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Reverse tracing of precursors (RTP)

y

Emergence of patterns:
Intermediate-term 4> Chain

Order of detectiomn:
Chain & Intermediate-term

Intermediate-term patterns

. e

A Aluign

3 2
Time (years to large earthquake)

Pattern “Chain of epicenters”

Chain is a sequence of earthquakes
that follow each other closely in time
and space, quickly extending over large
distances

List of parameters:

The chain is formed by union of all
pairs of “neighbors” with

¢ {min(M;,M;)-2.5}
a

Ar,<=r1,10 nd

At <=1,
Each element of the chain has at

least one neighbor inside the chane
and has no neighbors outside

Pattern Chain depicts the rise of
earthquakes correlation range.
Accordingly, only large chains are
considered (at least k, elements and

length >= /).

Only main shocks with M>=M,,,

are considered.

M,

min,

Tos Ips Cy Ky, Iy

R-vicinity of the chain

®
.‘—>

Time order is not taken into account




Intermediate-term patterns
considered in the R-vicinity of the chain
s

Safe state Premonitory state

« Benioff strain release
« Total area of faultbreaks

. * Number of earthquakes
Intensity [KB & Malinovskaya1964;
Bufe & Varnes,1993; Bowman et al.,1998;
Knopoff et al., 1996; Jaume & Sykes,1999 ]

« Burst of immediate aftershocks
. « Swarms of mainshocks

o- ‘@ - Clustering b 3 [KB, Knopoff, Rotwain,1980;
o © 5 o S e Molchan et al,1990]
« Accord: simultaneous activation
Range of K- d of distant areas
# correlation . a;" : * ROC: simultaneous occurrence of
. °e distant intermediate events

(3 1n space & [Kossobokov, Carlson, 1995;

Gabrielov et al., 2000;

™
. Shebalinet al., 2000; Zaliapin et al.,2002]
Ig Magnitude- @
\\ frequency « Upward bend of GR law
[Narkunskaya Schnirman, 1990;

relatlon Gabrielovet al., 2000; Zaliapin et al., 2003]

Intermediate-term premonitory seismicity patterns (lead time years) are studied in
the R-vicinities of the Chains (lead time months). Pattern recognition is applied to
select precursory chains. Available case histories are used for learning.

What are the advantages of RTP?

‘e A RTP gives reduction in
Hypothesis 1: \ \ dimensionality of parameter
shorter-term pattern (chain) geometrically space where premonitory
correlates with intermediate-term patterns. patterns are looked for.

Intermediate-term patterns Chain Target If circles, what size?
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Hypothesis 2:

Chains are self-adapted to size
and form of the area where
precursors emerged
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Experiment in month-in-advance earthquake prediction by RTP algorithm
http://www.igpp.ucla.edu/prediction/rtp/
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Regions covered by prediction

Summary of the test in month-in-advance earthquake prediction by RTP algorithm

# Region/target Period of alarm Prediction was Target earthquake Prediction Probability of @ Probability of a
earthquukes [)ul‘ ():l):;e()()rd outcome random success r?::;:)’;lzfge};;
1 | Japan Mar 27, 2003- July 1, 2003 Sep 25, 2003, M,,=8.3 Correct 0.25 0.34
Mjma>7.0 - Jan27, 2004 within the alarm
2 | California May 5, 2003 - June 24, 2003 Dec 22, 2004, M=6.5 Correct 0.05 0.07
Manss>6.4 -Feb 27, 2004 within the alarm
3 | Southern California Oct 29, 2003- May 12, 2004 False alarm 0.08 0.10
Mjnss=6.4 - Sep 05, 2004
4 | Honsu, Japan Feb 8, 2004 - June 1, 2004 Sep 5, 2004, M,=7.4 Near miss 0.07 0.11
M,>7.2 - Nov 8, 2004 outside the region; (correct with R;=2.5R)
127 km outside alarm
5 | Northern Dinarides Feb 29, 2004 - May 12, 2004 Jul 12, 2004, M,,=5.2, Near miss 0.07 0.08
M,>5.5 - Nov 29, 2004 M,=5.7 (correct for M >5.5) estimate was for M >5.5
within the alarm made for M25.5
6 | Southern California Nov 14, 2004 - Nov 16, 2004 False alarm 0.05 0.07
Manss>6.4 - Aug 14, 2005
7 | Oregon off coast Nov 16, 2004 - Jan 29, 2005 Jun 15, 2005, M=7.2 Near miss 0.01 0.03
Manss>6.4 - Aug 16, 2005 60 km outside alarm (correct with R;=2.5R)
9 | Honsu, Japan June 14, 2005 - Oct 1, 2005 Aug 16, 2005, M,,=7.2 Due to the 0.05 0.14
M,>7.2 - Mar 14, 2006 within the area of technical delay of
alarm data, the alarm
was determined
after the
earthquake

An alamm Is tumed on If the estimated probablilty that alarm Is false Is <50%




Advance prediction of Tokachi-oki
earthquake, Japan, Sept. 25, 2003, M = 8.3

46°N

44°N

42N Case history, 2003
March 27: Precursory
chain of earthquakes was

N formed. It indicates that
an earthquake with

38°N magnitude 7 or more will
occur in gray area within
9 months.

36°N May 26: Earthquake with
magnitude 7.0 occurred in
gray area; precursor was

3N not reported in advance.
July 2: Precursor
3N reported at IUGG

(Sapporo, Japan).
Sept. 25: Tokachi-oki

30°N earthquake in gray area.
130°E 132°E 134°E  136°E 138°E 140°E 142°E 144°E 146°E 148°E 150°E

Dots show earthquakes, forming precursory chain. Stars - target earthquakes.

44°N

42°N

40°N

36eN

34eN

32eN

Advance prediction of
San Simeon earthquake in central California, M=6.5

128°W 126°'W 124°W 122°'W 120°W 118°W 116°W 114°W

z 44N

42°N
Case history, 2003

40°N May 5: Precursory chain
of earthquakes was
formed. It indicates that

28N an earthquake with
magnitude 6.4 or more
will occur in gray area
within 9 months.

36°N June 21: Prediction was
distributed among
relevant scientists and

34°N administrators.
Dec. 22: San Simeon
earthquake (star).

32N

128°W 126°'W 124°W 122°'W 120'W 118°W 116°W 114°W




False alarm in southern California

116°W

36 AW

34°N

32°N

118°W

AW

34°N

32°N

116°'W

Case history

November 29, 2003:
Precursory chain of
earthquakes was formed
and kept growing until
December 5, 2003. It
indicates that an earthquake
with magnitude 6.4 or more
will occur in gray area by
September 5, 2004.
December 24, 2003:
Prediction was distributed
among relevant scientists
and administrators.
September 6, 2004:

Alarm terminates. No such
earthquake occurres.

120°'W 118°'W 114°'W
Bovec earthquake, Slovenia, M,=5.7
48°N 6°E 18°ES°N
45°N 45°N
%
6°E 18°E
Case history, 2004

February, 29: Precursory chain of earthquakes was formed. It indicates that an earthquake with
magnitude M, >5.5 or more will occur in gray area by November 29, 2004.

May, 12: Prediction was distributed among relevant scientists and administrators.

July, 12: Bovec earthquake, M,=5.7(M,,=5.3) has occurred in the area of alarm.




Two earthquakes south to Honsu, M=7.2 and M=7.4. Near miss

135°E 140°E 145°E 150°E 155°E
ﬁ/

45°N

Case history, 2004

February, 8: Precursory chain
of earthquakes was formed. It
indicates that an earthquake
with M >7.2 will occur in gray
area by November §, 2004.
June, 1: Prediction was
distributed among relevant
scientists and administrators.
September, 1: Two earthquakes,
M,=7.2 and M, =7.4 have
occurred near the area of alarm.
Successful prediction is not
scored.

40°N

35°N

301‘%5"E 140°E 145°E 150°E 155°E SON

Gorda plate earthquakes, M=7.2 and M=6.6. Near miss

129°'W 126°'W 123°'W 120°'W

Case history

L~ November, 16, 2004:
Precursory chain of
earthquakes was formed. It
indicates that an earthquake
with M>6.4 will occur in
gray area by August 16,
2005.
January, 29, 2005:
7 Prediction was distributed
% among relevant scientists and
40N administrators.

June, 15 and 17, 2005: Two

earthquakes, M=7.2 and

M=6.6 have occurred near
* e » the area of alarm.
2005.6.15 Mw=6.6 (aftershock) W <@ Successful prediction is not

scored.

45°N 45°N

42°N

o o o
S9N 129°'W 126°'W 123°'W 120% N




RTP applied to M,>7.2 in Northern Pacific
(Japan-Kurils-Kamchatka-Aleutians-Alaska-Canda-Oregon-California-N. Mexico).
Alarm until 19 August, 2005

135°W 132°W 129°W 126°W 123°W 120°W
45°N : 145°N
\}
. 0
42'N ———f142'N
tudl ?
1o
39°N e 39°N
\n;_“&,
~ '
135'W 132°W 120'W 126'W 123'W 120'W

RTP applied to M,>7.2 in Northern Pacific
(Japan-Kurils-Kamchatka-Aleutians-Alaska-Canda-Oregon-California-N. Mexico).

