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Abstract

Modern seismic tomographic images of the Earth’s interior facilitate the inference of the complex trajectories of present-day
convective flow in the upper mantle. Quantitative reconstruction of both the observed mantle structure and temperature field
backwards in time requires a numerical tool for solving the inverse problem of thermal convection at infinite Prandtl number.
In this paper we present a variational approach to three-dimensional numerical restoration of thermoconvective mantle flow
with temperature-dependent viscosity. This approach is based on a search for the mantle temperature and flow in the geological
past by minimizing differences between present-day mantle temperature derived from seismic velocities (or their anomalies)
and that predicted by forward models of mantle flow for an initial temperature guess. The past mantle temperatures so obtained
can be employed as constraints on forward models of mantle dynamics. To demonstrate the applicability of this technique,
we restore numerically a fluid dynamic model of the evolution of upper mantle plumes and show that the initial shape of
the plumes can be accurately reconstructed. We then model the evolution of the plumes forward in time (plume upbuilding)
starting from the restored state to the state they were before the restoration and demonstrate the high accuracy of the model
predictions. We also show that the neglect of thermal diffusion in the backward modeling of thermal plumes (in order to
simplify the numerical procedure) results in erroneous restorations of the plumes.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The reconstruction of mantle plumes and litho-
spheric slabs to earlier stages of their evolution is
a major challenge in geodynamics. High-resolution
seismic tomographic studies open possibilities for de-
tailed observations of present-day mantle structures
(e.g., Grand et al., 1997; van der Voo et al., 1999;
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Ritsema and Allen, 2003) and for derivations of man-
tle temperature from seismic velocities or velocity
anomalies (e.g., Sobolev et al., 1996; Goes et al.,
2000). An accurate reconstruction would allow the test
of geodynamic models by simulating the evolution of
plumes or slabs starting from the restored state and
comparing the derived forward state to observations.

For clarity of subsequent discussion, we introduce
a few mathematical definitions used in the paper. A
mathematical model for a geophysical problem has
to be well-posed in the sense that it has to have the
properties of existence, uniqueness, and stability of a
solution to the problem (Hadamard, 1923). Problems
for which at least one of these properties does not hold
are called ill-posed. The requirement of stability is the
most important one. If a problem lacks the property
of stability then its solution is almost impossible to
compute because numerical computations are polluted
by unavoidable errors. If the solution of a problem
does not depend continuously on the initial data, then,
in general, the computed solution may have nothing
to do with the true solution.

The inverse problem of thermal convection in the
mantle is an ill-posed problem, since the backward
heat problem, describing both heat advection and dif-
fusion through the mantle backwards in time, pos-
sesses the properties of ill-posedness (Kirsch, 1996).
In particular, the solution to the problem does not de-
pend continuously on the initial data. This means that
small changes in the present-day temperature field may
result in large changes of predicted mantle tempera-
tures in the past (see Appendix A for an explanation
of this statement in the case of the one-dimensional
diffusion equation).

If heat diffusion is neglected, the solution of
the advection equation backwards in time does not
present computational difficulties. A numerical ap-
proach to the solution of the inverse problem of the
Rayleigh–Taylor (gravitational) instability was pro-
posed by Ismail-Zadeh (1999) and was developed
later for a dynamic restoration of plume (diapiric)
structures to their earlier stages (Ismail-Zadeh et al.,
2001a). Kaus and Podladchikov (2001) and Korotkii
et al. (2002) applied the approach to study 3D
Rayleigh–Taylor overturns forward and backward in
time. Both direct (forward in time) and inverse (back-
ward in time) problems of the gravitational advection
are well-posed. This is because the time-dependent

advection equation (for density or temperature) has
the same form of characteristics for the direct and
inverse velocity field (the vector velocity reverses its
direction, when time is reversed). Therefore, numeri-
cal algorithms used to solve the direct problem of the
gravitational instability of the geological structures
can also be used in studies of the inverse problems
by replacing positive timesteps with negative ones.

