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Problems, Methods, Results and Perspectives
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Computational
Earth Sciences

Earth
Sciences

Computer
Science

Computational Earth Sciences are a blending of these three areas to obtain a
better understanding of some phenomena through a judicious match between
the problem, a computer architecture, and algorithms.

Computational approach to problems
of Earth dynamics

is inherently multi-disciplinary:
it requires of its practitioners a firm grounding in
applied mathematics and computer science in addition
to a command of one or more disciplines in Earth
sciences (geophysics, geology and geomechanics).

» Computer science provides the tools, ranging from
networking and visualization tools to algorithms, that
match modern computer architectures.

» Mathematics provides means to establish credibility
of algorithms, such as error analysis, exact solutions and
expansions, uniqueness proofs and theorems.




The characteristics of

Computational Earth Science
problems can be summarized as those:

having a precise mathematical statement;
requiring an in-depth knowledge of Earth
dynamics,

being intractable by traditional analytical,
analogue or even numerical methods;
having a significant scope.

HISTORY

» Thefield of Fluid Geodynamics was born in the late 1960’ s with
the general acceptance of the plate tectonics paradigm.

At the beginning, simple analytic models were developed to
explain plate tectonics and its associated geological structures.
These models were highly successful in accounting for many of
the first order behaviors of the Earth.

» The necessity to go beyond these basic models to make them
more realistic and better understand the Earth shifted the
emphasis to numerical simulations. These numerical models have
grown increasingly complex and capable over time with
improvements in computational power and numerical algorithms.
This has resulted in a development of the new branch of science:
computational geodynamics.




“A mode which images any detail of thereality
isasuseful asamap of scale 1:1"
(Joan V. Robinson, economist)

(modified after Lliboutry 1987)
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v'Governing Equations

v'Boundary and Initial Conditions

v’ Conservation of momentum (Stokes equation)
v State equation
v’ Incompressibility condition

v"Rheological equation (dependence of effective
Viscosity on temperature, pressure and stress)

v'Heat balance equation

v’ Advection equation for density, viscosity or
chemical components.




The equations for conservation of momentum
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the incompressibility condition div @ = 0
the equation for P- and T-dependent viscosity
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the heat balance equation

0
a(,ocT)-F <U,(pcT) >=div (k v T)+ud + pQ,
where
3
¢ =_ (eif) %

i

b =

3
1 j=1
the state equation
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the advection equations for thermally unperturbed density and

viscosity
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In the Boussinesq and infinite Prandtl number approximation
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Model domain 2 = (0,1;) x (0,1) x (0,13).
At the initial time t; = 0:
T(O:I) = Ttu(r')! p*(U,.’E) = PE(‘BJ; ,(.L*(O, .1:) = #g(x): z € Q.
At the boundary faces I'(z; = 0) and I'(z; = [;) (i = 1,2, 3):
Impermeability conditions with perfect slip:
.87 =0, <@,n>=0 atT.

7 the outward unit normal vector at a point on the boundary T,
u, the projection of the velocity vector onto the tangent plane
at the same point on I'.

Impermeability conditions with no-slip conditions:

w=0 atl.




For the temperature on the vectical model boundaries
heat flux = 0 (homogeneous Neumann problem):
F($1=0,$1 =E1) 4 8T/3$] =0, tZO,
P(E’Jg = 0,21?2 = 32) : aT/8$2 = U, t 2 0.
On the horizontal model boundaries (nonhomogeneous Dirichlet
problem):
T(S‘L‘g =U) 7 T(t,ﬂ:l,iﬂg,O) =T1(t,:81,1}2), t 2 0,
F(IE;; = 33) 5 T(t, 1,9, 13) = T"z(t, $1,x2), t 2 'U

The vector potential 1,5 = (11, Y9, ¥3) and

the vector velocity 4 = (uy, ug, u3)
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Two-Component Representation
o Uector Ueloeity Potential

(Ismail-Zadeh et dl., 2001)
T CUI‘IJ, "; = (wlsllxb% 11!)3), 11’3 = UJ

where .
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dp
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sz3 = 1,53(3, $11m21m3) =0} )

© = @(t, 1, x9) an arbitrary sufficiently smooth scalar function

with a compact support in the rectangular domain (0, ;)X (0, ).

u; = — 0y /03, uy = O, /03, uz = Oty /0zy — 0%, [0;.

v’ Approximation of the mathematical problem

v"Numerical techniques used




Consider the uniform rectangular grid covering Q:
= (%,x),X), 0<i<n,0<j<n,0<k<n,

The vector potential ¥ is approximated by a linear combina-
tion of tricubic basis functions expressed as products of appro-

priate cubic splines:

Yp(t, T1, T2, T3) = gl é i@’ﬁ(p}( )s IJl)(xl) D (w)s?(z3), p=1,2.

Density and viscosity are approximated by linear combinations
of appropriate trilinear basis functions at fine grid

ny ng ng 1 9 3
pa(t, 21,22, 23) = 3 | Pf;k(f)sg )(5‘31) § )( 2)8 Ee)(%):
i=0 j=0 k=0
~ R 1), V22 1x(9)
Halts 21,22, 3) = 3 50 3 pijr(t)s(21)5)7 (22)8) " (23)-

Cubic splines used in the modelling
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Numerical Method for Solving the Stokes Equation

Approximations of vector potential, density, and viscosity are
substituted into the variational equation. A system of linear algebraic
equations with a positive define band matrix for unknown coefficients
is obtained. The coefficients are determined on each time step by
solving the system of linear algebraic equations iteratively by
conjugate gradient or by Gauss-Seidel methods.

