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Abstract

We introduce a new approach to short-term earthquake prediction named “Reverse Tracing of Precursors” (RTP), since it
considers precursors in reverse order of their appearance. First, we detect the “candidates” for the short-term precursors; in
our case, these are newly introduced chains of earthquakes reflecting the rise of an earthquake correlation range. Then we
consider each chain, one by one, checking whether it was preceded by an intermediate-term precursor in its vicinity. Ifyes,
we regard this chain as a precursor; in prediction it would start a short-term alarm. The chain indicates the narrow area of
possibly complex shape, where an intermediate-term precursor should be looked for. This makes possible to detect precursors
undetectable by the direct analysis.

RTP can best be described on an example of its application; we describe retrospective prediction of two prominent Californian
earthquakes—Landers (1992),M = 7.6, and Hector Mine (1999),M = 7.3, and suggest a hypothetical prediction algorithm.
This paper descripes the RTP methodology, which has potentially important applications to many other data and to prediction
of other critical phenomena besides earthquakes. In particular, it might vindicate some short-term precursors, previously
rejected as giving too many false alarms.

Validation of the algorithm per se requires its application in different regions with a substantial number of strong earthquakes.
First (and positive) retrospective results are obtained for 21 more strong earthquakes in California (M ≥ 6.4), Japan (M ≥ 7.0)
and the Eastern Mediterranean (M ≥ 6.5); these results are described elsewhere. The final validation requires, as always,
prediction in advance for which this study sets up a base. We have the first case of a precursory chain reported in advance of
a subsequent strong earthquake (Tokachi-oki, Japan, 25 September 2003,M = 8.1).

Possible mechanisms underlying RTP are outlined.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Generation of strong earthquakes—a
non-localized process

Seismicity is commonly recognized as a part of the
geodynamics (Aki, 2003; Bird, 1998; Keilis-Borok,

0031-9201/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
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1990; King et al., 2002; Press, 1965; Rundquist
and Soloviev, 1999; Scholz, 1990); in seismically
active areas the earthquakes accommodate a con-
siderable fraction of tectonic development of the
lithosphere. That development goes on in multiple
time-, space-, and energy-scales and preparation of
strong earthquakes is not an exception. Accordingly,
while the target of earthquake prediction—a strong
earthquake—is a localized event, the process of its
generation is not localized. Strictly speaking, its time
scales range from geological to seconds in time, and
spatial scales—from global to microscopic (Turcotte,
1997; Keilis-Borok, 1990; Gabrielov et al., 1999);
however, in prediction research a truncated scaling is
usually considered: from tens of years to days, and
from hundreds of kilometers to kilometer.

This multiplicity of scales is reflected in the gen-
eral concept of the seismically active lithosphere as
a hierarchical dissipative non-linear system, persis-
tently self-organizing from time to time into the criti-
cal phenomena—the strong earthquakes (Blanter and
Shnirman, 1997; Bowman et al., 1998;Gabrielov et al.,
1994, 2000; Jaume and Sykes, 1999; Keilis-Borok,
1990; Rundle et al., 2000; Sornette, 2000; Turcotte,
1997; Zaliapin et al., 2002a). Among manifestations
of that selforganization are premonitory seismicity
patterns—the spatio-temporal patterns of seismicity
emerging as a strong earthquake approaches (Aki,
2003; Buffe and Varnes, 1993; Caputo et al., 1983;
Gabrielov and Newman, 1994; Jin et al., 2003;
Keilis-Borok, 1990, 1996, 2000; Keilis-Borok et al.,
1990a,b, 1964, 1999, 2002; Knopoff et al., 1996;
Kossobokov et al., 1995, 2003; Ma et al., 1990; Mogi,
1985; Newman et al., 1995; Novikova et al., 2002;
Press, 1965; Press and Allen, 1995; Romanowicz,
1993; Rotwain and Novikova, 1999; Shebalin et al.,
2000; Turcotte, 1997; Zaliapin et al., 2002a,b, 2003b;
Zöller et al., 2001). A multitude of such patterns have
been reported in rather different scales. Systemati-
cally tested are the intermediate-term patterns (with
characteristic lead time of years). Here, we suggest a
method to detect the short-term patterns, which have
the lead time of months.

1.2. Reverse Tracing of Precursors (RTP)

We consider the short-term patterns in conjunction
with intermediate-term ones. This is done by RTP

analysis, in which these patterns are detected in the
reverse order of their appearance: short-term patterns
are analyzed first, although they emerge later. Our
findings can best be described on a specific example
of data analysis.

1.3. Region and data

We describe detection of short-term patterns be-
fore two prominent Californian earthquakes—Landers
(1992),M = 7.6, and Hector Mine (1999),M = 7.3.
These are the largest Californian earthquakes since
1965—the period, when the earthquake catalog is suf-
ficiently complete for our analysis. Territory consid-
ered is shown inFig. 1. The earthquake catalog is
taken from (ANSS/CNSSandNEIC).

2. Chains

Our point of departure is provided by the short-term
patternsRoc and Accord capturing a premonitory
increase in earthquake correlation range. They were
found first in models (Gabrielov et al., 2000) and then
in observations (Keilis-Borok et al., 2002; Shebalin
et al., 2000; Novikova et al., 2002). Other patterns
capturing that phenomenon are suggested inZöller
et al. (2001)and Zaliapin et al. (2002b). Here, we
introduce the patternchain which is a generalization
of RocandAccord. Qualitatively, a chain is a rapidly
extended sequence of small earthquakes that follow
each other closely in time and space.

2.1. Definitions

2.1.1. Earthquake catalog
As in most premonitory patterns of that family

(Keilis-Borok, 1996; Kossobokov and Shebalin, 2003)
aftershocks are eliminated from the catalog; however,
an integral measure of aftershocks sequenceb is re-
tained for each remaining earthquake (main shocks
and foreshocks). We use a common representation of
the earthquake catalog{tj, ϕj, λj, hj, mj, bj}, j =
1, 2, . . . . Here,tj is the time of an earthquake,tj ≥
tj−1; ϕj andλj, latitude and longitude of its epicenter;
hj, focal depth; andmj, magnitude. We consider the
earthquakes with magnitudem = mmin. Focal depth
is not used in this study.
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Fig. 1. Territory considered. Stars mark large earthquakes, targeted for prediction. Dots show background seismicity for the time considered
(1965–2003): epicenters of earthquakes with magnitudem ≥ 3 with aftershocks eliminated. Dashed line is used for time–distance projection
of epicenters (Fig. 3 below).

