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We discuss the dephasing induced by the internal classical chaotic motion in the absence of any external
environment. We relate the dephasing to the decay of the quantum Loschmidt echo which, in the semiclassical
limit, is expressed in terms of an appropriate classical correlation function. Our results are derived analytically
for the example of a nonlinear driven oscillator and then numerically confirmed for the kicked rotor model.

PACS numbers: 05.45.Mt, 03.65.Sq, 05.45.Pq

The study of the quantum manifestations of classical
chaotic motion has greatly improved our understanding of
quantum mechanics in relation to the properties of eigenfunc-
tions and eigenvalues as well as to the time evolution of com-
plex systems [1, 2]. However, the relation between classi-
cal dynamical chaos and quantum dephasing is still an open
important problem. In order to elucidate this problem, we
consider in this paper the quantum Loschmidt echo. This
quantity is a measure of the stability of quantum motion un-
der perturbations and its behavior has been already exten-
sively investigated in different parameter regimes and in re-
lation to the nature of the corresponding classical motion (see
[3, 4, 5, 6, 7, 8, 9, 10, 11, 12] and references therein). The pur-
pose of the present paper is to show that the internal dynamical
classical chaos, even in the absence of any external environ-
ment, may suppress the quantum interference and make the
quantum phases irrelevant.

For a pure coherent quantum state |◦α〉 the Loschmidt echo
or fidelity is defined as

F◦
α
(t) = |f◦

α
(t)|2 = |〈◦α|Û †

0 (t)Ûε(t)|◦α〉|2 =
∣∣∣Tr

[
f̂(t)

◦
ρ
]∣∣∣2 ,

(1)
where

◦
ρ = |◦α〉〈◦α| is the initial density matrix. The unitary

operators Û0(t) and Ûε(t) describe the unperturbed and per-
turbed evolutions of the system, corresponding to the Hamil-
tonians H0 and Hε = H0 + εV , respectively. Therefore, the
echo operator f̂(t) = Û †

0 (t)Ûε(t) represents the composition
of a slightly perturbed Hamiltonian evolution with an unper-
turbed time-reversed Hamiltonian evolution [13].

For a mixed initial state
◦
ρ =

∑
◦
α
p◦

α
|◦α〉〈◦α| (

∑
◦
α
p◦

α
= 1),

fidelity is usually defined as [3]

F (t) =
1

Tr(
◦
ρ

2
)
Tr [ρ0(t)ρε(t)] =

1

Tr(
◦
ρ

2
)
Tr[f̂ †(t)

◦
ρf̂(t)

◦
ρ].

(2)
We stress that the decay of this quantity has nothing to do with
dephasing and is just due to transitions, induced by the echo
operator f̂ , from the initially populated states to all initially
empty states. Indeed F (t) = 1

Tr(
◦
ρ

2

)

∑
◦
α,

◦
α

′ p◦
α
p◦

α
′W◦

α
◦
α

′ , with

transition probabilitiesW◦
α

◦
α

′ = |〈◦α|f̂ |◦α′〉|2.

For the purpose of the present paper we consider instead the
quantity F(t), obtained by directly extending formula (1) to

the case of arbitrary mixed initial states
◦
ρ. We have:

F(t) = |
∑

◦
α

p◦
α
f◦

α
|2

=
∑

◦
α

p2
◦
α
F◦

α
(t) +

∑
◦
α,

◦
α

′

(1 − δ◦
α

◦
α

′)p◦
α
p◦

α
′f◦

α
(t)f∗

◦
α

′(t).
(3)

The first term in the second line of this equation is a sum of fi-
delities F◦

α
= |f◦

α
|2 of the individual pure initial states with

weights p2
◦
α

, while the second term depends on the relative

phases of the fidelity amplitudes. If the initial density matrix
◦
ρ

encompasses an area ∆ � � in the phase space then the num-
ber M of pure states |◦α〉 which form the initial mixed state is

large,M � 1. Then, roughly, p◦
α

= O(1/M) for
◦
α � M and

zero otherwise and therefore the first term is O(1/M), much
smaller than the second, interference term, which isO(1) and,
therefore, determines the decay of F .

