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Computational Earth Sciences are a blending of these three areas to obtain a 
better understanding of some phenomena through a judicious match between 

the problem, a computer architecture, and algorithms.

Computational approach to problems 
of Earth dynamics

is inherently multi-disciplinary:
it requires of its practitioners a firm grounding in 
applied mathematics and computer science in addition 
to a command of one or more disciplines in Earth 
sciences (geophysics , geology and geomechanics).

• Computer science provides the tools, ranging from 
networking and visualization tools to algorithms, that 
match modern computer architectures. 

• Mathematics provides means to establish credibility 
of algorithms, such as error analysis, exact solutions and 
expansions, uniqueness proofs and theorems.
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The characteristics of 
Computational Earth Science

problems can be summarized as those:

• having a precise mathematical statement;

• requiring an in-depth knowledge of Earth 
dynamics;

• being intractable by traditional analytical, 
analogue or even numerical methods;

• having a significant scope.

HISTORY
• The field of Fluid Geodynamics was born in the late 1960’s with 

the general acceptance of the plate tectonics paradigm. 

• At the beginning, simple analytic models were developed to 
explain plate tectonics and its associated geological structures. 
These models were highly successful in accounting for many of 
the first order behaviors of the Earth. 

• The necessity to go beyond these basic models to make them 
more realistic and better understand the Earth shifted the 
emphasis to numerical simulations. These numerical models have 
grown increasingly complex and capable over time with 
improvements in computational power and numerical algorithms. 
This has resulted in a development of the new branch of science:
computational geodynamics.
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“A model which images any detail of the reality 
is as useful as a map of scale 1:1” 

(Joan V. Robinson, economist)

(modified after Lliboutry 1987)
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Governing Equations

Boundary and Initial Conditions

Conservation of momentum (Stokes equation)

State equation 

Incompressibility condition

Rheological equation (dependence of effective 
viscosity on temperature, pressure and stress)

Heat balance equation 

Advection equation for density, viscosity or 
chemical components .
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for P- and T-dependent viscosity 
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(Ismail-Zadeh et al., 2001)

Approximation of the mathematical problem

Numerical techniques used
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Density and viscosity are approximated by linear combinations 
of appropriate trilinear basis functions at fine grid

Consider the uniform rectangular grid covering Ω:

1 2 3 1 2 3( , , ),    0 ,0 ,0 .i j k
ijk x x x i n j n k nΩ = ≤ ≤ ≤ ≤ ≤ ≤

Cubic splines used in the modelling

α β

δ γ
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Numerical Method  for Solving the Stokes Equation

Approximations of vector potential, density, and viscosity are 
substituted into the variational equation. A system of linear algebraic 
equations with a positive define band matrix for unknown coefficients 
is obtained. The coefficients are determined on each time step by 
solving the system of linear algebraic equations iteratively by 
conjugate gradient or by Gauss–Seidel methods. 

Numerical Method for Solving the Advection Equation

The advection equations has characteristics described by the 
system of ordinary differential equations

( ) / ( , ( ))dx t dt t x t= u

* 0 * 0( , ( )) ( (0)),    ( , ( )) ( (0)).t x t x t x t xρ ρ µ µ= =

Both density and viscosity retain constant values along the 
characteristics
Both density and viscosity retain constant values along the 
characteristics

Numerical Method for Solving the Heat Equation

Temperature is approximated by finite-differences:
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A few tests were done to check the accuracy of the method

- Benchmark with another numerical codes (Busse et al., 1993)
in a reasonable agreement (constant viscosity and
temperature dependent)

- Conservation of mass at each time step 
relative change of mass about 0.1% per 200 time steps

- Element refinement
- Accuracy of the vector velocity potential 

relative error for the grid 30x30x30 remained within
0.3% for right-hand sides having reasonable 
numbers of periods

- Comparison with an analytical solution for the Stokes equation 
combined with the advection equation for density (Trushkov, 2002).

Discrete Stokes equation, 
characteristic equation, and 
heat equation are solved at 
parallel processors. 
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Tackley et al., 1999I-Z et al., 2002
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610Ra =

I-Z et al., 2004
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IA-Z et al., 2001

Ismail-Zadeh et al., 2001Jackson and Talbot, 1994
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Viscosities and densities of the sedimentary layers are assumed 
to be 1020 Pa s and 2.65x103 kg m-3 for the overburden layer,

1018 Pa s and 2.24x103 kg m-3 for salt, and 1021 Pa s and 
2.7x103 kg m-3 for the subsalt layer, respectively.
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1-km-high summit dome of Kuh-e-Namak, Hormuz salt basin, Zagros Mountains, southwestern Iran
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Ismail-Zadeh et al., 2004

overburden

salt

Evolution of the interface 
between salt diapirs
and their overburden

Volozh et al., 2001
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Perspectives

“A new level of mathematical modeling and numerical 
solution does not merely involve the analysis of a single 
medium but must encompass the solution of multi-
physics problems involving fluids, solids, their 
interactions, chemical and electro-magnetic effects; 
must involve multi-scale phenomena from the molecular 
to the macroscopic scales; must include uncertainties in 
the given data and solution results” (J. Bathe, 2003)

Challenge 1
Effective numerical schemes for 

fluid and solid geodynamics

Numerous publications exist on the numerical 
solutions of fluid flows and solid deformations, 

but the numerical methods proposed are far from 
satisfactory. "Ideal" solution schemes would be 

much more predictive, reliable and effective. 

Clearly, major advances are still possible. 
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Challenge 2
The development of numerical procedures for 

multi-geophysics problems

Major areas are given by deformations  of the crust 
and lithosphere and fluid flows, including heat 

transfer and chemical effects (sedimentary basins 
and mantle convection) and hydro-magnetic effects 

(core geodynamo), fully coupled to structures 
(lithospheric plates). Advances have been made for 
simulations in these fields, but significant further 

progress can be accomplished. 

Challenge 3
The development of numerical procedures 

for multi-scale problems

Many phenomena in geodynamics 

involve multiple scales 

(sedimentary basins, mantle plumes, 
hierarchical structure of the lithosphere, etc). 

The spanning of scales in analyses of the 
problems provides an exciting challenge.
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Challenge 4
The analysis of complete cycles 

of the Earth system

At present, largely, only parts of the whole 
system are analysed and optimised. There is a 

need to extensively develop 

"virtual laboratories" 

in which complete cycles of the Earth system 

could be optimised. 

Challenge 5
Education

The powerful tools for analysis are only of 
value if they are used with 

sound scientific judgement. 

This judgment must be created by a strong, 
basic and exciting education in the 

Universities and International Centres and 
ongoing, life-long education in practice. 
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