2.1.2. Chain
Let us call two earthquakes “neighbors” if: (i) their

epicenters lie within a distancer; and (ii) the time in-
terval between them does not exceed a thresholdτ0.
A chain is the sequence of earthquakes connected by
the following rule:each earthquake has at least one
neighbor in that sequence; and does not have neigh-
bors outside the sequence. The thresholdr is normal-
ized by the average distance between the earthquakes
with lowest magnitudem in a pair considered. We use
a coarse normalizationr = r010cm

¯, c being a numer-
ical parameter.

Let k be the number of earthquakes thus connected
andl—the maximal distance between their epicenters.
We look for precursors only among the chains with

k ≥ k0 and l ≥ l0. These thresholds ensure that our
chains are exceptional phenomena.

2.1.3. Chain’s vicinity
To compare location of a chain with locations of

strong earthquakes we consider itsR-vicinity for-
mally defined as the union of circles of the radiusR
centered at the epicenters of the chains forming the
chain. To smooth the borders of that area we add the
dense sequence of circles along the lines connect-
ing each epicenter in the chain with the two closest
ones. The envelope of all the circles is the border of
R-vicinity of the chain; it is similar to the “Wiener
sausage”, introduced by N. Wiener in the theory of
probability.
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Table 1
Parameters for detecting the chains

mmin r0 (km) c τ0 (days) k0 l0 (km) R (km)

3.3 50 0.35 20 8 350 75

Notations are given in the text,Section 2.1.

2.2. Data analysis

We detected the chains defined above using numer-
ical parameters listed inTable 1. Aftershocks have
been identified by a coarse windowing, as described
in (Keilis-Borok et al., 2002). The remaining cata-
log contains 3940 earthquakes. We have found among
them nine chains, altogether containing 116 earth-
quakes: this shows that our chains are indeed excep-
tional phenomena. Maps of the chains are shown in
Fig. 2; shaded areas are their vicinities, defined above.
Vital characteristics of each chain are given inTable 2.
Fig. 3 juxtaposes the chains and strong earthquakes
on the time–distance plane; distance is counted along
the dashed line shown inFigs. 1 and 2.

As we see inFig. 2 (two panels in the bottom
row) and Fig. 3, only the two last chains (#8 and
#9) might be regarded as the local short-time pre-
cursors to the Landers and Hector Mine earthquakes:
short-term—because they emerge with the short-term
lead times (respectively, 1.7 and 4.6 months); and
local—because the target earthquakes occur in their
vicinities. However, the other seven chains, if used as
precursors, would give false alarms. To reduce their
number we introduce the RTP analysis.

3. Precursory chains

3.1. Hypothesis

We hypothesize thata precursory chain(as op-
posed to a chain giving a false alarm) is preceded by
the local intermediate-term precursors formed in the
chain’s R-vicinity. This vicinity is not known, until
the chain is formed, and its shape might be rather
complicated (seeFig. 2). To overcome that impasse
we introduce the two-step RTP analysis schematically
illustrated inFig. 4.

(i) Search for the chains and determination of their
R vicinities(Section 2). Each chain is regarded as
a “candidate” for a short-term precursor.

(ii) Search for the local intermediate-term patterns in
the R-vicinities of each chain. They are looked for
within T years before the chain;T is an adjustable
numerical parameter. If (and only if) such patterns
are detected, we regard this chain as a short-term
precursor; in prediction it would start a short-term
alarm.

To complete that description we have to specify
intermediate-term patterns used at the second step.

3.2. Definitions

We use thepattern Σ which reflects premon-
itory rise of seismic activity. This pattern, intro-
duced in Keilis-Borok and Malinovskaya (1964),
is successfully used in different prediction algo-
rithms, alone or in combination with other patterns
(Keilis-Borok, 1990, 1996, 2000; Keilis-Borok et al.,
1999, 2002; Kossobokov et al., 1995, 2003; Rotwain
and Novikova, 1999). It is defined as a premonitory
increase of the total area of the earthquake sources.
Emergence of this pattern is captured by the function
�(t) defined in a sliding time-window (Keilis-Borok
and Malinovskaya, 1964):
∑

(t/s, B)=
∑

10Bmi , mi ≥ mmin; t − s < ti ≤ t

Summation is taken over all main shocks within the
time window (t−s, t) in theR-vicinity of the chain. We
takeB ∼ 1, so that the sum is coarsely proportional
to the total area of the fault breaks in the earthquakes’
sources (Keilis-Borok, 2002); with B = 0 this sum is
the number of earthquakes, withB = 3/2 it is propor-
tional to their total energy. The emergence of pattern
Σ is identified by condition�(t) ≥ Σ0; this thresh-
old depends on the magnitude of target earthquakes.
In previous applications cited above patternΣ was
used as non-local one. We renormalize its numerical
parameters to make it local.

3.3. Data analysis

We detected precursory chains and determined their
R-vicinities (Section 2). In each vicinity we computed
the function�(t) within time intervalT = 5 years and
summation intervals = 6 months. We identified as
precursory three chains preceded by largest peaks of
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Fig. 2. Maps of the chains. Detected chains are shown in separate boxes. Circles show epicenters of earthquakes in a chain; their size is
proportional to magnitude. The shadowed areas showR-vicinities of the chains. Dates of the beginning and the end of a chain are given at
the top of each box. Three chains (1977, 1992, and 1999) shown in bold are identified as precursory ones. The first chain gives a false alarm;
two other chains are followed within few months by target earthquakes, Landers and Hector Mine. Other notations are the same as inFig. 1.

�(t); they can be recognized with the thresholdΣ0 =
106.7. Table 2shows these chains in bold. As we see,
identification of the first chain, in 1977, is wrong; in
prediction it would give a false alarm. Identification
of two other chains, in 1992 and 1999, is correct; each
is followed by a target earthquake within few months.
The same chains would the selected with the tenfold
smaller time interval,T = 6 months. The correspond-

ing threshold isΣ0 = 105.4; it is smaller since smaller
number of earthquakes is included in summation.

3.4. Hypothetical prediction algorithm

It remains to define alarms triggered by a precursory
chain. This is a final step in transition from a precur-
sor to algorithmic prediction. We adapt the standard
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Table 2
Characteristics of the chains

# Start End Duration
(days)

Lead time
(months)

Distance from a
strong earthquake
(km)

Number of
earthquakes,k

Maximal
distance,l
(km)

Largest
magnitude

Area of the
R-vicinity,
×103 (km2)

28.06.1992: Landers earthquake,M = 7.6
1 16.07.1969 03.10.1969 80 17 499 5.3 150
2 15.10.1969 19.11.1969 35 12 485 5.6 113
3 26.08.1973 17.10.1973 53 13 381 4.5 150
4 03.06.1977 01.08.1977 60 11 377 4.7 104
5 07.09.1984 26.10.1984 49 9 408 4.6 90
6 08.07.1986 20.07.1986 12 10 543 5.9 122
7 24.12.1989 04.02.1990 41 8 373 5.7 101
8 27.03.1992 08.05.1992 42 1.7 29 17 635 6.1 161

16.10.1999: Hector Mine earthquake,M = 7.4
9 19.02.1999 01.06.1999 102 4.6 60 11 380 4.9 98

Chains recognized as “precursory” by RTP analysis (Section 3) are shown in bold. Chain #4 would trigger in prediction a false alarm,
Chains #8 and #9 would trigger correct alarms.

general scheme of prediction algorithms, widely used
in intermediate-term earthquakes prediction and many
other problems (Keilis-Borok, 2002; Kossobokov and
Carlson, 1995, and references therein).