Notice that both functions F (t) and F(t) reduce to (1) for

a pure state (
◦
ρ
2

=
◦
ρ). However the function F , contrary to F

in (2), accounts for quantum interference and is expected to
retain quantal features even in the deep semiclassical region.
The fidelity (2) instead has a well defined classical limit which
coincides with the classical fidelity [4, 14, 15] and decays due
to the phase flow out of the phase volume initially occupied
[16]. In particular, if we start from a uniform distribution over
the whole phase space the fidelity (2) never decays. It should
also be noticed that the fidelity F of an initial mixed state is
different from the incoherent sum of fidelities

F (t) =
∑

◦
α

p◦
α
|f◦

α
|2 (4)

which is typically considered in the literature.
In this paper we show that, due to dephasing induced by

the underlying chaotic classical dynamics, the decay of F can
be directly connected to the decay of an appropriate classical
correlation function. We would like to stress that, contrary to
decoherence produced by an external noise, in our case de-
phasing is of purely dynamical nature.



2

Notice that F(t) is just the quantity which is measured in
the Ramsey type experiments performed on cold atoms in op-
tical lattices [17] and in atom optics billiard [18] and proposed
for superconducting nanocircuits [19]. Indeed, in these inter-
ference experiments one directly accesses the fidelity ampli-
tudes (see [20]), so that F(t) is reconstructed after averag-
ing these amplitudes over several experimental runs (or many
atoms). Each run may differ from the previous one in the ex-
ternal noise realization and/or in the initial conditions drawn,
for instance, from a thermal distribution [18].

In order to illustrate the mechanism of dephasing, we con-
sider a nonlinear oscillator driven by a periodic multimode
external force g(t). The system’s Hamiltonian reads

H0 = �ω0n+ �
2n2 −

√
�(a+ a†)g(t), (5)

where n = a†a, [a, a†] = 1. In our units, the time and pa-
rameters �, ω0 as well as the strength of the driving force are
dimensionless. The period of the driving force is set to one.

We use below the basis of coherent states |α〉 which mini-
mize in the semiclassical domain the action-angle uncertainty
relation. These states are fixed by the eigenvalue problem
a|α〉 = α√

�
|α〉 where α is a complex number which does

not depend on �. Since the scalar product equals 〈α′|α〉 =

exp
(
− |α′−α|2

2�
+ i

�
Im(α′∗α)

)
, the coherent states become

orthogonal in the classical limit � → 0. The Hamiltonian ma-
trix 〈α′|H0|α〉 is diagonal in this limit and reduces to a clas-

sical Hamiltonian function H(c)
0 = ω0|αc|2 + |αc|4 − (α∗

c +
αc)g(t). The complex variables αc, iα

′
c
∗ are canonically con-

jugated and are related to the classical action-angle variables
Ic, θc via αc =

√
Ice

−iθc , α∗
c =

√
Ice

iθc . The action satisfies
a nonlinear integral equation

Ic(t) =

∣∣∣∣ ◦αc + i

∫ t

0

dτg(τ)eiϕc(τ)

∣∣∣∣
2

≡ |ac(t)|2, (6)

whereαc(t) = ac(t) e
−iϕc(t) andϕc(t) =

∫ t

0 dτ [ω0+2Ic(τ)].
We have numerically verified that, when the strength of the
driving force exceeds some critical value, the classical mo-
tion becomes chaotic, the phase ϕc(t) becomes random and
its autocorrelation function decays exponentially with time:

∣∣∣
∫
d2

◦
α′

cP◦
αc

(
◦
α′

∗
c ,

◦
α′

c) e
i[ϕc(t)−ϕc(0)]

∣∣∣2 = exp (−t/τc) .
(7)

Here we consider the Gaussian distribution

P◦
αc

(
◦
α′

∗
c ,

◦
α′

c) = (π∆)
−1

exp

(
|
◦
α′

c − ◦
αc|2/∆

)
(8)

of initial conditions near the point
◦
αc in the phase plane. Nu-

merical results also show that, as expected from (6, 7), the

action grows diffusively: < Ic(t) >=
◦
Ic +Dt.

We now analytically evaluate both F◦
α
(t) and F(t) by treat-

ing the unperturbed motion semiclassically. This allows us to
compute these two quantities even for quantally strong pertur-
bations σ = ε/� � 1.