65%0 E 145°E 150°E 155°E 160°E 165°E 170°E 175°E 18%5,N

60°N 60°N

55°N 55°N

50°N 50°N

45°N 45°N

40°MO"E 145°E 150°E 155°E 160°E 165°E 170°E 175°E 18(‘)"'0”N
Current alarms. Solid line shows the area where an earthquake with magnitude M,>7.2 is predicted to occur until

December 13, 2005 with probability 70%. Dashed line shows the area where an earthquake with magnitude M,>7.2
is predicted to occur until December 18, 2005 with probability 50%.




Functions for intermediate-term patterns in time and event scales

Time scale Event scale

Rise of activity: /. Activity
N

Li=tna

N
FJ;,:):% Fy(t;,N)=
2. Sigma

M-M" ~ I .
Fi(t,s)=log,, ZIO FL(t,,N) =log,, zlo.wpu
tsst<t S

3. Rise of magnitudes

u, XM
Fults) =2 Rl 0=

) ,7."»42[.\‘ 2] i
[ M, - M,
[N/2] k=j-N+1 k=j-[N/2}+1
st r-ssty<t-3

4. Acceleration

1 1
- z 1 (e Lo
el s Fc(t/,N):i[ > D

F.(t,5)= INI2I\ i ti=ty e i b~
N s s
g sy
Rise of clustering: 5. Swarm
4,.(1) A,.(t))
Fy(t,s)=1-——- ol _ r\Y
w(t,s) N, Fy(t;,N)=1- TN
6. B-micro
F, (t,8) = 10.«1‘,7\1' - J o
b, (1:5) ngl g:‘«Z FE,.(’”N)ZIOEm Z Zlow M
k=j-N+1 1
Rise of earthquakes correlation range: 7. Accord
~ A.(1)
F(6N) = F (1, N) = 20
r

Transformation of Gutenberg-Richter relation: 8. Gamma

Fo(t.N) = Fyt, N = —— 3 (M, ~M")

MM,y MzM,,

For each set two values of 7'is used: 6 months and 24 months, in total this forms 8 sets for 8

functions.

Parameters of the functions representing intermediate-term precursors

Time scale

Set No. | R, km | 5, months n
1 50 24 20
2 50 60 20
3 100 24 20
4 100 60 20

Event scale

SetNo. [R,km | N | n
1 50 20|10
2 50 | 50|10
3 100 |20 | 20
4 100 | 50 | 20




Time and space window for aftershock determination

Magnitude Time window, days Space window, km
of the main shock

M<2.5 6 20
25<M<3.0 11 23
30<M<35 22 26
3.5<M<4.0 42 30
40<M<45 83 35
45<M<5.0 155 40
50<M <55 290 47
5.5<M<6.0 615 54
6.0<M<6.5 790 61

6.5<M 915 70

Magnitude of an aftershock is less or equal to the magnitude of main shock. If an event occurs within time-space window of an aftershock of
some main shock, but outside the time-space window of that main shock, then the event is not considered as an aftershock, unless it is formally
the direct aftershock of another main shock.

Pattern recognition:
algorithm “Hamming distance”

Formally, the Hamming distance between two Boolean vectors
of the same length is defined as the number of their non-
coincident symbols. Here, the Hamming distance gives the
number of emergent intermediate-term premonitory patterns.

Emergence of a pattern at the moment f is captured by the
condition F,(t) > C,. Each threshold C, is determined
automatically at the learning stage. It minimises the sum n + f;
here n is the rate of failures to predict and fis the rate of false
alarms in prediction with a single pattern P.




Rise of clustering: “b-micro”
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Definition of the earthquake prediction
[C. Allen et al., 1976]

‘Time interval

-Spatial area

‘Magnitude range

-Estimation of the probability of a random
occurence of a target earthquake in time-space
of alarm

‘Estimation of the degree of reliability
(probability that the alarm will happen to be
false)

‘Prediction should be documented to make
possible the verification




Probability that a target earthquake will occur
in the time-space of alarm at random

-

o

o

'
-

Logarithm of the number of main shocks,
normalized by the alarm duration
&)l )]

'
N

3 4 5l\/|> 6 7

This probability is estimated from the available statistics of large earthquakes in
the area of alarm using cumulative magnitude-frequency graph

Probability p, that the alarm will happen to be false

Test “seismic hisrtory”

........ H Number of target
earthquakes in learning
Number of chains

in learning
1970 1980 1990 2000
0.6
£>0.8
0.4
© £=1-n-t; n and t - rate of failures
o to predict and of false alarms in

0.2 the retrospective recognition

1970 1980 1990 2000
Time of the end of the learning material

Probability p,, is estimated as the ratio of the number of false alarms with pattern recognition using intermediate-term
premonitory patterns equal or better than that of the tested chain to the total humber of such chains.

The number of chains in the learning set is increased one by one. Individual estimates of p, are then used in the global
distribution.

“Seismic history” is repeated in two groups of tests:
24 tests with variation of parameters of the chains and of the aftershocks and 32 tests with change of pattern recognition
elements.




Test “backward hisrtory”

1.0
Number of target
ammEmEmnyg earthquakes in learning
0.8 e
N l=l=l=l=l=l=
Number of chains -
0.6 in learning Samns
0.4 = \ ‘4ﬂl-‘\; A
1970 1980 1990 2000
0.6
0.4 v
o >0.8
0.2
0.0
1970 1980 1990 2000

Time of the beginning of the learning material

The number of chains in the learning set is increased one by one starting the latest chains (possible current alarms
excluded)..

“Backward history” is repeated in both groups of tests; individual estimates of p,, (at condition { >0.8) are also used in
the global distributions.

Functions in time scale and in event scale

Test “seismic hisrtory”

1.0 . -
hﬂ. ® \ = am
0.8 — 20 | »
nd [P — Event scale []
0.6 ;
T &
Q‘Tuj Time scale [
0.4
1970 1Tgo
0.6 rg
® oo \%f
0.4 L] o oo
© . L]
Q:_ o o o \/\
0.2
o -e oo
0.0 T L | -y
1970 1980 1990 2000

Individual estimates of p,, (at condition £ >0.8) with functions both in time and event scales are used in the global
distributions.




First group of tests: variations at the Step 1(Chains)

I. Modification of the catalogue used to detect chains

(parameters 1, and k, are readjusted)

1. Aftershocks are not eliminated at all.

2. Spatial windows to eliminate aftershocks are decreased by factor 2/3.

3. Spatial windows to eliminate aftershocks are decreased by factor 1/2.

4. Spatial windows to eliminate aftershocks are increased by factor 3/2.

5. Temporal windows to eliminate aftershocks are decreased by factor 2/3.

6. Temporal windows to eliminate aftershocks are decreased by factor 1/2.

7. Temporal windows to eliminate aftershocks are increased by factor 3/2.

8. Both spatial and temporal windows to eliminate aftershocks are decreased by factor 2/3.
9. Both spatial and temporal windows to eliminate aftershocks are decreased by factor 1/2.
10. Both spatial and temporal windows to eliminate aftershocks are increased by factor 3/2.

ll. Variation of the parameters of the chains
11. ¢=0.2. Parameters r, and k, are readjusted.

12. ¢=0.3. Parameters r, and k, are readjusted.

13. ¢=0.4. Parameters r, and k, are readjusted.

14. ¢=0.5. Parameters r, and k, are readjusted.

15. 1, is decrease by 10%. Parameter k, is readjusted.
16. 1, is increase by 10%. Parameter k, is readjusted.
17. r, is decrease by 10%. Parameter Kk, is readjusted.
18. r, is increase by 10%. Parameter k, is readjusted.
19. k, is decrease by 10%.

20. k, is increase by 10%.

21. 1, is decrease by 10%.

22. 1, is increase by 10%.

23. M, is decrease by 0.1. Parameter k, is readjusted.
24. M., is increase by 0.1. Parameter k, is readjusted.

2-nd group of tests: variations at the Step 2 (pattern recognition)

l. Variants of the catalogue of main shocks are used

to calculate functions

1. Main variant: historic experiment and backward experiment in time and event scales.

2. Spatial windows to eliminate aftershocks are decreased by factor 2/3.

3. Spatial windows to eliminate aftershocks are decreased by factor 1/2.

4. Spatial windows to eliminate aftershocks are increased by factor 3/2.

5. Temporal windows to eliminate aftershocks are decreased by factor 2/3.

6. Temporal windows to eliminate aftershocks are decreased by factor 1/2.

7. Temporal windows to eliminate aftershocks are increased by factor 3/2.

8. Both spatial and temporal windows to eliminate aftershocks are decreased by factor 2/3.
9. Both spatial and temporal windows to eliminate aftershocks are decreased by factor 1/2.
10. Both spatial and temporal windows to eliminate aftershocks are increased by factor 3/2.