(i) Prediction is targeted at the main shocks with
magnitudeM or more; usually the magnitude in-
tervals (M, M + 1) are considered separately.

(ii) When a precursory chain is detected, a short-term
alarm is triggered. It predicts a target earthquake
in R-vicinity of the chain, within time interval
(te, te + τ); here te is the moment when chain
emerged,τ a numerical parameter (duration of
alarm). Results of the data analysis suggest to take
τ = 6 months.

Possible outcomesof such prediction are illustrated
in Fig. 5. Probabilistic component of prediction is rep-
resented by the total time–space covered by alarms
and probabilities of false alarms and failures to predict
(Molchan, 2003).

4. Discussion

4.1. Summary

This paper introduces RTP analysis in the evalua-
tion of seismicity, culminated by a strong earthquake.
Precursors with different lead times are considered
in reverse order of their appearance. First, we detect

the candidates for short-term precursors; in our case,
those are the chains of small earthquakes capturing the
rise of earthquake correlation range. A chain deter-
mines its narrow vicinity where we look for the local
intermediate-term precursor(s), patternΣ in our case.
Its presence in turn indicates the precursory chains.
We describe RTP on an example: detecting precur-
sory chains months before two prominent California
earthquakes, Landers (1992) and Hector Mine (1999),
well isolated in time and space from other comparable
earthquakes in that region.

4.2. Methodological advantage of RTP

The opposite (direct) analysis would start with
tracing of the intermediate-term patterns hidden
in the background seismicity. Almost all of them,
known so far, are not local, patternΣ included. They
emerge in the areas whose linear size is up to 10
times larger than the source of the incipient target
earthquake (Bowman et al., 1998; Keilis-Borok and
Malinovskaya, 1964; Keilis-Borok and Soloviev,
2003); some patterns—even up to 100 times larger
(Press and Allen, 1995; Romanowicz, 1993). We have
found patternΣ that became local after renormaliza-
tion: it emerges in the same narrow area (R-vicinity
of the chain), where epicenter of a target earthquake
lies. As we see inFig. 2, the shape of that area might
be rather complex, and its size—diverse. To find this
area by trying different shapes, sizes, and locations is
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Fig. 3. Chains and strong earthquakes on the time–distance plain. Distance is counted along the dashed line shown inFig. 1. Filled and
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(years to large earthquake)

Emergence of patterns: Chain

Order of detection: ActivityChain

Activity

ChainActivity

Target

Alarm

Map

Fig. 4. Schematic illustration of theReverse Tracing of Precursors
(RTP). (Top) Map showing precursory chain and the source of
the target earthquake (black). (Bottom) Scheme of analysis in
time–space projection. Circles show epicenters forming the chain
(dark gray) and preceding it (light gray). The “R-vicinity” of the
chain is shown in light gray. Star is projection of the epicenter of
the target earthquake. The gray rectangle before the chain shows
the time–space where rise of activity (patternΣ) is looked for.
White area shows the time–space where this pattern was found;
its presence indicates a precursory chain. The chain is detected
first, although it emerges after the patternΣ. Note how a narrow
chain determines a much larger time interval where a patternΣ

is looked for. Dark gray area shows the time–space covered by an
alarm: within 6 months after precursory chain a target earthquake
is expected in itsR-vicinity.

not realistic. Reverse analysis resolves this impasse,
indicating a limited number of chains to consider.

4.3. Physical interpretation

RTP seems to be a promising general approach to
prediction of critical phenomena in complex systems:
it identifies a rare small-scale phenomenon that car-
ries a memory of the larger scale history of the sys-
tem. At the same time, this approach has a natural
earth-specific explanation: it follows from the concept
that strong earthquake is a result of a lasting large-scale
process whose different stages involve different parts
of the fault network. Earthquakes in the chain mark
the part of the fault network that has started to move in
unison months before a target earthquake. PatternΣ

indicates that this synchronization started much ear-
lier, albeit expressed in a more subtle form. A similar

step-by-step escalation of instability was observed in
direct analysis: by algorithms M8&MSc (Kossobokov
and Shebalin, 2003), and by some other algorithms
(Aki, 2003; Shebalin et al., 2000; Keilis-Borok and
Soloviev, 2003).

Both the chains and the peaks ofΣ are sporadic
short-lived phenomena not necessarily reflecting the
steady trends of seismicity. This is typical for all pre-
monitory patterns of that family (Keilis-Borok, 2002;
Kossobokov and Shebalin, 2003). Probably, both pat-
terns are the symptoms but not causes of a strong
earthquake: they signal its approach but do not trigger
it. Similarly sporadic are many observed precursors
to other critical phenomena, e.g. economic recessions
(Keilis-Borok et al., 2000).

4.4. Implications for earthquake prediction

• We have applied RTP analysis to target earth-
quakes of more diverse magnitudes in California
and two other regions, Japan and E. Mediter-
ranean, normalizing the parameters of the algo-
rithm and considering all known (eight) major
types of intermediate-term patterns (Keilis-Borok
and Soloviev, 2003). We have first two earthquakes
predicted in advance: Tokachi-oki earthquake in
Northern Japan (M8.1, 25 September 2003) and
San Simeon in Central California, M6.5, 22 De-
cember 2003). The results, highly encouraging, are
described inShebalin et al., in press.

• It seems natural to apply the RTP analysis to earth-
quake precursors, expressed in other fields. First
positive results are obtained with precursors gaug-
ing interaction between the ductile and brittle layers
of the crust (Aki, 2003; Jin et al., 2003; Zaliapin
et al., 2003a). Other promising applications include
electromagnetic fields (Uyeda and Park, 2002), fluid
regime (Keilis-Borok, 1990; Ma et al., 1990), GPS,
InSAR, etc.

• We detect intermediate-term patterns only af-
ter a chain has emerged so that its vicinity can
be determined; this is too late to declare an
intermediate-term alarm. Accordingly, our results
concern only short-term prediction.

• “Pre-chain” precursors might emerge with a short
lead time too.