The semiclassical evolution |ψ◦
α
(t)〉 = Û0(t)|◦α〉 of an ini-

tial coherent state when the classical motion is chaotic has
been investigated in [21]. With the help of Fourier transforma-
tion one can linearize the chronological exponent Û0(t) with
respect to the operator n and finally arrives to the following
Feynman’s path-integral representation in the phase space

|ψ◦
α
(t)〉 =

∫ ∏
τ

dλ(τ)√
4πi�

× exp
{

i
4�

∫ t

0
dτλ2(τ) − i

�
Im[βλ(t)]

}
|αλ(t)〉 . (9)

The functions with the subscript λ are obtained by substi-
tuting 2Ic ⇒ λ in the corresponding classical functions:

αλ(t) =
[◦
α+ i

∫ t

0 dτg(τ)e
iϕλ(τ)

]
e−iϕλ(t) and βλ(t) =

−i ∫ t

0
dτg(τ)αλ(τ), where ϕλ(t) =

∫ t

0
dτ [ω0 + λ(τ)]. The

initial coherent state |◦α〉 occupies a cell with the volume ∼ �

in the phase plane (α∗, α). The corresponding normalized

density equals ρ◦
α
(α∗, α) = 1

π�
|〈α|◦α〉|2 = 1

π�
e−

|α−
◦
α|2

� and
reduces to the Dirac’s δ-function in the limit � → 0, thus
fixing a unique classical trajectory starting from the point

◦
α.

We now compute the fidelity F◦
α

for the case in which
the perturbation is a time-independent variation of the linear
frequency: ω0 → ω0 + ε [22]. For convenience, we de-
fine the fidelity operator in a more symmetric way: f̂(t) =

Û †
(+)(t)Û(−)(t), where the evolution operators Û(±)(t) cor-

respond to the Hamiltonians H(±) = H0 ± 1
2εn, respec-

tively. Using Eq. (9) we express f◦
α
(t) as a doubled path in-

tegral over λ1 and λ2. A linear change of variables λ1(τ) =
2µ(τ) − 1

2�ν(τ), λ2(τ) = 2µ(τ) + 1
2�ν(τ) entirely elimi-

nates the Planck’s constant from the integration measure. Af-
ter shifting ν(t) → ν(t) − ε/� we obtain

f◦
α
(t) =

∫ ∏
τ

dµ(τ)dν(τ)
2π exp

{
iσ

∫ t

0
dτµ(τ)

−i ∫ t

0 dτµ(τ)ν(τ) + i
�
J [µ(τ), ν(τ)] − 1

2�
R [µ(τ), ν(τ)]

}

where the fuctionals J ,R equal

J = �
∫ t

0
dτν(τ)|aµ(τ)|2 +O(�3),

R = �
2| ∫ t

0
dτν(τ)aµ(τ)|2 +O(�4),

(10)

and vanish in the limit � = 0. The quantities with
the subscript µ are obtained by setting ν(τ) ≡ 0
(in particular, aµ(t) = αµ(t)eiϕµ(t), with αµ(t) =[◦
α+ i

∫ t

0 dτg(τ)e
iϕµ(τ)

]
e−iϕµ(t) and ϕµ(t) =

∫ t

0 dτ [ω0 +

2µ(t)]). In the lowest (”classical”) approximation when only
the term ∼ � from (10) is kept, the ν-integration results in
the δ function

∏
τ δ

[
µ(τ) − |aµ(τ)|2], so that µ(t) coincides

with the classical action Ic(t) [see eq. (6)]. The only contri-
bution comes from the classical trajectory which starts from
the point

◦
α and the corresponding fidelity amplitude is simply

f◦
α
(t) = exp

[
iσ

∫ t

0 dτIc(τ)
]
.