Numerical Method for Solving the Advection Equation

» The advection equations has characteristics described by the
system of ordinary differential equations

dx(t)/dt = u(t, x(t))
» Both density and viscosity retain constant values along the
characteristics

P (6, X(1)) = po(X(0)), 4 (8, X(1)) = £,(x(0)).

Numerical Method for Solving the Heat Equation

Temperature is approximated by finite-differences:
aT(tn’Xiszle;) Ti?—l,j,k _Tifl,j‘k

_ RV
o, = 2h, v h=x-x
0T (ty, %, X0, %) _ Titajue = 2T+ T
o 2h,

Temperature is computed by an implicit alternating-direction method:

T 82 *
r® = w2t Ly vT®), 1———2T =r®,
X3

2 2
1_18_ T** :T*, _za_ T*** :T**, T(k+1) :T(k) +T***
20%3 2 0xZ

Parameter T is chosen in such away as to guarantee the stability of the FDM:
TZ%i, dx = [If +hZ +h§]1/2, Uax = maxﬂui ()| xe Q, i :],2,3}
u

max




A few testswere done to check the accuracy of the method

- Benchmark with another numerical codes (Busse et al., 1993)
in a reasonable agreement (constant viscosity and
temperature dependent)

- Conservation of mass at each time step
relative change of mass about 0.1% per 200 time steps

- Element refinement

- Accuracy of the vector velocity potential

relative error for the grid 30x30x30 remained within
0.3% for right-hand sides having reasonable
numbers of periods
- Comparison with an analytical solution for the Stokes equation
combined with the advection equation for density (Trushkov, 2002).

m@M!

Discrete Stokes equation,
characteristic equation, and
heat equation are solved at ~_among processors _
parallel processors.

’Mode!dnnnin Qﬁdlﬂﬁhuted )]
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Numerical modelling
and its resuits

13



AFRICA

AFRICA

AFRICA

Mantle plume evolution |
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Rayleigh-Taylor Problem
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Viscosities and densities of the sedimentary layers are assumed
to be 10%° Pas and 2.65x10° kg mr2 for the overburden layer,
10'8 Pasand 2.24x10° kg m3 for salt, and 10°! Pas and
2.7x10°% kg m for the subsalt layer, respectively.
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Casestudy1 -20siructures

Evolution (front view) of a salt wall in a sedimentary basin.
At time t=0 an inclined salt layer is overlain by sediments
at the castern part of the model region.

Initial time

10 km

0.69 My 0.81 Ma

Casgstudy1 -20 structures

A new portion of sediments is added to the structure at the
southeastern corner of the model region
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1-kmr-high summit dome of Kuh-e-Namak, Hormuz salt basin, Zagros Mountains, southwestern Iran
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/ prekinemati

sediments

A salt diapir subject to a lateral flow
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/ Velocity: \ u.=10 cmyr'

u.=03cmyr’
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Evolution of theinterface
between sdlt diapirs
and their overburden

Ismail-Zadeh et al ., 2004
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" 12
Ip (X, %) = [ I(P(X1v Xz, Xa) = P(X1, Xz, X)) g
0
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Per spectives

“A new level of mathematical modeling and numerical
solution does not merely involve the analysis of asingle
medium but must encompass the solution of multi-
physics problems involving fluids, solids, their
interactions, chemical and electro-magnetic effects;
must involve multi-scale phenomena from the molecular
to the macroscopic scales; must include uncertaintiesin
the given data and solution results’ (J. Bathe, 2003)

Challenge 1

Effective numerical schemes for
fluid and solid geodynamics

Numerous publications exist on the numerical
solutions of fluid flows and solid deformations,
but the numerical methods proposed are far from
satisfactory. "ldeal" solution schemes would be
much more predictive, reliable and effective.

Clearly, major advances are still possible.
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Challenge 2

The development of numerical procedures for
multi-geophysics problems

Major areas are given by deformations of the crust
and lithosphere and fluid flows, including heat
transfer and chemical effects (sedimentary basins
and mantle convection) and hydro-magnetic effects
(core geodynamo), fully coupled to structures
(lithospheric plates). Advances have been made for
simulations in these fields, but significant further
progress can be accomplished.

Challenge 3

The development of numerical procedures
for multi-scale problems

Many phenomenain geodynamics
involve multiple scales
(sedimentary basins, mantle plumes,
hierarchical structure of the lithosphere, etc).

The spanning of scalesin analyses of the
problems provides an exciting challenge.
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Challenge 4

The analysis of complete cycles
of the Earth system

At present, largely, only parts of the whole
system are analysed and optimised. Thereisa
need to extensively develop

"virtual laboratories’
in which complete cycles of the Earth system
could be optimised.

Challenge 5

Education

The powerful tools for analysis are only of
valueif they are used with

sound scientific judgement.

This judgment must be created by a strong,
basic and exciting education in the
Universities and International Centres and
ongoing, life-long education in practice.

24
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