• There are no reasons not to explore RTP analy-
sis for prediction of different critical phenomena
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Fig. 5. Possible outcomes of prediction. Stars mark epicenters of strong earthquakes, targeted by prediction. A box to the right of the chain
(dark gray) is the time–space covered by an alarm. A prediction is correct if a strong earthquake occurs within an alarm. Otherwise, this is
a false alarm. Failure to predict is the case when a strong earthquake occurs outside of an alarm. Probabilistic component of prediction is
represented by the rates of false alarms and failures to predict and the time–space covered by alarms (in % to total time–space considered).

in hierarchical non-linear systems: other geological
disasters; geotechnical, and even socio-economic
disasters. Qualitatively similar approach is routinely
used in medicine, criminology, etc.

• However, accurate the short-term prediction would
be it will not render unnecessary the predictions
with a longer lead time. One can find in seismo-
logical literature a reappearing mistake: that only
precise short-term (or even immediate) prediction is
practically useful. Actually, protection from earth-
quakes requires a hierarchy of preparedness mea-
sures, from building codes, insurance, and issuing
bonds, to reinforcement of high risk objects, to
red alert. It takes different time, from decades, to
years, to seconds to undertake different measures.
Accordingly, earthquake preparedness requires all
stages of prediction (Keilis-Borok, 2002; Molchan,
2003; Kantorovich and Keilis-Borok, 1991). Such
is the case in preparedness to all disasters, war
included.

4.5. Questions arising

• We considered only one short-term precursor—a
chain of earthquakes—and one intermediate-term

one—the patternΣ. In subsequent applications
(Shebalin et al., in press), all major types of
intermediate-term seismicity patterns have been
used with similar renormalization. The question
arises which set of precursors provides the opti-
mal prediction strategy, as defined for example in
(Molchan, 2003; Zaliapin et al., 2003b).

• It is not yet clear how to make the scaling of
RTP analysis self-adapting to the regional seismic
regime, e. g. to parameters of the Gutenberg–Richter
relation.

• Earthquake precursors emerge with the broader
range of the lead times than considered here. They
are divided, albeit fuzzily, intolong-term (tens of
years) ⇒ intermediate-term(years) ⇒ short-term
(months) and ⇒ immediate(days or less). The
question arises how to apply RTP analysis to the
whole sequence or to its different parts.

Summing up, the RTP approach seems to open new
possibilities in the quest for the short-term prediction.
We hope that this study sets up a base for further devel-
opment of this approach in the intertwined problems
of earthquake prediction, fundamental understand-
ing of dynamics of the lithosphere, and non-linear
dynamics.
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Abstract 

Short-term earthquake prediction, months in advance, is an elusive goal of earth sciences, of great 
importance for fundamental science and for disaster preparedness. Here, we describe a methodology 
for short-term prediction named RTP (Reverse Tracing of Precursors). Using this methodology the 
San Simeon earthquake in Central California (magnitude 6.5, Dec. 22, 2003) and the Tokachi-oki 
earthquake in Northern Japan (magnitude 8.1, Sept. 25, 2003) were predicted six and seven months 
in advance, respectively. The physical basis of RTP can be summed up as follows: An earthquake is 
generated by two interacting processes in a fault network: an accumulation of energy that the 
earthquake will release and a decrease in stability triggering this release. Energy is carried by the 
stress field, instability is carried by the difference between the stress and strength fields. Both 
processes can be detected and characterized by “precursory” patterns of seismicity or other relevant 
fields. Here, we consider an ensemble of premonitory seismicity patterns. RTP methodology is able 
to reconstruct these patterns by tracing their sequence backwards in time. The principles of RTP are 
not specific to earthquakes and may be applicable to critical transitions in a wide class of 
hierarchical non-linear systems. 

1. Introduction 

There is increasing evidence that variations in regional seismicity occur prior to intermediate and 
large earthquakes (Knopoff et al., 1996; Bowman et al., 1998). Using pattern recognition techniques 
a series of algorithms have been developed which provide intermediate-term and long-term 
predictions with lead times of years to decades (Keilis-Borok and Shebalin, 1999; Keilis-Borok, 
2002; Keilis-Borok and Soloviev, 2003; Rundle et al., 2003). In this paper an algorithm is 
introduced that has successfully made short-term earthquake predictions, i.e. months in advance 
(Shebalin et al., 2004) . This algorithm is now tested by advance prediction in several seismically 
active regions and its performance is yet to be validated. However, the first successes along with the 
novelty of the methodology used in this algorithm prompt description of its essential underlying 
ideas and approaches. 



2 

It should be emphasized that there are two quite different approaches to earthquake prediction. The 
first is to make continuous predictions; in terms of earthquakes, this requires the specification of 
earthquake risk at all spatial points at each time instant. This approach is very useful when 
predicting a large number of small to intermediate earthquake since one can directly compare the 
observed and predicted seismic rates (probabilities, intensities, etc.) using the log-likelihood 
paradigm (Daley and Vere-Jones, 2004) or the least-square discrepancy (Whittle, 1963). The second 
approach that is used here is binary: an earthquake it forecast (predicted) for a specified area and 
time window, called alarm region or alarm. This approach is better justified when predicting 
extremely rare large events, so the direct comparison of the predicted continuous rate with a couple 
of observed earthquakes is rather problematic (Molchan, 2003). Our goal is to narrow down the area 
and time duration of alarms, within which a target earthquake is expected. Prediction is targeted at 
the large and therefore rare earthquakes; in a typical alarm area they occur on average once in 10-20 
years. Our prediction should capture the target within an interval 20-30 times smaller, since a short-
term alarm lasts months. Thus our alarms should be equally rare and each correct alarm would 
typically capture only one target; in very rare cases more than one.  

It should be noted that an early theoretical discussion of the necessity of a discrete binary approach 
instead of a continuous one in predicting rare point events appear in 70s (Lindgren, 1975,1985; De 
Mare, 1980); and the difference between continuous and binary predictions has been widely 
recognized in weather forecasting (Jolliffe and Stephenson, 2003). An example of binary forecast is 
a tornado warning issued for a specified area and time window. Tornado warnings are analogous to 
the earthquake alarms considered in this paper. Possible outcomes of such predictions are illustrated 
in Fig. 1. In this scheme, we have two types of errors: failures to predict (target earthquake outside 
alarm region) and false alarms (no target earthquakes within an alarm); we also consider the total 
spatio-temporal coverage of alarms as a characteristic of a prediction algorithm.  Probability of 
errors of different types is estimated using a sequence of predictions and is visually represented in 
the error diagrams (Sect. 3 below; Molchan, 2003). An analogous approach in weather forecasting 
is the relative operating characteristic diagram (Jolliffe and Stephenson, 2003).  