Il. Variants of pattern recognition rule

11. Only cases (n, + f, < 0.8) in the learning are taken into account.

12. Only cases (n, + f. < 0.7) in the learning are taken into account.

13. Only cases (n, + f, < 0.6) in the learning are taken into account.

14. 8 cases with best (n, + £, ) in the learning are taken into account.

15. 16 cases with best (n, + £, ) in the learning are taken into account.

16. 32 cases with best (n, + f, ) in the learning are taken into account.

17. "Hard C." in the learning false alarms are given more weight to determine C..

18. "Soft C," in the learning failures to predict are given more weight to determine C..

19. 32 cases: R=50 km (100 km excluded).

20. 32 cases: R=100 km (50 km excluded).

21. 32 cases: s=24 months (60 months excluded) in time scale; N=20 (50 excluded) in event scale.
22. 32 cases: s=60 months (24 months excluded) in time scale; N=50 (20 excluded) in event scale.
23. 32 cases: T=6 months (24 months excluded).

24. 32 cases: T=24 months (6 months excluded).

25-32. 56 cases: one function of 8 excluded.
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False alarm ended
on 5 Sept. 2004

33°N 33°N

Chain not recognized
as precursory

120'W el 114°'W

Distribution of the individual estimates p,,

False alarm in Souther California, 5.12.2003-5.9.2004 The chain that was not recognised as precursory,
S. California march-april 2004
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Abstract

We introduce a new approach to short-term earthquake prediction ndRegdrse Tracing of PrecursdrRTP), since it
considers precursors in reverse order of their appearance. First, we detect the “candidates” for the short-term precursors; in
our case, these are newly introduced chains of earthquakes reflecting the rise of an earthquake correlation range. Then we
consider each chain, one by one, checking whether it was preceded by an intermediate-term precursor in its yiefity. If
we regard this chain as a precursor; in prediction it would start a short-term alarm. The chain indicates the narrow area of
possibly complex shape, where an intermediate-term precursor should be looked for. This makes possible to detect precursors
undetectable by the direct analysis.

RTP can best be described on an example of its application; we describe retrospective prediction of two prominent Californian
earthquakes—Landers (1992),= 7.6, and Hector Mine (1999)/ = 7.3, and suggest a hypothetical prediction algorithm.
This paper descripes the RTP methodology, which has potentially important applications to many other data and to prediction
of other critical phenomena besides earthquakes. In particular, it might vindicate some short-term precursors, previously
rejected as giving too many false alarms.

Validation of the algorithm per se requires its application in different regions with a substantial number of strong earthquakes.
First (and positive) retrospective results are obtained for 21 more strong earthquakes in Calorn4), Japan¥/ > 7.0)
and the Eastern Mediterranealf (> 6.5); these results are described elsewhere. The final validation requires, as always,
prediction in advance for which this study sets up a base. We have the first case of a precursory chain reported in advance of
a subsequent strong earthquake (Tokachi-oki, Japan, 25 Septembed2608,1).

Possible mechanisms underlying RTP are outlined.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Short-term earthquake prediction; Long-range correlation; Earthquake chains; Precursors; Instability

1. Introduction

1.1. Generation of strong earthquakes—a
non-localized process
* Corresponding author. L .
E-mail addressesvkb@ess.ucla.edu (V. Keilis-Borok), Seismicity is commonly recognized as a part of the
shebalin@mitp.ru (P. Shebalin). geodynamics Aki, 2003; Bird, 1998; Keilis-Borok,

0031-9201/$ — see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.pepi.2004.02.010
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1990; King et al., 2002; Press, 1965; Rundquist analysis, in which these patterns are detected in the
and Soloviev, 1999; Scholz, 1990in seismically reverse order of their appearance: short-term patterns
active areas the earthquakes accommodate a con-are analyzed first, although they emerge later. Our
siderable fraction of tectonic development of the findings can best be described on a specific example
lithosphere. That development goes on in multiple of data analysis.

time-, space-, and energy-scales and preparation of

strong earthquakes is not an exception. Accordingly,
while the target of earthquake prediction—a strong

earthquake—is a localized event, the process of its

generation is not localized. Strictly speaking, its time

1.3. Region and data

We describe detection of short-term patterns be-
fore two prominent Californian earthquakes—Landers

scales range from geological to seconds in time, and (1992), M = 7.6, and Hector Mine (1999 = 7.3.

spatial scales—from global to microscopitufcotte,
1997; Keilis-Borok, 1990; Gabrielov et al., 1999

These are the largest Californian earthquakes since
1965—the period, when the earthquake catalog is suf-

however, in prediction research a truncated scaling is ficiently complete for our analysis. Territory consid-

usually considered: from tens of years to days, and
from hundreds of kilometers to kilometer.

This multiplicity of scales is reflected in the gen-
eral concept of the seismically active lithosphere as
a hierarchical dissipative non-linear system, persis-
tently self-organizing from time to time into the criti-
cal phenomena—the strong earthquak@&sufter and
Shnirman, 1997; Bowman et al., 19&&brielov et al.,
1994, 2000 Jaume and Sykes, 1999; Keilis-Borok,
1990; Rundle et al., 2000; Sornette, 2000; Turcotte,
1997; Zaliapin et al., 2003aAmong manifestations
of that selforganization are premonitory seismicity
patterns—the spatio-temporal patterns of seismicity
emerging as a strong earthquake approachds, (
2003; Buffe and Varnes, 1993; Caputo et al., 1983;

ered is shown inFig. 1 The earthquake catalog is
taken from ANSS/CNSSandNEIC).

2. Chains

Our point of departure is provided by the short-term
patternsRoc and Accord capturing a premonitory
increase in earthquake correlation range. They were
found first in modelsGabrielov et al., 2000and then
in observations Keilis-Borok et al., 2002; Shebalin
et al., 2000; Novikova et al., 20p20ther patterns
capturing that phenomenon are suggestedatier
et al. (2001)and Zaliapin et al. (2002b)Here, we
introduce the patterohain which is a generalization

Gabrielov and Newman, 1994; Jin et al., 2003
Keilis-Borok, 1990, 1996, 200Keilis-Borok et al.,
1990a,b, 1964, 1999, 200XKnopoff et al., 1996
Kossobokov et al., 1995, 200Bla et al., 1990; Mogi,
1985; Newman et al., 1995; Novikova et al., 2002; 2.1. Definitions
Press, 1965; Press and Allen, 1995; Romanowicz,
1993; Rotwain and Novikova, 1999; Shebalin et al., 2.1.1. Earthquake catalog
2000; Turcotte, 1997Zaliapin et al., 2002a,b, 2003b As in most premonitory patterns of that family
Zoller et al., 200). A multitude of such patterns have (Keilis-Borok, 1996; Kossobokov and Shebalin, 2p03
been reported in rather different scales. Systemati- aftershocks are eliminated from the catalog; however,
cally tested are the intermediate-term patterns (with an integral measure of aftershocks sequdni® re-
characteristic lead time of years). Here, we suggest atained for each remaining earthquake (main shocks
method to detect the short-term patterns, which have and foreshocks). We use a common representation of
the lead time of months. the earthquake cataldg;, ¢;, A;, hj, mj, b;}, j=
1,2,.... Here,t; is the time of an earthquake; >
tj—1, ¢; andi;, latitude and longitude of its epicenter;
h;, focal depth; andn;, magnitude. We consider the
We consider the short-term patterns in conjunction earthquakes with magnitude = mmin. Focal depth
with intermediate-term ones. This is done by RTP is not used in this study.

of RocandAccord Qualitatively, a chain is a rapidly
extended sequence of small earthquakes that follow
each other closely in time and space.

1.2. Reverse Tracing of Precursors (RTP)
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Fig. 1. Territory considered. Stars mark large earthquakes, targeted for prediction. Dots show background seismicity for the time considered
(1965-2003): epicenters of earthquakes with magnitude 3 with aftershocks eliminated. Dashed line is used for time—distance projection
of epicentersKgig. 3 below).

