditions, a system of spins coupled to phonons is equivalent to a system of interacing 
spins (formally: unitary transformation):
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We get an effective spin-spin Ising interaction which depends on the characteristics of the 
vibrational modes:
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1β soft limit: long range interaction

(range of the order of the chain length)

1β hard limit: short range interaction

(dipolar decay law)
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Effective spin-spin interactions

We can induce interactions between different components by coupling different spatial 
directions to different spin components. 

( ), , ,
,

1
2

z x y z z z x x x y y y
z j j x j j y j j i j i j i j i j i j i j

j j j i j

F z F x F y J J Jσ σ σ σ σ σ σ σ σ+ + = + +∑ ∑ ∑ ∑

In the most general case: Effective XYZ spin-spin interactions

Internal states are prepared and measured in a different basis than the one of interacting spins. Thus, 
averages/correlations will deviate from the ideal quantum spin model:
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Errors in the quantum simulation

In the limit               errors can be neglected 1η

( )2

,j nη =Error = Adimensional parameter that 
quantifies the displacement of the 
modes in the basis of effective spins

Also in 2D !!: Penning traps, 2D arrays of ion 
microtraps.

pushing
laser



How to reach effective spin ground states

Ground states can be prepared by adiabatic evolution (example quantum Ising model):

1. Choose the parameters of the effective 
Hamiltonian in a way that you can prepare the 
ground state easily.

2. Change the parameters slowly (be careful with 
quantum phase transitions)

3. Measure the new ground state

. ( 0)x x
j

j
H B Jσ= =∑

Non-adiabatic evolution !!: quantum non-equilibrium dynamics, Kibble-Zurek 
mechanism (creation of defects ('kinks') in the antiferromagnetic ground 
state).

,
,

1 . ( )
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x x z z x
j i j i j

j i j
H B J J Bσ σ σ= + >>∑ ∑

antiferromagnetic 
ground state

Condition for adiabaticity:

/ (gap)d J J
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∆
x( / at q.p.t., B )J N J∆ ≈ ≈

paramagnetic 
ground state



Spin quantum phases in a linear ion trap: Ising model

0 0 3
,

1
2 | |

z z x x
i j i

i j ii j

JH B
z z

σ σ σ≈ +
−∑ ∑

Let us see how our proposal can be implemented in a concrete experimental set up: a chain of ions in a Paul trap. 

Radial (transverse modes)  transmit an effective spin-spin interaction (antiferromagnetic, dipolar decay)

(Antiferromagnetic Quantum 
Ising model)

The            -Ising model is not exactly solvable. 

Numerical results with the Density Matrix Renormalization Group (powerful numerical method for solving one 
dimensional quantum problems).

31 / r



Spin quantum phases in a linear ion trap: Ising model
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critical 
point 31 / r

critical 
point at 
the center

xB

• Second order phase transition

• Ising-1/r3 model - same universality class as nearest - neighbor model

• In a linear Paul trap, the distance between ions is not constant: coexistence of different 
paramagnetic phases

Interaction stronger at 
the center
CALCULATIONS WITH 
N=100 IONS

Shit of the critical point 
depending on the position

Coexistance of quantum 
phases along the ion chain



Our proposal also allows us to test experimentally a corner stone of quantum many-body theory:

1

10-1

10-2

10-3

10-4

x x
cB B=

xB J>
Exponential decay

Criticality
(power-law decay)

Exploring quantum criticallity

• B ≠ B critical → quantum correlations decay exponentially
• B = B critical → quantum correlations follow power laws (no gap, no scale)



Bose-Hubbard model and phonon 
superfluidity in trapped ions

D. Porras and J.I. Cirac, Phys. Rev. Lett. (2004).



Trapped ions are isolated, thus phonons cannot be created/destroyed.
Let us assume that we are in the hard limit:

Coulomb interaction is small compared with the trapping frequencies
The phonon n-Fock state at each ion corresponds to having n bosons in a site of the lattice:

n=0 n=2 n=0 n=1

∼
n=0 n=2 n=0 n=1

If the trapping frequency ω is much larger than any other energy scale, then the number of phonons is a 
conserved quantity: creation/destruction of phonons is „penalized“ by ω

n=0 n=1 n=1 n=1 n=1 n=3 n=1 n=1

Tunneling is allowed: Energy difference  = 0 Creation/Destruction of phonons is 
forbidden: Energy difference  = ω

Under these conditions, phonons behave in much the same way as bosons in an optical lattice
(phonon number is conserved !!!)