2. Reverse Tracing of Precursors (RTP) 

We will now outline the RTP (reverse tracing of precursors) approach to short-term earthquake 
forecasting. Details are given in the Appendix. Three aspects are important: 

(i) Precursory chains that reflect the premonitory increase of the earthquakes’ correlation range; 
qualitatively speaking, these chains are the dense, long, and rapidly formed sequences of small and 
medium sized earthquakes. Their definition generalizes premonitory seismicity patterns ROC and 
ACCORD. Heuristically, the pattern ROC ensures the ongoing increase of earthquake correlation 
range, expressed via the pair-wise correlation function; while ACCORD reflects simultaneous 
activation of several major parts of the regional fault network.  They represent complimentary 
approaches to detecting the earthquake correlation. Formal definitions of these patterns as well as 
their performance in synthetic and observed seismicity can be found in  (Gabrielov et al., 2000; 
Shebalin et al., 2000; Zaliapin et al., 2002, 2003; Keilis-Borok et al., 2002). An alternative approach 
to measuring the earthquake correlation was introduced in (Zöller and Hainzl, 2001; Zöller et al., 
2001). 

(ii) Intermediate-term patterns, originally found in the modeled and observed seismicity (Prozorov 
and Schreider, 1990; Keilis-Borok and Shebalin, 1999; Keilis-Borok, 2002; Keilis-Borok and 
Soloviev, 2003; Gabrielov et al., 2000; Zaliapin et al., 2003). They reflect four major types of 
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premonitory phenomena: rise of seismic activity, rise of earthquakes’ clustering, rise of earthquakes 
correlation range, and a transformation of the magnitude-frequency (Gutenberg – Richter) relation 
towards an increasing share of relatively large magnitudes.  

(iii) Pattern recognition of infrequent events is used to define the precursory combination of the 
patterns.  Specifically, we used the Hamming algorithm which in our case is analogous to voting 
(Keilis-Borok and Soloviev, 2003); this algorithm is a standard tool in making a decision 
considering several “opinions”. Formally, the Hamming distance between two Boolean vectors of 
the same length is defined as the number of their non-coincident symbols. Here, the Hamming 
distance gives the number of emergent intermediate-term premonitory patterns (see details below).  

RTP analysis consists of the following stages.  First, we detect chains - the “candidates” for the 
short-term precursors. We have found that precursory chains emerge within months before most of 
the target earthquakes. However, up to 90% of the chains are not followed so closely by strong 
earthquakes and in prediction they would cause false alarms. To eliminate false alarms, we next 
determine which intermediate-term precursors have occurred in the vicinity of each candidate 
within few years preceding it. Finally, we apply pattern recognition: knowing for each candidate 
what intermediate-term patterns have preceded it, we recognize which chains are precursory and 
which are false alarms. Specifically, in order to decide whether a chain is premonitory or not we use 
a set of M individual intermediate-term premonitory patterns. Some of them give premonitory 
signal (emerge) while other do not. The current state of the patterns is represented by a Mx1 
Boolean vector indicating which pattern emerge (1) and which is not (0). A zero vector would 
indicate that none of the patterns emerge and the chain is most probably not precursory, while a 
vector consisting of all ones that all the patterns emerge and the chain is most probably precursory. 
Hamming distance, defined as the number of ones in our Boolean vector, shows how far the vector 
is from a zero one; in other words, how many patterns “voted” for making the chain precursory. If 
sufficient number of votes is accumulated (the threshold is established during the learning) the 
chain is considered precursory. This brings us to the prediction proper. The emergence of each 
precursory chain starts an alarm: a target earthquake is expected during τ months after the chain was 
formed and in its formally defined vicinity. 

Thus, the precursory chain indicates the narrow area of a possibly complex shape (the chain 
vicinity) where intermediate-term precursors should be looked for. Their presence in turn validates 
the chain, as a short-term precursor. A chain is considered first although it emerges later – hence 
our analysis is called reverse.   

3. Performance 

We have tested our algorithm by advance prediction in Southern and Central California using the 
earthquake catalog ANSS/CNSS starting from January 1965. First, the data for 1965 – 1994 have 
been used for “learning”, i.e. self-adaptation of some of the parameters (see Appendix A3). Then, 
the resulting rule was tested on independent data (i.e. the data not used for learning) for the period 
from January 1995 to May 2003. In June 2003 we have launched advance prediction. The only 
target earthquake that happened in the prediction region during the advance phase of the experiment 
(the San Simeon earthquake, December 22, 2003, M=6.5) was successfully predicted. The alarm 
capturing this earthquake started on May 5, 2003 – the date when the precursory chain triggering 
the alarm was completed. This alarm was reported on June 21 of the same year (Aki et al., 2003) 
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The algorithm has also been applied to the territories of Japan; Central Apennines, Alps, Northern 
Dinarides and Po valley; and Eastern Mediterranean (Figs. 2-5) with magnitude of target 
earthquakes M ≥ 7, M ≥ 5.5 and M ≥ 6.5 respectively. In Japan, the learning was performed during 
1975-2003, and advance prediction started on July 1, 2003 (Shebalin et al., 2003). In Central 
Apennines, Alps, Northern Dinarides and Po valley the learning was performed during 1970-1990, 
and advance prediction started on May 12, 2004. In Eastern Mediterranean the learning was 
performed during 1983-2003, and advance prediction started on May 12, 2004. The intermediate-
term patterns (see Appendix A3) showed amazing self-adjustment: they were applicable within all 
three regions, and to all chains within each region, with the same values of their four numerical 
parameters.  

The Tokachi-Oki, Japan, earthquake, 25 September 2003, M=8.1, has been also predicted in 
advance: the alarm started on 27 March, 2003 and was reported on 2 July 2003 (Shebalin et al., 
2004).  

During the time period covered by our advance prediction experiment, two target earthquakes have 
occurred; both of them have been predicted. Three false alarms were issued; one alarm is current. 
Figures 3-5 and Table 1 summarize the results of the experiment. It is worth noticing that a large 
earthquake (ML = 5.7, MW = 5.3) occurred within the alarm issued in Northern Dinarides; and that 
two target earthquakes (MW= 7.4, MW= 7.2) occurred near one of the alarms issued in Japan, 
outside the formal prediction region. A retrospective prediction with extended region led to 
successful prediction of those two earthquakes.   

3. Prediction quality 

As we mentioned in introduction, the problem of evaluating a binary prediction requires special 
tools. The main difference from evaluating a continuous prediction is that we can no longer use a 
single measure of discrepancy between prediction and observations (one faces the same situation in 
classical hypothesis testing where errors of two types are introduced). We use three interdependent 
measures of prediction quality, defined in Appendix A5:  fraction of unpredicted earthquakes, n; 
fraction of false alarms, f; and the space-time τ covered by all alarms together, normalized by the 
whole space-time considered. The space is measured not in km2 but in long-term average of 
seismicity. We used the average number of mainshocks with m ≥ 4. The optimal tradeoff between 
different characteristics depends on a loss function L(n,f,τ) for preparedness measures. 