The first correction, given by the term ∼ �
2 in the func-

tional R, describes the quantum fluctuations. Now a bunch
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of trajectories contributes [21], which satisfy the equation
µ(t; δ) = |δ + aµ(t)|2 − |δ|2 for all δ within a quantum cell
∼ �. This equation can still be written in the form of the
classical equation (6) if we define the classical action along a
given trajectory as Ĩc(t) = |aµ(t) + δ|2 = µ(t; δ) + |δ|2 =

Ic

(
ω0 − 2|δ|2; ◦

α
∗

+ δ∗,
◦
α+ δ; t

)
. For any given δ this equa-

tion describes the classical action of a nonlinear oscillator with
linear frequency ω0 − 2|δ|2, which evolves along a classical

trajectory starting from the point
◦
α+ δ. One then obtains (up

to the irrelevant overall phase factor e−iω0t/2�)

f◦
α
(t) =

2

π�

∫
d2δe−

2

�
|δ|2 exp

{
i
σ

2
[ϕ̃c(t) − ϕ̃c(0)]

}
,

(11)

where the ”classical” phase ϕ̃c(t) = ϕc(ω0 − 2|δ|2; ◦
α
∗

+

δ∗,
◦
α+ δ; t) =

∫ t

0 dτ
[
ω0 − 2|δ|2 + 2Ĩc(τ)

]
. This expression

gives the fidelity amplitude in the “initial value representa-
tion” [10, 23]. We stress that the fidelity F◦

α
= |f◦

α
|2 does

not decay in time if the quantum fluctuations described by the
integral over δ in (11) are neglected [24].

In order to compute the fidelity F , let us now consider a
mixed initial state represented by a Glauber’s diagonal ex-

pansion [25]
◦
ρ =

∫
d2 ◦
αP◦

αc
(
◦
α
∗
,
◦
α)|◦α〉〈◦α| whith the Gaussian

weight function (8) which covers a large number of quantum
cells, ∆ � �. Then F(t;

◦
αc) = |f(t;

◦
αc)|2, where

f(t;
◦
αc) ≡

∫
d2 ◦
αP◦

αc
(
◦
α
∗
,
◦
α)f◦

α
(t)

≈ 2
π�

∫
d2δe−

2

�
|δ|2 ∫

d2 ◦
αP◦

αc+δ
(
◦
α
∗
,
◦
α)ei ε

2�
[ϕc(t)−ϕc(0)],

with ϕc(t) = ϕc(ω0 −2|δ|2; ◦
α
∗
,
◦
α; t). The inner integral over

◦
α is a classical correlation function. In the regime of classi-
cally chaotic motion this correlator will not sensibly depend
on small variations either of the value of the linear frequency
or of the exact location of the initial distribution in the clas-
sical phase space. Therefore we can fully disregard the δ-
dependence of the integrand, thus obtaining

f(t;
◦
αc) ≈

∫
d2 ◦
αP◦

αc
(
◦
α
∗
,
◦
α) exp

{
i
σ

2
[ϕc(t) − ϕc(0)]

}
.

(12)
This is the main result of our paper and directly relates the
quantum fidelity decay to the decay of correlation functions of
classical phases (see Eq. (7)). No quantum feature is present
in the r.h.s. of (12).

The decay pattern of the function F(t) = |f(t;
◦
αc)|2 de-

pends on the value of the parameter σ = ε/�. In particular,
it is easy to show from Eq. (12) that, for σ 
 1, we recover
the well known Fermi Golden Rule (FGR) regime [26]. When
the strength σ, roughly, exceeds one, then the square modulus
of the classical correlation function in the right hand side of
Eq. (12) does not depend on σ [27]. The decay of this corre-
lation function (and, therefore, of fidelity) is tightly related to
the local instability of the chaotic classical motion. However,
the decay rate is not necessarily the Lyapunov exponent (it is

0 5 10 15 20 25 30
t

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

�

FIG. 1: Decay of the fidelity F for the kicked rotator model with
K = 10, perturbation strength ε/� = 1.1, � = 3.1× 10−3 (circles),
7.7×10−4 (empty triangles), and 1.9×10−4 (squares). Full triangles
show the average fidelity F for � = 7.7 × 10−4. Stars give the
decay of the classical angular correlation function. The straight lines
denote exponential decay with rates given by the Lyapunov exponent
λ ≈ ln(K/2) = 1.61 (dashed line) and by the exponent Λ = 1.1
[9] (solid line).

worth noting in this connection that the Lyapunov exponent
diverges in our driven nonlinear oscillator model).