2.1.2. Chain k > ko and! > [g. These thresholds ensure that our
Let us call two earthquakeseighbors if: (i) their chains are exceptional phenomena.
epicenters lie within a distanege and (i) the time in-
terval between them does not exceed a thresh@ld  2.1.3. Chain’s vicinity
A chain is the sequence of earthquakes connected by To compare location of a chain with locations of
the following rule:each earthquake has at least one strong earthquakes we consider Rsvicinity for-
neighbor in that sequencand does not have neigh- mally defined as the union of circles of the radRs
bors outside the sequencEhe threshold is normal- centered at the epicenters of the chains forming the
ized by the average distance between the earthquakeghain. To smooth the borders of that area we add the
with lowest magnitudenin a pair considered. We use dense sequence of circles along the lines connect-
a coarse normalization= ro10Z, c being a numer-  ing each epicenter in the chain with the two closest
ical parameter. ones. The envelope of all the circles is the border of
Let k be the number of earthquakes thus connected R-vicinity of the chain; it is similar to the “Wiener
andl—the maximal distance between their epicenters. sausage”, introduced by N. Wiener in the theory of
We look for precursors only among the chains with probability.
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Table 1 (iiy Search for the local intermediate-term patterns in
Parameters for detecting the chains the R-vicinities of each chaiiThey are looked for
Mmin  fo (km) ¢ 70 (days) ko lo (km) R (km) within T years before the chaiii;is an adjustable
33 50 0.35 20 8 350 75 numerical parameter. If (and only if) such patterns

are detected, we regard this chain as a short-term
precursor; in prediction it would start a short-term
2.2. Data analysis alarm.

Notations are given in the tex§ection 2.1

To complete that description we have to specify

We detected the chains defined above using NUMer-;o e diate-term patterns used at the second step.

ical parameters listed ifable 1 Aftershocks have
been identified by a coarse windowing, as described o
in (Keilis-Borok et al., 2002 The remaining cata- 3-2- Definitions
log contains 3940 earthquakes. We have found among
them nine chains, altogether containing 116 earth- We use thepattern X which reflects premon-
quakes: this shows that our chains are indeed excep-itory rise of seismic activity. This pattern, intro-
tional phenomena. Maps of the chains are shown in duced in Keilis-Borok and Malinovskaya (1964)
Fig. 2 shaded areas are their vicinities, defined above. IS successfully used in different prediction algo-
Vital characteristics of each chain are giverTable 2 rithms, alone or in combination with other patterns
Fig. 3 juxtaposes the chains and strong earthquakes (Keilis-Borok, 1990, 1996, 200(Keilis-Borok et al.,
on the time—distance plane; distance is counted along1999, 2002 Kossobokov et al., 1995, 2003; Rotwain
the dashed line shown ffigs. 1 and 2 and Novikova, 199p It is defined as a premonitory
As we see inFig. 2 (two panels in the bottom increase of the total area of the earthquake sources.
row) and Fig. 3, only the two last chains (#8 and Emergence of this pattern is captured by the function
#9) m|ght be regarded as the |oca| Short_time pre_ Z(t) deﬁned in a S||d|ng time-WindOWK(eiliS-BOI’Ok
cursors to the Landers and Hector Mine earthquakes: @hd Malinovskaya, 1964
short-term—because they emerge with the short-term ,
lead times (respectively, 1.7 and 4.6 months); and Z(I/S’ B>=ZloB’“’ mi Z Mmin; =S <hi <t
local—because the target earthquakes occur in their
vicinities. However, the other seven chains, if used as
precursors, would give false alarms. To reduce their
number we introduce the RTP analysis.

Summation is taken over all main shocks within the
time window ¢—s, t) in theR-vicinity of the chain. We
take B ~ 1, so that the sum is coarsely proportional
to the total area of the fault breaks in the earthquakes’
sources Keilis-Borok, 2003; with B = 0 this sum is

3. Precursory chains the number of earthquakes, with= 3/2 it is propor-
tional to their total energy. The emergence of pattern

3.1. Hypothesis X is identified by conditionx(¢z) > Xo; this thresh-
old depends on the magnitude of target earthquakes.

We hypothesize thaa precursory chain(as op-  In previous applications cited above pattethwas

posed to a chain giving a false alajris preceded by  ysed as non-local one. We renormalize its numerical
the local intermediate-term precursors formed in the parameters to make it local.

chain’s R-vicinity This vicinity is not known, until
the chain is formed, and its shape might be rather
complicated (sed-ig. 2. To overcome that impasse
we introduce the two-step RTP analysis schematically
illustrated inFig. 4.

3.3. Data analysis

We detected precursory chains and determined their
R-vicinities (Section 2. In each vicinity we computed
(i) Search for the chains and determination of their the functionX(t) within time intervalT = 5 years and
R vicinities(Section 2. Each chain is regarded as summation intervak = 6 months. We identified as

a “candidate” for a short-term precursor. precursory three chains preceded by largest peaks of
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Fig. 2. Maps of the chains. Detected chains are shown in separate boxes. Circles show epicenters of earthquakes in a chain; their size is
proportional to magnitude. The shadowed areas sRexicinities of the chains. Dates of the beginning and the end of a chain are given at

the top of each box. Three chains (1977, 1992, and 1999) shown in bold are identified as precursory ones. The first chain gives a false alarm;
two other chains are followed within few months by target earthquakes, Landers and Hector Mine. Other notations are the $agielas in

3(t); they can be recognized with the threshald = ing threshold is¥y = 10°4; it is smaller since smaller
1057, Table 2shows these chains in bold. As we see, number of earthquakes is included in summation.
identification of the first chain, in 1977, is wrong; in

prediction it would give a false alarm. Identification 3.4. Hypothetical prediction algorithm

of two other chains, in 1992 and 1999, is correct; each

is followed by a target earthquake within few months. It remains to define alarms triggered by a precursory
The same chains would the selected with the tenfold chain. This is a final step in transition from a precur-
smaller time intervalT = 6 months. The correspond- sor to algorithmic prediction. We adapt the standard
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Table 2
Characteristics of the chains
# Start End Duration Lead time Distance from a Number of Maximal Largest Area of the
(days) (months)  strong earthquake earthquakesk distance| magnitude R-vicinity,
(km) (km) x10° (km?)

28.06.1992: Landers earthquake,= 7.6

1 16.07.1969 03.10.1969 80 17 499 5.3 150

2 15.10.1969 19.11.1969 35 12 485 5.6 113

3 26.08.1973 17.10.1973 53 13 381 4.5 150

4 03.06.1977 01.08.1977 60 11 377 4.7 104

5 07.09.1984 26.10.1984 49 9 408 4.6 90

6 08.07.1986 20.07.1986 12 10 543 5.9 122

7 24121989 04.02.1990 41 8 373 5.7 101

8 27.03.1992 08.05.1992 42 17 29 17 635 6.1 161
16.10.1999: Hector Mine earthquak¥d, = 7.4

9 19.02.1999 01.06.1999 102 4.6 60 11 380 49 98

Chains recognized as “precursory” by RTP analySisction 3 are shown in bold. Chain #4 would trigger in prediction a false alarm,
Chains #8 and #9 would trigger correct alarms.

general scheme of prediction algorithms, widely used the candidates for short-term precursors; in our case,
in intermediate-term earthquakes prediction and many those are the chains of small earthquakes capturing the
other problemsKeilis-Borok, 2002; Kossobokov and  rise of earthquake correlation range. A chain deter-
Carlson, 1995and references therein). mines its narrow vicinity where we look for the local
intermediate-term precursor(s), pattexrin our case.

Its presence in turn indicates the precursory chains.
We describe RTP on an example: detecting precur-
sory chains months before two prominent California
earthquakes, Landers (1992) and Hector Mine (1999),
well isolated in time and space from other comparable
earthquakes in that region.

(i) Prediction is targeted at the main shocks with
magnitudeM or more; usually the magnitude in-
tervals M, M + 1) are considered separately.

(i) When a precursory chain is detected, a short-term
alarm is triggered. It predicts a target earthquake
in R-vicinity of the chain, within time interval
(te, te + 1); herete is the moment when chain
emerged,r a numerical parameter (duration of
alarm). Results of the data analysis suggest to take
7 = 6 months.

4.2. Methodological advantage of RTP

The opposite (direct) analysis would start with
Possible outcomesf such prediction are illustrated  tracing of the intermediate-term patterns hidden
in Fig. 5. Probabilistic component of predictionis rep- in the background seismicity. Almost all of them,
resented by the total time—space covered by alarmsknown so far, are not local, pattesh included. They
and probabilities of false alarms and failures to predict emerge in the areas whose linear size is up to 10
(Molchan, 2003. times larger than the source of the incipient target
earthquake Bowman et al., 1998; Keilis-Borok and
Malinovskaya, 1964; Keilis-Borok and Soloviev,

4. Discussion 2003; some patterns—even up to 100 times larger
(Press and Allen, 1995; Romanowicz, 1998k have
4.1. Summary found patternX that became local after renormaliza-

tion: it emerges in the same narrow ar&avicinity
This paper introduces RTP analysis in the evalua- of the chain), where epicenter of a target earthquake
tion of seismicity, culminated by a strong earthquake. lies. As we see irFig. 2, the shape of that area might
Precursors with different lead times are considered be rather complex, and its size—diverse. To find this
in reverse order of their appearance. First, we detect area by trying different shapes, sizes, and locations is
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Fig. 4. Schematic illustration of thReverse Tracing of Precursors
(RTP). (Top) Map showing precursory chain and the source of
the target earthquake (black). (Bottom) Scheme of analysis in
time—space projection. Circles show epicenters forming the chain
(dark gray) and preceding it (light gray). Th&Vicinity” of the

chain is shown in light gray. Star is projection of the epicenter of
the target earthquake. The gray rectangle before the chain shows
the time—space where rise of activity (pattexf) is looked for.
White area shows the time—space where this pattern was found;
its presence indicates a precursory chain. The chain is detected
first, although it emerges after the pattefn Note how a narrow
chain determines a much larger time interval where a patirn

is looked for. Dark gray area shows the time—space covered by an
alarm: within 6 months after precursory chain a target earthquake
is expected in itR-vicinity.

not realistic. Reverse analysis resolves this impasse,
indicating a limited number of chains to consider.