The error diagram juxtaposes the prediction errors; each particular prediction corresponds to a 
single point in (n,τ, f) space. The error diagram is used to evaluate the predictive power of our 
prediction algorithm and its stability.  For illustration, the error diagram for our prediction 
experiment in California during 1964-2005 is shown in Fig. 6; it shows the relative alarm coverage 
τ  (10%) vs. the number of failures to predict (0); the number of false alarms (5) is indicated in 
parentheses. A more detailed discussion of error diagram approach is given in appendix A6.  

Discussion 

1. A possible physical mechanism underlying the RTP methodology is based on models of 
dynamical systems (Gabrielov et al., 2000; Zaliapin et al., 2003) and geodynamics (Rundquist and 
Soloviev, 1999). Precursory chains outline the areas where instability is accumulated months before 
a target earthquake.  This instability reveals itself through an increase of the earthquake correlation 
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range. Intermediate-term premonitory seismicity patterns considered reflect the accumulation of 
energy and instability necessary and sufficient to trigger an earthquake, in the area outlined by a 
precursory chain, but years before the chain. In more general terms, RTP identifies a small-scale 
perturbation that carries a memory of the larger scale history of a complex system (in our case, the 
fault network). Increases of the correlation range are a known symptom of critical transitions in 
statistical physics and of bifurcation in nonlinear dynamics (Kadanoff, 2000). Typically for 
premonitory patterns of this kind precursors considered are sporadic short-lived phenomena not 
necessarily reflecting the steady trends of seismicity. This suggests that both patterns are symptoms 
but not the causes of a target earthquake: they signal its approach but do not trigger it. Such 
sporadic precursors to critical phenomena have been found also in socio-economic complex systems 

(Keilis-Borok et al., 2000). 

2. It seems promising to apply RTP analysis to the detection of earthquake precursors in the other 
relevant and available data such as electromagnetic fields (Uyeda and Park, 2002), fluid regime (Ma 
et al., 1990), InSAR and GPS (Simons et al., 2002). The first positive result has been obtained with 
precursors gauging interaction between the ductile and brittle layers of the Earth crust; this opens a 
highly promising link of geodynamics and nonlinear dynamics approaches to prediction (Jin et al., 
2004).  

3. The methodological advantage of RTP over a direct analysis is in the drastic reduction in 
dimensionality of the parameter space where premonitory patterns are looked for. We have found 
here the patterns formed in narrow areas different from case to case, whose shape might be 
complicated, and with diverse size. To find these areas by a trial-and-error procedure would require 
trying different shapes, sizes, chains and locations, which is hardly realistic. Reverse analysis 
resolves this impasse, determining from the start a limited number of the areas to consider.  Thus, 
RTP analysis provides a common methodological approach to the prediction of avalanches in a 
wide class of the complex systems, formed separately or jointly by nature and society. 

 4. The only decisive test of any prediction theory is an experiment in advance prediction. Such an 
experiment for the methodology described above was launched in June 2003 and is currently 
maintained by University of California Los Angeles (USA), Russian Academy of Sciences, and 
Institut de Physique du Globe de Paris (France). The complete results, including the San Simeon 
prediction, will be published elsewhere. The goal of this paper is to present the essential underlying 
concepts and report its first successes to a broad range of multidisciplinary experts, attracting their 
attention to the possibility of exploring premonitory patterns in diverse physical fields using the 
RTP methodology. 

  

APPENDICES  

A1. Earthquake catalogs 

The data used in analysis are provided by the routinely compiled earthquake catalogs, which present 
at the moment the most accurate and complete information about the dynamics of seismicity. The 
earthquake catalog is taken from ANSS/CNSS and NEIC. We use a common representation of the 
earthquake catalog {tj, ϕj, λj, Mj , bj}, j = 1, 2, … Here tj is the time of an earthquake, tj ≥ tj-1; ϕj and 
λj – latitude and longitude of its epicenter; and Mj magnitude. We consider the earthquakes with 
magnitude M ≥ Mmin. As in most premonitory patterns of that family [Keilis-Borok 1996, 2002] 
aftershocks are eliminated from the catalog; however, an integral measure of aftershocks activity bj 
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is retained for each remaining earthquake (main shocks and foreshocks); bj is the number of 
aftershocks occurring immediately after an earthquake (e.g. within two days). 
A2. Chains 

A chain captures a rise of earthquakes’ correlation range in its vicinity. Let us call two earthquakes 
“neighbors” if their epicenters are closer than r and their times are closer than τ0. A chain is a 
sequence of earthquakes where each earthquake has at least one neighbor belonging to that 
sequence and, therefore, no neighbors outside the sequence. he average density of epicenters 
decreases with increasing magnitudes. Accordingly, r is normalized as r = r010c(m-2.5), where m is 
the smallest magnitude in the pair. The R-vicinity of a chain is outlined by the smoothed envelope 
of the circles of a radius R drawn around each epicenter in the chain. We consider only the chains 
with two sufficiently large characteristics: number of earthquakes k ≥ k0, maximal distance between 
epicenters l ≥ l0. Two parameters of the chains are common for all the regions: r0=50 km, c = 0.35. 
Other parameters are common for all chains within a region, but differ between regions as follows: 
Southern California, τ0=20 days, k0=6, Mmin=2.9, l0=175 km; Central California, τ0 =30 days, k0=10, 
Mmin=2.9, l0=250 km; in Japan, τ0 =20 days, k0=10, Mmin=3.6, l0=350 km, γ0=0.4; Eastern 
Mediterranean, τ0 =40 days, k0=6, Mmin=3.0, l0=200 km. 

A3. Intermediate-term patterns 

We look for intermediate-term patterns in the R-vicinity of each chain within T years preceding it.  
To detect a pattern P we compute a function FP(tj) defined in the “event window” (Keilis-Borok and 
Soloviev, 2003) i.e. on the sequence of N consecutive earthquakes with indexes j-N+1, j-N+2,..., j. 
In R –vicinity of each chain we normalize seismicity by the lower magnitude cutoff M*. The latter 
is derived from magnitude-frequency relation, by the condition n(M*) = n*; here n(M*) is the 
annual number of earthquakes with magnitude M ≥ M*.  

Four functions represent a rise of activity. Namely   
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is connected to the function “Activity”. “Acceleration” increases if intercurrence time between 
earthquakes decreases with time.  

Here [x] denotes integer part of x. 

