

International At-Energy Agency

SMR.1675 - 14

Workshop on Noise and Instabilities in Quantum Mechanics

3 - 7 October 2005

Dynamics of entanglement in the Heisenberg model

Simone MONTANGERO Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa ITALY

These are preliminary lecture notes, intended only for distribution to participants

Dynamics of Entanglement in the Heisenberg Model

Simone Montangero, Gabriele De Chiara, Davide Rossini, Matteo Rizzi, Rosario Fazio

> Scuola Normale Superiore Pisa

Outline

- Ground state entanglement in Spin Chains
 - I.Latorre, E.Rico, G.Vidal, Quant. Inf. and Comp. 4, (2004)
- Dynamics of entanglement in the Ising model
 P. Calabrese, J. Cardy, JSTAT 0504 (2005)
- Numerical method: DMRG, t-DMRG
- Entanglement in critical Heisenberg model
- Entanglement dynamics in the Heisenberg model
 WORK IN PROGRESS

Entropy of Entanglement

Ground State:

 $|\Psi_{GS}\rangle$

$$\rho_L = tr_{N-L}(|\Psi_{GS}\rangle\langle\Psi_{GS}|)$$

$$S(\rho_L) \equiv -tr(\rho_L log\rho_L)$$

Ising Model

$$H = -\sum_{i} \left(\sigma_{i}^{x} \sigma_{i+1}^{x} + \lambda \sigma_{i}^{z} \right)$$

For $\lambda = 1$ the system is critical

Correlations diverge in the system ground state

System can be solved via Jordan-Wigner + Fourier + Bogoliubov transformation

Evolution of Entanglement I

P. Calabrese, J. Cardy, JSTAT 0504 (2005)

Evolution of Entanglement II

P. Calabrese, J. Cardy, JSTAT 0504 (2005)

Physical Interpretation

Half Time Summary

Static: critical scaling

$$S_L \sim \frac{c}{3} \log_2 L$$

Dynamic:

Entropy increase is proportional to quench Entropy saturates at t*

t^{*} depends on L and velocity

Numerical Simulation

- DMRG, White PRA (1992)
- t-DMRG, White, Feigun, PRL (2004)
- Approximate method to study many-body quantum system (ground state properties, time evolution)
- Open boundary conditions
- Finite size scaling

DMRG scheme

$H_{SB} = H_E + H_{E'} + H_{int}$

t-DMRG scheme

Time evolution operator Trotter expansion

$$H = \sum_{even} F_{i,i+1} + \sum_{odd} G_{i,i+1}$$

$$exp(-iHt) = \left(e^{-iFdt/2}e^{-iGdt}e^{-iFdt/2}\right)$$

$$= \prod exp(-iF_{i,i+1}dt/2) \prod exp(-iG_{i,i+1}dt) \prod exp(-iF_{i,i+1}dt/2)$$

F, G even/odd Hamiltonan operator

$$\tilde{\Psi} = O_{\ell \to \ell+1} O_{N-\ell-3 \to N-\ell-2}^{\dagger} \Psi$$

DMRG Parameters

- N sistem size
- m size of truncated basis
- P discarded
- dt Trotter approx (second order).

Entropy and CFT

Entropy of a spin block in a critical infinite chain:

$$S_L \sim \frac{c}{3} \log_2 L$$

Entropy of a block L in a critical chain of size N

$$S_L^B = \frac{c}{6} \log_2 \left[\frac{L}{\pi} \sin\left(\frac{\pi L}{N}\right) \right] + a$$

Random Heisenberg Model

Time Evolution in RHM

N=50 L=20 m=50 dt=10^-3

Conclusions and Outlook

- Static scaling in HM confirmed.
- Central charge can be fitted from numerical simulations.
- Time evolution scheme holds in different models.
- Central charge in random Heisenberg model
- Time evolution in RH under investigation