4.3. Physical interpretation

RTP seems to be a promising general approach to
prediction of critical phenomena in complex systems:
it identifies a rare small-scale phenomenon that car-
ries a memory of the larger scale history of the sys-
tem. At the same time, this approach has a natural
earth-specific explanation: it follows from the concept
that strong earthquake is a result of a lasting large-scale
process whose different stages involve different parts
of the fault network. Earthquakes in the chain mark
the part of the fault network that has started to move in
unison months before a target earthquake. Patiern
indicates that this synchronization started much ear-
lier, albeit expressed in a more subtle form. A similar

and Planetary Interiors 145 (2004) 75-85

step-by-step escalation of instability was observed in
direct analysis: by algorithms M8&MS&pssobokov
and Shebalin, 2003 and by some other algorithms
(Aki, 2003; Shebalin et al., 2000; Keilis-Borok and
Soloviev, 2003.

Both the chains and the peaks bf are sporadic
short-lived phenomena not necessarily reflecting the
steady trends of seismicity. This is typical for all pre-
monitory patterns of that familyKilis-Borok, 2002;
Kossobokov and Shebalin, 200®robably, both pat-
terns are the symptoms but not causes of a strong
earthquake: they signal its approach but do not trigger
it. Similarly sporadic are many observed precursors
to other critical phenomena, e.g. economic recessions
(Keilis-Borok et al., 200D

4.4. Implications for earthquake prediction

e We have applied RTP analysis to target earth-
quakes of more diverse magnitudes in California
and two other regions, Japan and E. Mediter-
ranean, normalizing the parameters of the algo-
rithm and considering all known (eight) major
types of intermediate-term patternieflis-Borok
and Soloviev, 2008 We have first two earthquakes
predicted in advance: Tokachi-oki earthquake in
Northern Japan (M8.1, 25 September 2003) and
San Simeon in Central California, M6.5, 22 De-
cember 2003). The results, highly encouraging, are
described irShebalin et al., in press

It seems natural to apply the RTP analysis to earth-
quake precursors, expressed in other fields. First
positive results are obtained with precursors gaug-
ing interaction between the ductile and brittle layers
of the crust Aki, 2003; Jin et al., 2003; Zaliapin
et al., 2003a Other promising applications include
electromagnetic fieldddyeda and Park, 200Xluid
regime Keilis-Borok, 1990; Ma et al., 1990GPS,
INSAR, etc.

We detect intermediate-term patterns only af-
ter a chain has emerged so that its vicinity can
be determined; this is too late to declare an
intermediate-term alarm. Accordingly, our results
concern only short-term prediction.

“Pre-chain” precursors might emerge with a short
lead time too.

There are no reasons not to explore RTP analy-
sis for prediction of different critical phenomena



V. Keilis-Borok et al./Physics of the Earth and Planetary Interiors 145 (2004) 75-85

Space

*

Correct alarm

False alarm

83

* — Failure to predict

P *

*

Correct alarm

Time

Fig. 5. Possible outcomes of prediction. Stars mark epicenters of strong earthquakes, targeted by prediction. A box to the right of the chain
(dark gray) is the time—space covered by an alarm. A prediction is correct if a strong earthquake occurs within an alarm. Otherwise, this is
a false alarm. Failure to predict is the case when a strong earthquake occurs outside of an alarm. Probabilistic component of prediction is
represented by the rates of false alarms and failures to predict and the time—space covered by alarms (in % to total time—space considered).

4.5. Questions arising

in hierarchical non-linear systems: other geological
disasters; geotechnical, and even socio-economic
disasters. Qualitatively similar approach is routinely
used in medicine, criminology, etc.

e However, accurate the short-term prediction would
be it will not render unnecessary the predictions
with a longer lead time. One can find in seismo-
logical literature a reappearing mistake: that only e
precise short-term (or even immediate) prediction is
practically useful. Actually, protection from earth-
guakes requires a hierarchy of preparedness mea-
sures, from building codes, insurance, and issuing e
bonds, to reinforcement of high risk objects, to
red alert. It takes different time, from decades, to
years, to seconds to undertake different measures.
Accordingly, earthquake preparedness requires all
stages of predictionKeilis-Borok, 2002; Molchan,
2003; Kantorovich and Keilis-Borok, 1991Such

is the case in preparedness to all disasters, war
included.

one—the patternX. In subsequent applications
(Shebalin et al., in pregsall major types of
intermediate-term seismicity patterns have been
used with similar renormalization. The question
arises which set of precursors provides the opti-
mal prediction strategy, as defined for example in
(Molchan, 2003; Zaliapin et al., 2008b

It is not yet clear how to make the scaling of
RTP analysis self-adapting to the regional seismic
regime, e. g. to parameters of the Gutenberg—Richter
relation.

Earthquake precursors emerge with the broader
range of the lead times than considered here. They
are divided, albeit fuzzily, intdong-term (tens of
yearg = intermediate-tern{year§ = short-term
(month$ and = immediate(days or less The
guestion arises how to apply RTP analysis to the
whole sequence or to its different parts.

Summing upthe RTP approach seems to open new

possibilities in the quest for the short-term prediction.
We hope that this study sets up a base for further devel-

opment of this approach in the intertwined problems

of earthquake prediction, fundamental understand-
We considered only one short-term precursor—a ing of dynamics of the lithosphere, and non-linear
chain of earthquakes—and one intermediate-term dynamics.
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Abstract

Short-term earthquake prediction, months in advance, is an elusive goal of earth sciences, of great
importance for fundamental science and for disaster preparedness. Here, we describe a methodology
for short-term prediction named RTP (Reverse Tracing of Precursors). Using this methodology the
San Simeon earthquake in Central California (magnitude 6.5, Dec. 22, 2003) and the Tokachi-oki
earthquake in Northern Japan (magnitude 8.1, Sept. 25, 2003) were predicted six and seven months
in advance, respectively. The physical basis of RTP can be summed up as follows: An earthquake is
generated by two interacting processes in a fault network: an accumulation of energy that the
earthquake will release and a decrease in stability triggering this release. Energy is carried by the
stress field, instability is carried by the difference between the stress and strength fields. Both
processes can be detected and characterized by “precursory” patterns of seismicity or other relevant
fields. Here, we consider an ensemble of premonitory seismicity patterns. RTP methodology is able
to reconstruct these patterns by tracing their sequence backwards in time. The principles of RTP are
not specific to earthquakes and may be applicable to critical transitions in a wide class of
hierarchical non-linear systems.

1. Introduction

There is increasing evidence that variations in regional seismicity occur prior to intermediate and
large earthquakes (Knopoff et al., 1996; Bowman et al., 1998). Using pattern recognition techniques
a series of algorithms have been developed which provide intermediate-term and long-term
predictions with lead times of years to decades (Keilis-Borok and Shebalin, 1999; Keilis-Borok,
2002; Keilis-Borok and Soloviev, 2003; Rundle et al., 2003). In this paper an algorithm is
introduced that has successfully made short-term earthquake predictions, i.e. months in advance
(Shebalin et al., 2004) . This algorithm is now tested by advance prediction in several seismically
active regions and its performance is yet to be validated. However, the first successes along with the
novelty of the methodology used in this algorithm prompt description of its essential underlying
ideas and approaches.



It should be emphasized that there are two quite different approaches to earthquake prediction. The
first is to make continuous predictions; in terms of earthquakes, this requires the specification of
earthquake risk at all spatial points at each time instant. This approach is very useful when
predicting a large number of small to intermediate earthquake since one can directly compare the
observed and predicted seismic rates (probabilities, intensities, efc.) using the log-likelihood
paradigm (Daley and Vere-Jones, 2004) or the least-square discrepancy (Whittle, 1963). The second
approach that is used here is binary: an earthquake it forecast (predicted) for a specified area and
time window, called alarm region or alarm. This approach is better justified when predicting
extremely rare large events, so the direct comparison of the predicted continuous rate with a couple
of observed earthquakes is rather problematic (Molchan, 2003). Our goal is to narrow down the area
and time duration of alarms, within which a target earthquake is expected. Prediction is targeted at
the large and therefore rare earthquakes; in a typical alarm area they occur on average once in 10-20
years. Our prediction should capture the target within an interval 20-30 times smaller, since a short-
term alarm lasts months. Thus our alarms should be equally rare and each correct alarm would
typically capture only one target; in very rare cases more than one.