Two functions depict a rise of clustering:  
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with Ar being the area of the union of the circles of radius r centered at N epicenters in the sequence 
reflects clustering of mainshocks; while  
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reflects clustering of aftershocks; here Mkl, l = 1, 2,… are the magnitudes of the aftershocks of the 
k-th main shock within the first 2 days after the main shock 

The rise of earthquakes correlation range is depicted by function 

“Accord” 2

( )
( ) r j

A j

A t
F t

rπ
= ,                                          (A7) 

which increases if earthquakes are widely distributed in space and their r-neighbourhoods are barely 
overlapping.   Finally, the transformation of Gutenberg-Richter relation is reflected by function 

“Gamma” 
1/ 21/ 2

*1( ) ( )
kk

j k
M MM M

F t M M
Nγ

≥≥

= −∑ ,                          (A8) 

which increases if the magnitude distribution is shifted to the larger magnitudes (e.g., if the GR 
slope is decreasing). Here M1/2 is the median of magnitudes of N earthquakes in our sequence.  

Altogether the eight functions are determined by five parameters. In each region we used the same 
eight combinations of these parameters: n*=10 and R=50 km or n*=20 and R=100 km, N=10 or 50, 
T=6 or 24 months, r=50 km. Emergence of a pattern at the moment t is captured by the condition 
FP(t) ≥ CP. Each threshold CP is determined automatically at the learning stage. It minimises the 
sum n + f; here n is the rate of failures to predict and f is the rate of false alarms in prediction with a 
single pattern P.  

A4. Prediction  

Final stage is recognition of precursory chain and issuing an alarm: A chain is recognised as 
precursory if it was preceded by C or more intermediate-term patterns out of the ensemble 
considered. The threshold C controls the trade-off between the rates of false alarms and failures to 
predict.  Emergence of precursory chain triggers an alarm in its R-vicinity for the ∆ months; 
statistics of past alarms suggests ∆ = 9 months. A precursory chain may keep growing accumulating 
subsequent earthquakes. In that case the alarm is extended. If a target earthquake occurs in the R-
vicinity of a chain, then the chain no longer grows, but the alarm (if it has been diagnosed for that 
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chain) is not called off. After a target earthquake all other chains containing its epicenter within the 
R-vicinity are disregarded during the period ∆. 

A5. Quality of prediction 

Suppose that the prediction was performed during the time interval of length T (yr) within the 
region Ω with the area S (km2); N large earthquakes occurred within this period; A alarms were 
declared and Af of them were false; all the alarms together covered the spatio-temporal volume VA 
(yr × km2); Nf target earthquakes were unpredicted. Prediction is described by the following 
dimensionless errors: the fraction of unpredicted earthquakes, n = Nf / N; the relative alarm 
coverage, τ = VA/(T×S); the fraction of false alarms, f = Af / A.  
When calculating the alarm coverage, it might be advantageous to take into account the observed 
inhomogeneities of the earthquake spatial distribution. In our prediction experiment, the relative 
alarm coverage for an alarm that spans the time TA and space SA is calculated as 

4

4

( )
#{EQ with 4 within }
#{EQ with 4 within }( )

ASA A A
A

S

dN r
T T m S
T T m SdN r

τ ≥
= × = ×

≥

∫

∫ .      (A9) 

Here by N4(r) we denote the 2D point process of earthquakes with magnitude m ≥ 4.  The total 
alarm coverage is the sum of that for all individual alarms. 
 
A6. Significance level: Random Binomial prediction 

To evaluate significance of a prediction one typically evaluates the chances of getting the same or 
better result (same or smaller values of errors) when there is no dependence between alarms and the 
occurrence of target earthquakes. An extremely simple but easily tractable model of prediction 
which produces alarms independent of the target earthquakes is random binomial prediction 
(Molchan, 2003): One divides the space-time considered for prediction into M small equal bins and 
declares alarm in each of them with fixed probability p. Indeed, this approach is highly unrealistic. 
Nevertheless, considered as a null (random) prediction model, it provides a good coarse estimation 
of the algorithm predictive power. Significance with respect to a random binomial prediction may 
serve as a necessary, but not sufficient, condition for validating an algorithm.  

It is readily checked that expected values of alarm coverage τ  and fraction f of failures to predict in 
the binomial prediction are given by: 

E(τ ) = p, E( f ) = 1 – p 

so the point corresponding to this prediction is on the diagonal f =(1 – τ) in the 2D (τ,f)-section of 
the error diagram. The probability to predict exactly N – Nf out of N target earthquakes, assuming 
that no more than one target earthquake may occur within a single bin, is given by Binomial 
distribution 

f f
f

f

Pr{predict -  out of } (1 )N N NN
N N N p p

N
−⎛ ⎞

= −⎜ ⎟
⎝ ⎠

.                         (A10) 

The probability to predict N – Nf  out of N target earthquakes issuing alarm within k bins out of M is 
given by Hypergeometric distribution 
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{ }fPr predict  out of  declaring alarm in  bins out of N N N k M− = f f

k M k
N N N

M
N

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

.  (A11) 

The number of false alarms can also be obtained, but because of the simplistic binomial rules, the 
number of binomial alarms (and false alarms) will be significantly larger than that in any realistic 
prediction (where alarm is typically declared for considerable spatio-temporal area, not for a small 
bin). Thus here we do not make any inference about false alarms using the binomial prediction 
model.  

Using the above probabilities (A10, A11) one can construct different significance measures for a 
given prediction with errors (τ*, n*). One approach is to use the 2D (τ, n) distribution under the 
binomial model using (A10) with  p=τ*, and evaluate probability of obtaining a prediction of the 
same or better quality, say 

{ }* *Pr ( , ) :n n nτ τ τ+ ≤ +    or   { }* *Pr ( , ) :  & n n nτ τ τ≤ ≤ . 

Another approach is to use (A11) to find the probability to predict the same or larger number of 
earthquakes with the same total duration of alarms. The difference between using (A10) and (A11) 
is that in the first case we assume fixed probability of declaring an alarm, while in the second – 
fixed duration of alarm. Indeed, in generic cases both approaches give very similar evaluation of 
prediction performance.  

To illustrate the above approach, Fig. 6 shows the error diagram for the results of our prediction 
experiment in California. Shaded ball represents the errors of our prediction experiment during 
1964-2005. The probability for a random binomial prediction with given value of τ  to fall within 
the shaded area (i.e., to predict more than N(1 – n) target earthquakes with given τ ) is less or equal 
than 0.001 (0.1%). The point that corresponds to our experiment is well within this area, thus 
indicating very high predictive power. It should be emphasized that the results presented in this 
figure combine the information from the learning period, independent data, and advance prediction 
(we have too few alarms and target earthquakes during the advance phase to use them alone). Thus, 
this analysis is not equivalent to evaluating the real predictive power of the algorithm, where only 
advance results must be used. Nevertheless, the grey shadowed area that corresponds to the 
binomial model gives a good orientation for the expected significance of the results.   