Phonons in trapped ions resemble bosons in a lattice



† 2( )i iU a a

Coulomb interactions communicate different ions, thus allowing phonons to tunnel from one ion to the 
other. If the trapping frequency is much larger than the Coulomb couplings, then phonons satisfy a tight-
binding bosonic model:

Any nonlinearity is a phonon-phonon interaction:
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Fast-rotating terms
(neglibible if ω>>t)

Resonant terms
(tunneling)

Controlling phonon-phonon interactions

| 0〉

| 2〉
|1〉

For example, we can add nonlinear terms to the potential They can be obtained by 
placing the ions in a standing-wave:



How to prepare phonon ground states

1. Choose the parameters of the effective 
Hamiltonian in a way that you can 
prepare the ground state easily. (Mott 
insulator)

2. Change the parameters slowly (be 
careful with quantum phase transitions)

3. Measure the new ground state (again 
with the help of an internal state)

4. allows to measure: phonon-number 
averages and fluctuations

(Meekhof and Wineland, 96)

† † † 2
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ω e

g

laser is red-detuned, such that the only 
resonant process involves the 
excitaton of a phonon

t U

† †
0 1 ... 0Na aΨ =

We prepare a Mott 
insulator Phase
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g

laser is blue detuned, such that it 
excites the internal state depending on 
the number of phonons

Superfluid

cooled ion  (0 
phonons)

Fock state  (1 
phonon)



Superfluid-Mott insulator motional phase transition in Paul traps

In chains of trapped ions in Paul traps, the radial modes (transverse to the axis of the trap) fulfill the 
condition that the trapping frequency is much larger than the Coulomb repulsion:

(tunneling due to Coulomb inter.)radial tω

The Hamiltonian describing radial phonons under the action of a standing wave in a Coulomb chain in a 
Paul trap, is thus a Boson Hubbard Hamiltonian:

† † † † 2
,

,

( ) ( )j j i j i j i j j j
j i j j

H a a t a a a a U a aω≈ + + +∑ ∑ ∑

Our numerical calculations show the 
possibility of observing the Mott 
insulator-superfluid quantum phase 
transition.

Trapped ions offer the 
interesting advantage that single 
site measurements are possible !!

Coulomb chain with N = 6 sites

Mott phase

Superfluid (phonon condensate)

ph
on

on
de

ns
ity

D. Porras and J.I. Cirac, Phys. Rev. Lett. (2004)



Conclusions

•Trapped ions are ideally suited to build quantum simulators and explore a variety of 
quantum phase transitions. They have the advantage that quantum states can be prepared 
and measured at the single particle level.

•By using vibrational modes one can induce effective spin-spin interactions in such a way 
that a variety of quantum spin models are implemented (quantum Ising, XY and Heisenberg 
models).

•In ion traps quantum correlation can be studied with a degree of controllability that still is 
not possible in solid-state or optical lattice set-ups. In this way a number of phenomena 
from quantum many-body physics (quantum correlation at criticality) could be accessed for 
the first time in experiments.

•Quantum models that can be realized with trapped ions show also new remarkable features 
like coexistence of different quantum phases and quantum correlation induced by long-range 
spin-spin correlations.

•On the other hand, radial (transverse) phonons in linear ion traps are similar to bosons in 
optical lattices. Superfluidity and BEC of phonons could be observed for the first time in 
Paul traps.

•By placing the set of ions on the maximum (or minimum) of a standing-wave, on can induced 
effective phonon-phonon interaction and realize a Phonon Hubbard Model.