As a second example, we consider the kicked rotator
model [28], described by the Hamiltonian H = p2

2 +
K cos θ

∑
m δ(t −m), with [p, θ] = −i�. The classical limit

corresponds to the effective Planck constant � → 0. We con-
sider this model on the torus, 0 ≤ θ < 2π, −π ≤ p < π.
The fidelity F is computed for a static perturbation εp2/2,
the initial state being a mixture of Gaussian wave packets
uniformly distributed in the region 0.2 ≤ θ/2π ≤ 0.3,
0.3 ≤ p/2π ≤ 0.4. In Fig. 1 we show the decay of F(t)
in the semiclassical regime � 
 1 and for a quantally strong
perturbation ε/� ∼ 1. It is clearly seen that the fidelity F
follows the decay of the classical angular correlation function
|〈exp{iγ[θ(t) − θ(0)]}〉|2 (with the fitting constant γ = 2)
up to the Ehrenfest time scale ∝ ln(1/�). We remark that F
decays with a rate Λ different from the Lyapunov exponent.

We point out that the classical autocorrelation function in
the r.h.s. of Eq. (12) reproduces not only the slope but also
the overall decay of the function F . The classical dynami-
cal variable that appears in this autocorrelation function de-
pends on the form of the perturbation. Therefore the echo
decay, even in a classically chaotic system in the semiclassi-
cal regime and with quantally strong perturbations, is to some
extent perturbation-dependent.

In Fig. 1 we also show the fidelity F , obtained after aver-
aging the fidelities F◦

α
= |f◦

α
|2 of the pure Gaussian states

|◦α〉 building the initial mixture. As discussed above, the inco-
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herent sum of fidelities F is very different in nature from F .
Nevertheless, due to dephasing induced by classical chaos, the
decays of F and of F are intimately connected: both quanti-
ties decay with the same rate Λ but the decay of F is delayed
by a time td. The function F is given by the sum of a mean

value part (F =
∣∣f ∣∣2) and a fluctuating part,

F (t) = F(t) +
∣∣∣f(t) − f(t)

∣∣∣2 , (13)

and the fluctuating term (which vanishes in the FGR regime)
is responsible for the delayed decay of F with respect to F .
Analytical arguments [29] as well as numerical results indi-
cate that the delay time is td ∼ 1

Λ ln(∆
�
), with ∆ area of the

initial distribution and Λ decay rate of the classical correlation
function which governs the decay ofF . Note that the expected
saturation values of F and F are 1/N and 1/(NM), respec-
tively, where N is the number of states in the Hilbert space
and M the number of quantum cells inside the area ∆. This
expectation is a consequence of the randomization of phases
of the fidelity amplitudes and is borne out by the numerical
data shown in Fig. 1.

In this paper we have demonstrated that the decay of the
quantum fidelity F is determined by the decay of classical
correlation functions, which are totally unrelated to quantum
phases. This quantum dephasing is a consequence of internal
dynamical chaos and takes place in absence of any external
environment. We may therefore conclude that the underlying
internal dynamical chaos produces a dephasing effect similar
to the decoherence due to the environment.

We are grateful to Tomaž Prosen and Dima Shepelyansky
for useful discussions. This work was supported in part by
EU (IST-FET-EDIQIP) and NSA-ARDA (ARO contract No.
DAAD19-02-1-0086). V.S. acknowledges financial support
from the RAS Joint scientific program ”Nonlinear dynamics
and solitons”.
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∫

t

0
dτ1

∫
t

0
dτ2KI(τ1, τ2) .

Assuming that the classical autocorrelation function decays
exponentially, KI(τ1, τ2) = 〈(∆Ic)

2〉 exp (−|τ1 − τ2|/τI)
with some characteristic time τI , we obtain χ2(t) =
2〈(∆Ic)

2〉τIt = 2Kt for the times t > τI and arrive, finally, to

the FGR decay law F(t;
◦
αc) = exp(−2σ2Kt) [4, 6, 7]. Here

K =
∫ ∞

0
dτKI(τ, 0) = 〈(∆Ic)

2〉τI . The FGR approxima-
tion is valid as long as the contributions of the higher connected
correlators χκ≥4(t) remain small, that is, for σ � 1.
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