 

A7. Significance level: Empirical estimation 

An alternative approach to testing significance of a prediction algorithm involves empirical 
estimations of occurrence rate for target earthquakes. Thus, the approach is unavoidably 
approximate due to the small number of target earthquakes; yet it is much more realistic comparing 
to the random binomial prediction.  
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Specifically, we assume that target earthquakes form a Poisson process N(t,r) stationary in time but 
non-homogeneous in space. The expected number of earthquake within the interval of length t and 
spatial region R is given by 

  E(N(t,R)) = t × µ(R)                                                  (A12) 

where µ(R) is some non-negative measure over the space. In practice, a first-order approximation to 
this measure can be obtained by considering the number NR of target earthquakes within the region 
R per unit of time using observations over S years: 

µ(R) ≈ NR / S. 

With our assumptions, the probability of having exactly k target earthquakes within the region R 
during time interval of length t is given by Poisson distribution 

( )( ) ( )
Pr{  target earthquakes within }

!

k
R t R t

k R e
k

µ µ−=                (A13) 

and the probability  p to have at least one target earthquake is  

( ): Pr{at least one target earthquakes within } 1 R tp R e µ−= = − .           (A14) 

When the rate of target earthquakes is small (which is indeed the case in our experiment), we can 
approximate p as 

: Pr{at least one target earthquakes within } ( ) RN tp R R t
S

µ= ≈ ≈  

Our final goal is to calculate the probability of predicting N – Nf target earthquakes out of N by a set 
of alarms Ai = (ti, Ri) that were declared for regions Ri and time intervals ti. We denote by pi the 
probability to have at least one target earthquake within Ai .  

The probability for a given target earthquake to be predicted is calculated as the probability that it 
will be predicted by at least one of the alarms: 

Pr{given target EQ is predicted}= Pr{given target EQ is within } 

Pr{given target EQ is within  during }

Pr{given target EQ is within }

i
i

i i
i

i
i

i

i
i

i

A

R t

tR
T

tq
T

=

= ×

= ×

∑

∑

∑

∑

 

Here we used the fact that alarms are not overlapping (by definition); factorization property (A12) 
of the target event process; and the fact that conditional distribution of the occurrence time of an 
event from Poisson process is uniform, given that this event occurred within the given time interval.  

The probability for a given target earthquake to happen within the spatial region Ri can be estimated 
as 
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Pr{given target EQ happened within } i
i i

nq R
NΩ

= = , 

where ni is the number of target earthquakes within Ri during some period S  and NΩ is the total 
number of target earthquakes within the region Ω considered for prediction during the same time. 
Finally 

: Pr{given target EQ is predicted} i i
i

i i

n t SQ p
N T N TΩ Ω

= ≈ × ≈∑ ∑ , 

and the distribution of the number of predicted target earthquakes out of N is given by the Binomial 
formula: 

f f

f f

f f

f
f

f

f

Pr{  out of  target EQs are predicted}= (1 )

1

1

N N N

N N N

i i i i

i i

N N N

i i
i i

N
N N N Q Q

N

N n t n t
N N T N T

N S Sp p
N N T N T

−

−

Ω Ω

−

Ω Ω

⎛ ⎞
− −⎜ ⎟

⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞
≈ −⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞
≈ −⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠

∑ ∑

∑ ∑

 

We apply the above approach to California. Specifically, we consider the region Ω shown in Fig. 2 
during the period 1965-2004 (S = 40 years); there were NΩ = 10 target earthquakes. The advance 
prediction was performed within the same region during July 2003 – June 2005 (T = 2 years), and 
resulted in three alarms; N = 1 target earthquake occurred during this period. The probabilities pi of 
having at least one target earthquake within each of the alarms are 5%, 8%, and 5% (see Table 1, 
and Eq. (A14)). The probability to predict the only target event by chance is estimated as 36%. 
Notice that this is the conditional probability given the actual number of target earthquakes and 
alarms. If one does not want to be conditioned by the number of actual target earthquakes, then we 
need to modify our results using (A13). In the case of California, where we had only one target 
earthquake, this will give: 

Pr{predict 1 target with our three alarms}=
Pr{there is exactly one target} Pr{it was predicted}×

. 

The first probability is estimated using (A13): 

( )

10 2
40

Pr{there is exactly one target}= ( )

10 2 0.3
40

R T

N T
S

R Te

N Te e
S

µµ
Ω

−

− − ×
Ω≈ = × × ≈

. 

Thus, the probability to have only one target event and predict it by chance is approximately 
0.36×0.3 = 0.12 (or 12%). 
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Figure 1 Possible outcomes of prediction. For simplicity the territory where the prediction is made 
is represented by a 1D ‘Space’ axis. Rectangles – space-time areas covered by correct (gray) and 
false (white) alarms respectively. 
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Figure 2 Regions where the proposed algorithm was tested by advance prediction. See text for 
details. 
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Figure 3 Results of advance prediction in California. The advance prediction started in July 2003. 
Three alarms were issued: one correct (marked A), one false (B), one current (C). 

 

 

46N

44N

42N

40N

38N

36N

32N

34N

30N
130E 132E 134E 136E 138E 140E 142E 144E 146E 148E 150E

2003.5.26 M=7.0

2003.9.25 M=8.1

46N

44N

42N

40N

38N

36N

32N

34N

30N
130E 132E 134E 136E 138E 140E 142E 144E 146E 148E 150E

5.09.2004 Mw=7.2

5.09.2004 Mw=7.4

Correct prediction

False alarm
Note: Two target EQs near
the alarm; outside the formal
region for prediction (alarm
is not issued out of this region)  

A B

 

Figure 4 Results of advance prediction in Japan. The advance prediction started in July 2003. Two 
alarms were issued: one correct (panel a), and one false (panel b). We notice that two target 
earthquakes occurred outside the formal prediction region near the boundaries of our false alarm; if 
one extended the prediction region to include these two target earthquakes, they would be 
successfully predicted with the current values of algorithm parameters. 
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Figure 5 Results of advance prediction in Northern Dinarides. The advance prediction started in 
May 2004. One false alarm was issued. We notice that the only big earthquake (ML=5.7) in the 
considered region since May 2004 happened within our false alarm.    
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Figure 6 Significance of prediction in California: an illustration (see Appendix A6 for details). 
Shaded ball shows performance of the prediction algorithm during the time interval considered. A 
perfect prediction would lie in the origin. Random binomial predictions (alarm is declared for each 
elementary spatio-temporal unit with a fixed probabilityτ) asymptotically occupy the diagonal, but 
might deviate from it with finite number of target earthquakes. Random predictions with fixed τ  
fall in the grey area with probability α = 0.001. Note that the shape of the grey area depends on the 
number of the target earthquakes that actually happened within the prediction region.  
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