It should be noted that an early theoretical discussion of the necessity of a discrete binary approach
instead of a continuous one in predicting rare point events appear in 70s (Lindgren, 1975,1985; De
Mare, 1980); and the difference between continuous and binary predictions has been widely
recognized in weather forecasting (Jolliffe and Stephenson, 2003). An example of binary forecast is
a tornado warning issued for a specified area and time window. Tornado warnings are analogous to
the earthquake alarms considered in this paper. Possible outcomes of such predictions are illustrated
in Fig. 1. In this scheme, we have two types of errors: failures to predict (target earthquake outside
alarm region) and false alarms (no target earthquakes within an alarm); we also consider the total
spatio-temporal coverage of alarms as a characteristic of a prediction algorithm. Probability of
errors of different types is estimated using a sequence of predictions and is visually represented in
the error diagrams (Sect. 3 below; Molchan, 2003). An analogous approach in weather forecasting
is the relative operating characteristic diagram (Jolliffe and Stephenson, 2003).

2. Reverse Tracing of Precursors (RTP)

We will now outline the RTP (reverse tracing of precursors) approach to short-term earthquake
forecasting. Details are given in the Appendix. Three aspects are important:

(i) Precursory chains that reflect the premonitory increase of the earthquakes’ correlation range;
qualitatively speaking, these chains are the dense, long, and rapidly formed sequences of small and
medium sized earthquakes. Their definition generalizes premonitory seismicity patterns ROC and
ACCORD. Heuristically, the pattern ROC ensures the ongoing increase of earthquake correlation
range, expressed via the pair-wise correlation function; while ACCORD reflects simultaneous
activation of several major parts of the regional fault network. They represent complimentary
approaches to detecting the earthquake correlation. Formal definitions of these patterns as well as
their performance in synthetic and observed seismicity can be found in (Gabrielov et al., 2000;
Shebalin et al., 2000; Zaliapin et al., 2002, 2003; Keilis-Borok et al., 2002). An alternative approach
to measuring the earthquake correlation was introduced in (Zoller and Hainzl, 2001; Zéller et al.,
2001).

(ii) Intermediate-term patterns, originally found in the modeled and observed seismicity (Prozorov
and Schreider, 1990; Keilis-Borok and Shebalin, 1999; Keilis-Borok, 2002; Keilis-Borok and
Soloviev, 2003; Gabrielov et al., 2000; Zaliapin et al., 2003). They reflect four major types of



premonitory phenomena: rise of seismic activity, rise of earthquakes’ clustering, rise of earthquakes
correlation range, and a transformation of the magnitude-frequency (Gutenberg — Richter) relation
towards an increasing share of relatively large magnitudes.

(iii) Pattern recognition of infrequent events is used to define the precursory combination of the
patterns. Specifically, we used the Hamming algorithm which in our case is analogous to voting
(Keilis-Borok and Soloviev, 2003); this algorithm is a standard tool in making a decision
considering several “opinions”. Formally, the Hamming distance between two Boolean vectors of
the same length is defined as the number of their non-coincident symbols. Here, the Hamming
distance gives the number of emergent intermediate-term premonitory patterns (see details below).

RTP analysis consists of the following stages. First, we detect chains - the “candidates” for the
short-term precursors. We have found that precursory chains emerge within months before most of
the target earthquakes. However, up to 90% of the chains are not followed so closely by strong
earthquakes and in prediction they would cause false alarms. To eliminate false alarms, we next
determine which intermediate-term precursors have occurred in the vicinity of each candidate
within few years preceding it. Finally, we apply pattern recognition: knowing for each candidate
what intermediate-term patterns have preceded it, we recognize which chains are precursory and
which are false alarms. Specifically, in order to decide whether a chain is premonitory or not we use
a set of M individual intermediate-term premonitory patterns. Some of them give premonitory
signal (emerge) while other do not. The current state of the patterns is represented by a Mx1
Boolean vector indicating which pattern emerge (1) and which is not (0). A zero vector would
indicate that none of the patterns emerge and the chain is most probably not precursory, while a
vector consisting of all ones that all the patterns emerge and the chain is most probably precursory.
Hamming distance, defined as the number of ones in our Boolean vector, shows how far the vector
is from a zero one; in other words, how many patterns “voted” for making the chain precursory. If
sufficient number of votes is accumulated (the threshold is established during the learning) the
chain is considered precursory. This brings us to the prediction proper. The emergence of each
precursory chain starts an alarm: a target earthquake is expected during r months after the chain was
formed and in its formally defined vicinity.

Thus, the precursory chain indicates the narrow area of a possibly complex shape (the chain
vicinity) where intermediate-term precursors should be looked for. Their presence in turn validates
the chain, as a short-term precursor. A chain is considered first although it emerges later — hence
our analysis is called reverse.

3. Performance

We have tested our algorithm by advance prediction in Southern and Central California using the
earthquake catalog ANSS/CNSS starting from January 1965. First, the data for 1965 — 1994 have
been used for “learning”, i.e. self-adaptation of some of the parameters (see Appendix A3). Then,
the resulting rule was tested on independent data (i.e. the data not used for learning) for the period
from January 1995 to May 2003. In June 2003 we have launched advance prediction. The only
target earthquake that happened in the prediction region during the advance phase of the experiment
(the San Simeon earthquake, December 22, 2003, M=6.5) was successfully predicted. The alarm
capturing this earthquake started on May 5, 2003 — the date when the precursory chain triggering
the alarm was completed. This alarm was reported on June 21 of the same year (Aki et al., 2003)



The algorithm has also been applied to the territories of Japan; Central Apennines, Alps, Northern
Dinarides and Po valley; and Eastern Mediterranean (Figs. 2-5) with magnitude of target
earthquakes M > 7, M > 5.5 and M > 6.5 respectively. In Japan, the learning was performed during
1975-2003, and advance prediction started on July 1, 2003 (Shebalin et al., 2003). In Central
Apennines, Alps, Northern Dinarides and Po valley the learning was performed during 1970-1990,
and advance prediction started on May 12, 2004. In Eastern Mediterranean the learning was
performed during 1983-2003, and advance prediction started on May 12, 2004. The intermediate-
term patterns (see Appendix A3) showed amazing self-adjustment: they were applicable within all
three regions, and to all chains within each region, with the same values of their four numerical
parameters.

The Tokachi-Oki, Japan, earthquake, 25 September 2003, M=8.1, has been also predicted in
advance: the alarm started on 27 March, 2003 and was reported on 2 July 2003 (Shebalin et al.,
2004).

During the time period covered by our advance prediction experiment, two target earthquakes have
occurred; both of them have been predicted. Three false alarms were issued; one alarm is current.
Figures 3-5 and Table 1 summarize the results of the experiment. It is worth noticing that a large
earthquake (M = 5.7, Mw = 5.3) occurred within the alarm issued in Northern Dinarides; and that
two target earthquakes (Mw= 7.4, Mw= 7.2) occurred near one of the alarms issued in Japan,
outside the formal prediction region. A retrospective prediction with extended region led to
successful prediction of those two earthquakes.

3. Prediction quality

As we mentioned in introduction, the problem of evaluating a binary prediction requires special
tools. The main difference from evaluating a continuous prediction is that we can no longer use a
single measure of discrepancy between prediction and observations (one faces the same situation in
classical hypothesis testing where errors of two types are introduced). We use three interdependent
measures of prediction quality, defined in Appendix A5: fraction of unpredicted earthquakes, n;,
fraction of false alarms, f; and the space-time 7 covered by all alarms together, normalized by the
whole space-time considered. The space is measured not in km® but in long-term average of
seismicity. We used the average number of mainshocks with m > 4. The optimal tradeoff between
different characteristics depends on a loss function L(n.f, 7) for preparedness measures.

The error diagram juxtaposes the prediction errors; each particular prediction corresponds to a
single point in (n,7, f) space. The error diagram is used to evaluate the predictive power of our
prediction algorithm and its stability. For illustration, the error diagram for our prediction
experiment in California during 1964-2005 is shown in Fig. 6; it shows the relative alarm coverage
7 (10%) vs. the number of failures to predict (0); the number of false alarms (5) is indicated in
parentheses. A more detailed discussion of error diagram approach is given in appendix AG.

Discussion

1. A possible physical mechanism underlying the RTP methodology is based on models of
dynamical systems (Gabrielov et al., 2000; Zaliapin et al., 2003) and geodynamics (Rundquist and
Soloviev, 1999). Precursory chains outline the areas where instability is accumulated months before
a target earthquake. This instability reveals itself through an increase of the earthquake correlation



range. Intermediate-term premonitory seismicity patterns considered reflect the accumulation of
energy and instability necessary and sufficient to trigger an earthquake, in the area outlined by a
precursory chain, but years before the chain. In more general terms, RTP identifies a small-scale
perturbation that carries a memory of the larger scale history of a complex system (in our case, the
fault network). Increases of the correlation range are a known symptom of critical transitions in
statistical physics and of bifurcation in nonlinear dynamics (Kadanoff, 2000). Typically for
premonitory patterns of this kind precursors considered are sporadic short-lived phenomena not
necessarily reflecting the steady trends of seismicity. This suggests that both patterns are symptoms
but not the causes of a target earthquake: they signal its approach but do not trigger it. Such
sporadic precursors to critical phenomena have been found also in socio-economic complex systems
(Keilis-Borok et al., 2000).