Steinberger and O’Connell (1997, 1998) and
Conrad and Gurnis (2003) modeled the mantle flow
backwards in time from present-day mantle density
heterogeneities inferred from seismic observations.
However, they ignored thermal diffusion in the mantle
(and hence the respective term in the heat equation)
and employed the advection equation in the model-
ing. We demonstrate that this approach (neglect of
heat diffusion in backward modeling) is not valid.

There is a sizeable literature on the numerical solu-
tion of the backward heat equation (e.g., Buzbee and
Carasso, 1973; Colton, 1979; Elden, 1982; Ames and
Epperson, 1997; Lu, 1997; Moszynski, 2001; see
also Tikhonov and Arsenin, 1977, and Kirsch, 1996,
for additional references). These methods are based
on a regularization of the numerical solution. Bunge
et al. (2003) and Ismail-Zadeh et al. (2003a,b) have
independently developed variational approaches for
solving the inverse problem of mantle convection. The
major differences between the two approaches are that
Bunge et al. (2003) applied the variational method
to a set of equations describing mantle convection,
whereas Ismail-Zadeh et al. (2003a) applied the varia-
tional method to the heat equation, because time enters
only into this equation and the backward heat problem
is ill-posed. Ismail-Zadeh et al. (2003a) determine the
temperature in the geological past and then the con-
vective backward flow from the Stokes and continuity
equations. (We will discuss other differences between
these two approaches to solving the inverse problem
of mantle convection later in the paper.)

In Section 1 we present a mathematical statement
of the three-dimensional direct and inverse problems
of thermal convection with temperature-dependent
viscosity. In Section 2 we describe the variational
approach to search for mantle temperature in the ge-
ological past based on estimations of its present-day
temperature. The approach is based on reducing the
problem to minimization of the objective functional
describing the difference between the present-day
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mantle temperature and that predicted by forward
models of mantle flow for an initial temperature
guess. The optimum solution to the minimization
problem is provided by iteratively solving coupled
direct and conjugate (adjoint) problems for the heat
equation. The variational approach to solving the
backward heat problem has been known in applied
mathematics and geophysics (atmosphering model-
ing and oceanography, see e.g. Bennett (1992) and
Kalnay (2003)), but so far has not been used in stud-
ies of mantle thermoconvective flow. In Section 3
we describe numerical techniques used in solving the
inverse problem of mantle convection. We demon-
strate the applicability of the numerical approach to
restoration of mantle plumes and show the effect of
heat diffusion on results of the backward modeling in
Section 4. We discuss the physical and mathematical
meaning of the time-reversible processes in Section 5
and present conclusions in Section 6.

2. Mathematical statement of the problem

We assume that the mantle behaves as a New-
tonian fluid at geological time scales and consider
the slow thermoconvective flow of a heteroge-
neous incompressible fluid at infinite Prandtl num-
ber with a temperature-dependent viscosity in a
three-dimensional rectangular domain Ω = (0, x1 =
l1) × (0, x2 = l2) × (0, x3 = l3 = h) heated from
below; x = (x1, x2, x3) are the spatial coordinates;
the x3-axis is vertical and positive upward. Thermo-
convective flow is described by the heat, momentum
(Stokes), and continuity equations. In the Boussinesq
approximation these dimensionless equations take the
form (Chandrasekhar, 1961):

∂T

∂t
+ u · ∇T − ∇2T = 0, (1)

−∇P + ∇ · [µ(T)(∇u + (∇u)Tr)] + Ra T e = 0, (2)

∇ · u = 0, (3)

for x ∈ Ω and t ∈ (ϑ1, ϑ2), where T , u, P , µ, and t
are temperature, velocity, pressure, viscosity, and time
respectively; superscript Tr means transpose; and e =
(0, 0, 1) is the unit vector. The Rayleigh number is
defined as Ra = αgρ0�Th3/µ0κ where α the ther-
mal expansivity; g the acceleration due to gravity; ρ0

and µ0 are the reference typical density and viscosity,
respectively; �T is the temperature contrast between
the lower and upper boundaries of the model domain;
and κ is the thermal diffusivity. In Eqs. (1)–(3) length,
temperature, and time are normalized by h, �T , and
h2/κ, respectively. We do not consider the chemical
convection in the mantle. The formulation of the in-
verse problem of thermo-chemical convection and the
numerical approach to the solution of the problem are
described by Ismail-Zadeh et al. (2003a).