2. It seems promising to apply RTP analysis to the detection of earthquake precursors in the other
relevant and available data such as electromagnetic fields (Uyeda and Park, 2002), fluid regime (Ma
et al., 1990), InSAR and GPS (Simons et al., 2002). The first positive result has been obtained with
precursors gauging interaction between the ductile and brittle layers of the Earth crust; this opens a
highly promising link of geodynamics and nonlinear dynamics approaches to prediction (Jin et al.,
2004).

3. The methodological advantage of RTP over a direct analysis is in the drastic reduction in
dimensionality of the parameter space where premonitory patterns are looked for. We have found
here the patterns formed in narrow areas different from case to case, whose shape might be
complicated, and with diverse size. To find these areas by a trial-and-error procedure would require
trying different shapes, sizes, chains and locations, which is hardly realistic. Reverse analysis
resolves this impasse, determining from the start a limited number of the areas to consider. Thus,
RTP analysis provides a common methodological approach to the prediction of avalanches in a
wide class of the complex systems, formed separately or jointly by nature and society.

4. The only decisive test of any prediction theory is an experiment in advance prediction. Such an
experiment for the methodology described above was launched in June 2003 and is currently
maintained by University of California Los Angeles (USA), Russian Academy of Sciences, and
Institut de Physique du Globe de Paris (France). The complete results, including the San Simeon
prediction, will be published elsewhere. The goal of this paper is to present the essential underlying
concepts and report its first successes to a broad range of multidisciplinary experts, attracting their
attention to the possibility of exploring premonitory patterns in diverse physical fields using the
RTP methodology.

APPENDICES
Al. Earthquake catalogs

The data used in analysis are provided by the routinely compiled earthquake catalogs, which present
at the moment the most accurate and complete information about the dynamics of seismicity. The
earthquake catalog is taken from ANSS/CNSS and NEIC. We use a common representation of the
earthquake catalog {f;, ¢, 4, M;, bj},j =1, 2, ... Here ¢ is the time of an earthquake, # > #.1; ¢, and
A; — latitude and longitude of its epicenter; and M; magnitude. We consider the earthquakes with
magnitude M > Mi,. As in most premonitory patterns of that family [Keilis-Borok 1996, 2002]
aftershocks are eliminated from the catalog; however, an integral measure of aftershocks activity b;



is retained for each remaining earthquake (main shocks and foreshocks); b; is the number of
aftershocks occurring immediately after an earthquake (e.g. within two days).
A2. Chains

A chain captures a rise of earthquakes’ correlation range in its vicinity. Let us call two earthquakes
“neighbors™ if their epicenters are closer than » and their times are closer than 19. A chain is a
sequence of earthquakes where each earthquake has at least one neighbor belonging to that
sequence and, therefore, no neighbors outside the sequence. he average density of epicenters
decreases with increasing magnitudes. Accordingly, » is normalized as r = rolo‘f@'z-sl where m is
the smallest magnitude in the pair. The R-vicinity of a chain is outlined by the smoothed envelope
of the circles of a radius R drawn around each epicenter in the chain. We consider only the chains
with two sufficiently large characteristics: number of earthquakes k > ky, maximal distance between
epicenters / > /. Two parameters of the chains are common for all the regions: 7,=50 km, ¢ = 0.35.
Other parameters are common for all chains within a region, but differ between regions as follows:
Southern California, 7=20 days, ky=6, Mnin=2.9, [(=175 km; Central California, 7, =30 days, k=10,
Munin=2.9, (=250 km; in Japan, zy =20 days, k=10, Mpnin=3.6, (=350 km, y,=0.4; Eastern
Mediterranean, 7o =40 days, ko=6, Mnin=3.0, [(=200 km.

A3. Intermediate-term patterns

We look for intermediate-term patterns in the R-vicinity of each chain within T years preceding it.
To detect a pattern P we compute a function Fp(¢j) defined in the “event window” (Keilis-Borok and
Soloviev, 2003) i.e. on the sequence of N consecutive earthquakes with indexes j-N+1, j-N+2,..., j.
In R —vicinity of each chain we normalize seismicity by the lower magnitude cutoff A*. The latter
i1s derived from magnitude-frequency relation, by the condition n(M*) = n*; here n(M*) is the
annual number of earthquakes with magnitude M > M*.

Four functions represent a rise of activity. Namely

“Activity” F, (t,) = N (A1)

L =lina

is inversely proportional to the time it took to accumulate the most recent N earthquakes;
J .

“Sigma” Fy(f;) = Z 10" (A2)

k=j—-N+1

is shown to be a crude measure of total area of fault-breaks during the most recent N earthquakes
(Keilis-Borok, 2002);

2 J=N+N/2] J
“Rise of magnitudes”, F, (¢,) = —— Z M, - Z M, (A3)
[N/Z] k=j-N+1 k=j-[N/2]+1

is the difference between the average magnitude of the last [N/2] earthquakes and that of the first
[N/2] earthquakes within a series of N;

e 1
“Acceleration” Fi(t,) = > - > (A4)

[N / 2] k=j—N+1 tk _tk71 k=j-[N/2]+1 tk _tk71



is connected to the function “Activity”. “Acceleration” increases if intercurrence time between
earthquakes decreases with time.

Here [x] denotes integer part of x.

Two functions depict a rise of clustering:

ccS bR F _1 Ar(t/) AS
warm” Fy, (¢;) = AN (A5)

with 4, being the area of the union of the circles of radius » centered at N epicenters in the sequence
reflects clustering of mainshocks; while

J .
“b-micro” F, (t,)= Y. Y 10" (A6)
!

k=j-N+1

reflects clustering of aftershocks; here My, / =1, 2,... are the magnitudes of the aftershocks of the
k-th main shock within the first 2 days after the main shock

The rise of earthquakes correlation range is depicted by function

4t)

“Accord” F,(t;) = et

(A7)

which increases if earthquakes are widely distributed in space and their -neighbourhoods are barely
overlapping. Finally, the transformation of Gutenberg-Richter relation is reflected by function

“Gamma” F,(t;) = - z (M,-M"), (A8)

M =M, M 2M,,

which increases if the magnitude distribution is shifted to the larger magnitudes (e.g., if the GR
slope is decreasing). Here M, is the median of magnitudes of N earthquakes in our sequence.

Altogether the eight functions are determined by five parameters. In each region we used the same
eight combinations of these parameters: n*=10 and R=50 km or n*=20 and R=100 km, N=10 or 50,
7=6 or 24 months, =50 km. Emergence of a pattern at the moment ¢ is captured by the condition
Fp(t) > Cp. Each threshold Cp is determined automatically at the learning stage. It minimises the
sum n + f; here n is the rate of failures to predict and f'is the rate of false alarms in prediction with a
single pattern P.

A4. Prediction

Final stage is recognition of precursory chain and issuing an alarm: A chain is recognised as
precursory if it was preceded by C or more intermediate-term patterns out of the ensemble
considered. The threshold C controls the trade-off between the rates of false alarms and failures to
predict. Emergence of precursory chain triggers an alarm in its R-vicinity for the A months;
statistics of past alarms suggests A = 9 months. A precursory chain may keep growing accumulating
subsequent earthquakes. In that case the alarm is extended. If a target earthquake occurs in the R-
vicinity of a chain, then the chain no longer grows, but the alarm (if it has been diagnosed for that



chain) is not called off. After a target earthquake all other chains containing its epicenter within the
R-vicinity are disregarded during the period A.

A5. Quality of prediction

Suppose that the prediction was performed during the time interval of length 7 (yr) within the
region Q with the area S (km?); N large earthquakes occurred within this period; 4 alarms were
declared and Ar of them were false; all the alarms together covered the spatio-temporal volume V)
(yr x km?); Ny target earthquakes were unpredicted. Prediction is described by the following
dimensionless errors: the fraction of unpredicted earthquakes, n = Ny / N; the relative alarm
coverage, 7= Va/(TxS); the fraction of false alarms, /= A¢/ A.

When calculating the alarm coverage, it might be advantageous to take into account the observed
inhomogeneities of the earthquake spatial distribution. In our prediction experiment, the relative
alarm coverage for an alarm that spans the time 7a and space Sa is calculated as

de4(r
_ T, S _T, #{EQ with m >4 within §  }

’z' —
T j dN, (r) T 7 HEQwith m> 4 within S} © (A9

Here by N4(r) we denote the 2D point process of earthquakes with magnitude m > 4. The total
alarm coverage is the sum of that for all individual alarms.

AG6. Significance level: Random Binomial prediction

To evaluate significance of a prediction one typically evaluates the chances of getting the same or
better result (same or smaller values of errors) when there is no dependence between alarms and the
occurrence of target earthquakes. An extremely simple but easily tractable model of prediction
which produces alarms independent of the target earthquakes is random binomial prediction
(Molchan, 2003): One divides the space-time considered for prediction into M small equal bins and
declares alarm in each of them with fixed probability p. Indeed, this approach is highly unrealistic.
Nevertheless, considered as a null (random) prediction model, it provides a good coarse estimation
of the algorithm predictive power. Significance with respect to a random binomial prediction may
serve as a necessary, but not sufficient, condition for validating an algorithm.

It is readily checked that expected values of alarm coverage 7 and fraction f of failures to predict in
the binomial prediction are given by:

E(7)=p, E(f)=1-p

so the point corresponding to this prediction is on the diagonal f =(1 — 7) in the 2D (z,f)-section of
the error diagram. The probability to predict exactly N — Ny out of N target earthquakes, assuming
that no more than one target earthquake may occur within a single bin, is given by Binomial
distribution

: _ N N-N; N;
Pr{predict N- N; out of N} = N p t(1-p)r. (A10)
f

The probability to predict N — Ny out of N target earthquakes issuing alarm within & bins out of M is
given by Hypergeometric distribution



k M —k
. . . . N_Nf Nf
Pr{predlct N — N; out of N declaring alarm in k£ bins out of M } = . (Al1)

M

N
The number of false alarms can also be obtained, but because of the simplistic binomial rules, the
number of binomial alarms (and false alarms) will be significantly larger than that in any realistic
prediction (where alarm is typically declared for considerable spatio-temporal area, not for a small

bin). Thus here we do not make any inference about false alarms using the binomial prediction
model.

Using the above probabilities (A10, A11) one can construct different significance measures for a
given prediction with errors (z'*, n*). One approach is to use the 2D (7, n) distribution under the
binomial model using (A10) with pzr*, and evaluate probability of obtaining a prediction of the
same or better quality, say

Pr{(z‘,n):z‘+n£r*+n*} or Pr{(z‘,n):z‘ﬁr* &nSn*}.

Another approach is to use (All) to find the probability to predict the same or larger number of
earthquakes with the same total duration of alarms. The difference between using (A10) and (A11)
is that in the first case we assume fixed probability of declaring an alarm, while in the second —
fixed duration of alarm. Indeed, in generic cases both approaches give very similar evaluation of
prediction performance.

To illustrate the above approach, Fig. 6 shows the error diagram for the results of our prediction
experiment in California. Shaded ball represents the errors of our prediction experiment during
1964-2005. The probability for a random binomial prediction with given value of 7 to fall within
the shaded area (i.e., to predict more than N(1 — n) target earthquakes with given 7) is less or equal
than 0.001 (0.1%). The point that corresponds to our experiment is well within this area, thus
indicating very high predictive power. It should be emphasized that the results presented in this
figure combine the information from the learning period, independent data, and advance prediction
(we have too few alarms and target earthquakes during the advance phase to use them alone). Thus,
this analysis is not equivalent to evaluating the real predictive power of the algorithm, where only
advance results must be used. Nevertheless, the grey shadowed area that corresponds to the
binomial model gives a good orientation for the expected significance of the results.

A7. Significance level: Empirical estimation

An alternative approach to testing significance of a prediction algorithm involves empirical
estimations of occurrence rate for target earthquakes. Thus, the approach is unavoidably
approximate due to the small number of target earthquakes; yet it is much more realistic comparing
to the random binomial prediction.
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Specifically, we assume that target earthquakes form a Poisson process N(z,r) stationary in time but
non-homogeneous in space. The expected number of earthquake within the interval of length ¢ and
spatial region R is given by

E(N(t,R)) = t x u(R) (A12)

where 1(R) is some non-negative measure over the space. In practice, a first-order approximation to
this measure can be obtained by considering the number Ny of target earthquakes within the region
R per unit of time using observations over S years:

WR) = Np/S.

With our assumptions, the probability of having exactly k target earthquakes within the region R
during time interval of length 7 is given by Poisson distribution

(#CRy)
Pr{k target earthquakes within R} = e #*" 'UT (A13)

and the probability p to have at least one target earthquake is
p = Pr{at least one target earthquakes within R} =1—e #®" (A14)

When the rate of target earthquakes is small (which is indeed the case in our experiment), we can
approximate p as
Nt

S

p = Pr{at least one target earthquakes within R} = y(R)t =

Our final goal is to calculate the probability of predicting N — N¢ target earthquakes out of N by a set
of alarms A4; = (¢;, R;) that were declared for regions R; and time intervals ¢, We denote by p; the
probability to have at least one target earthquake within 4;.

The probability for a given target earthquake to be predicted is calculated as the probability that it
will be predicted by at least one of the alarms:

Pr{given target EQ is predicted}:z Pr{given target EQ is within 4 }

= Z Pr{given target EQ is within R, during ¢,}

. . 1 L
= Z Pr{given target EQ is within R } x ?’

L
—lzqz'x?

Here we used the fact that alarms are not overlapping (by definition); factorization property (A12)
of the target event process; and the fact that conditional distribution of the occurrence time of an
event from Poisson process is uniform, given that this event occurred within the given time interval.

The probability for a given target earthquake to happen within the spatial region R; can be estimated
as
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g, = Pr{given target EQ happened within R } = %,

Q

where 7; is the number of target earthquakes within R; during some period S and Ng is the total
number of target earthquakes within the region  considered for prediction during the same time.
Finally

not S
= Pr{given target EQ is predicted} = ) ——x—= , ,
Q:=Prig get EQis p } Z N<T Z,P, N.T

and the distribution of the number of predicted target earthquakes out of N is given by the Binomial
formula:

N
Pr{N — N, out of N target EQs are predicted}Z(N
f
N-N;¢ N,
N nt, 1 nt |
~ 11 1_ 11
(Nf](ZNQTj { ZNQTJ
N-N, N,
N S f S )
~ — 1- L —
(ij[lzpl NQTJ [ Zpl NQTJ

We apply the above approach to California. Specifically, we consider the region Q2 shown in Fig. 2
during the period 1965-2004 (S = 40 years); there were N = 10 target earthquakes. The advance
prediction was performed within the same region during July 2003 — June 2005 (7 = 2 years), and
resulted in three alarms; N = 1 target earthquake occurred during this period. The probabilities p; of
having at least one target earthquake within each of the alarms are 5%, 8%, and 5% (see Table 1,
and Eq. (A14)). The probability to predict the only target event by chance is estimated as 36%.
Notice that this is the conditional probability given the actual number of target earthquakes and
alarms. If one does not want to be conditioned by the number of actual target earthquakes, then we
need to modify our results using (A13). In the case of California, where we had only one target
earthquake, this will give:

JQN’Nf 1-0)"

Pr{predict 1 target with our three alarms}=

Pr{there is exactly one target} x Pr{it was predicted}

The first probability is estimated using (A13):

Pr{there is exactly one target}=u(R)Te **"
Ng 7&)(
z&Te s’ :BXQXe 40" ~03
S 40

Thus, the probability to have only one target event and predict it by chance is approximately
0.36x0.3 =0.12 (or 12%)).
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Figure 1 Possible outcomes of prediction. For simplicity the territory where the prediction is made
is represented by a 1D ‘Space’ axis. Rectangles — space-time areas covered by correct (gray) and
false (white) alarms respectively.
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Figure 2 Regions where the proposed algorithm was tested by advance prediction
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Figure 3 Results of advance prediction in California. The advance prediction started in July 2003.
Three alarms were issued: one correct (marked A), one false (B), one current (C).
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Figure 4 Results of advance prediction in Japan. The advance prediction started in July 2003. Two
alarms were issued: one correct (panel a), and one false (panel b). We notice that two target
earthquakes occurred outside the formal prediction region near the boundaries of our false alarm; if
one extended the prediction region to include these two target earthquakes, they would be
successfully predicted with the current values of algorithm parameters.
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Figure 5 Results of advance prediction in Northern Dinarides. The advance prediction started in
May 2004. One false alarm was issued. We notice that the only big earthquake (M;=5.7) in the
considered region since May 2004 happened within our false alarm.
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Figure 6 Significance of prediction in California: an illustration (see Appendix A6 for details).
Shaded ball shows performance of the prediction algorithm during the time interval considered. A
perfect prediction would lie in the origin. Random binomial predictions (alarm is declared for each
elementary spatio-temporal unit with a fixed probability 7) asymptotically occupy the diagonal, but
might deviate from it with finite number of target earthquakes. Random predictions with fixed 7
fall in the grey area with probability o= 0.001. Note that the shape of the grey area depends on the
number of the target earthquakes that actually happened within the prediction region.
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