At the boundary Γ of the model domain Ω we
set the impenetrability and perfect slip conditions:
n · ∇utg = 0 and n · u = 0, where n is the outer
normal vector and utg is the tangential component of
velocity. We assume the heat flux through the vertical
boundaries ofΩ to be zero: n·∇T = 0. The upper and
lower boundaries are assumed to be isothermal sur-
faces, and hence T = Tu at x3 = h, T = Tl at x3 = 0,
where Tu and Tl are constant, and �T = Tl − Tu > 0.
To solve the direct and inverse problems of thermal
convection, we assume that the temperature is known
at the initial time t = ϑ1 and at the final (in terms of
the direct problem) time t = ϑ2, respectively.

Thus, the direct (or inverse) problem of the thermal
convection is to determine velocity, u = u(t, x), pres-
sure, P = P(t, x), and temperature, T = T(t, x), satis-
fying Eqs. (1)–(3) at t ≥ ϑ1 (or t ≤ ϑ2), the prescribed
boundary conditions, and the temperature condition at
t = ϑ1 (or t = ϑ2).

3. Variational approach to solving the backward
heat problem

In this section, we present a variational approach
to an approximate solution to the backward heat
problem. Consider the following objective (quadratic)
functional

J(ϕ)= ‖T(ϑ2, · ;ϕ)− χ(·)‖2

=
∫
Ω

|T(ϑ2, x;ϕ)− χ(x)|2dx, (4)

where T(ϑ2, x;ϕ) is the solution of the forward heat
equation (1) with the appropriate boundary and ini-
tial conditions at final time ϑ2, which corresponds to
some (unknown as yet) initial temperature distribution
ϕ = ϕ(x); χ(x) = T(ϑ2, x; T0) is the known temper-
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ature distribution at the final time for the initial tem-
perature T0 = T0(x); and ‖ · ‖ is the norm in space
L2(Ω). We seek a minimum of the objective func-
tional with respect to the initial temperature, ϕ. The
functional has its unique global minimum at value ϕ =
T0, and J(T0) = 0, ∇J(T0) = 0. The uniqueness of
the global minimum of the objective functional fol-
lows from the uniqueness of the solution of the rel-
evant boundary-value problem for the heat equation
and a strong convexity of the functional (Tikhonov
and Samarskii, 1990).

To find a minimum of the objective functional we
employ the gradient method (Vasiliev, 2002)

ϕk+1 = ϕk − αk∇J(ϕk), ϕ0 = T∗,
k= 0, 1, 2, . . . , (5)

αk = min{1/(k + 1); J(ϕk)/‖∇J(ϕk)‖}, (6)

where T∗ is an initial temperature guess. It can be
shown that the gradient of functional J is represented
as ∇J(ϕ) = Ψ(ϑ1, · ) (see Appendix B), where Ψ is
the solution to the following boundary problem con-
jugated (adjoint) to the respective boundary problem
for Eq. (1):

∂Ψ/∂t + u · ∇Ψ + ∇2Ψ = 0, x ∈ Ω, t ∈ (ϑ1, ϑ2),

σ1Ψ + σ2∂Ψ/∂n = 0, x ∈ Γ, t ∈ (ϑ1, ϑ2),

Ψ(ϑ2, x)

= 2(T(ϑ2, x;ϕ)− χ(x)), x ∈ Ω,
(7)

where σ1 and σ2 are some smooth functions or con-
stants satisfying the condition σ2

1 + σ2
2 �= 0. Selecting

σ1 and σ2 we can obtain corresponding boundary con-
ditions. Problem (7) is ill-posed for positive timesteps
and well-posed for negative timesteps.

The solution algorithm for the backward heat
problem is based on the following three steps (k =
0, 1, 2, . . . , n, . . . ):

(i) solve the forward heat equation (1) in the time
interval [ϑ1, ϑ2], x ∈ Ω, with the boundary con-
ditions defined and initial temperature T(ϑ1, x) =
ϕk(x) in order to find T(ϑ2, x;ϕk);

(ii) solve problem (7) backwards in time and deter-
mine ∇J(ϕk) = Ψ(ϑ1, x;ϕk); and

(iii) determine αk from (6) and then update the initial
temperature, i.e., find ϕk+1 from (5).

Fig. 1. Relative reductions of the objective functional J (solid line)
and the norm of the gradient of the objective functional ‖∇J‖
(dashed line) as functions of the number of iterations.

Computations are terminated when

δϕn = J(ϕn)+ ‖∇J(ϕn)‖2 < ε, (8)

where ε is a small constant. The temperature ϕn is then
considered to be the approximation of the target value
of the initial temperature T0. If δϕn ≥ ε, we return to
step (i) and make the next iteration.

The performance of the algorithm is evaluated
in terms of the number of iterations n required to
achieve a prescribed relative reduction of δϕn (in our
numerical experiments we assumed ε = 10−8). Fig. 1
presents the evolution of the objective functional
J(ϕn) and the norm of the gradient of the objective
functional ‖∇J(ϕn)‖ versus the number of iterations
at time about (ϑ2 +ϑ1)/2. For other time steps we ob-
serve a similar evolution of J and ‖∇J‖. Numerical
tests demonstrate that if the initial guess for temper-
ature is a smooth function, then iterations converge
rapidly (only 5–10 iterations); otherwise, the itera-
tions converge very slowly (100 and more iterations).

Implementation of minimization algorithms re-
quires the evaluation of both the objective functional
(4) and its gradient ∇J . Each evaluation of the ob-
jective functional requires an integration of the model
Eq. (1) with the appropriate boundary and initial con-
ditions, whereas the gradient is obtained through the
backward integration of the adjoint Eq. (7). The per-
formance analysis shows that the CPU time required
to evaluate the gradient J is about the CPU time re-
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quired to evaluate the objective functional itself, and
this is because the direct and adjoint heat problems
are described by the same equations.

Information on the properties of the Hessian matrix
(∇2J) is important in many aspects of minimization
problems (Daescu and Navon, 2003). To obtain suffi-
cient conditions for the existence of the minimum of
the problem, the Hessian matrix must be positive def-
inite at T0 (optimal initial temperature). However, an
explicit evaluation of the Hessian matrix in our case
is prohibitive due to the number of variables.

We used the Boussinesq approximation, and hence
the viscous dissipation as a heat source term in the
heat equation was neglected. If viscous dissipation is
included in the heat equation and viscosity depends
on temperature, then the suggested method for back-
ward modeling of the heat equation should be modi-
fied, because the adjoint problem for the heat equation
becomes more complicated. However, the dissipation
number, Di = µ0κ/(CPρ0�Th2) (where CP is heat
capacity at constant pressure) is small enough (about
10−7 for the upper mantle) that the viscous dissipation
term can be neglected.

Thus, the solution of the backward heat problem is
reduced to solutions of series of forward problems,
which are known to be well-posed (Tikhonov and
Samarskii, 1990). The algorithm can be used to solve
the problem over any subinterval of time in [ϑ1, ϑ2].

4. Numerical approach to solving the inverse
problem of mantle convection

In this section, we describe briefly the numerical
methods we use in the study. See Ismail-Zadeh et al.
(2001b) for more detail.

4.1. Numerical method for solving the Stokes
equation

To facilitate computations, Eqs. (2) and (3) are sim-
plified by introducing a two-component representation
of the vector velocity potential

u = curl �ψ, �ψ = (ψ1, ψ2, 0). (9)

We represent the vector velocity potential as a linear
combination of tricubic basis splines and apply the
Eulerian finite element method to Eqs. (2) and (3)

with the appropriate boundary conditions. To simplify
analysis, we rewrite the problem in variational form.
To solve the problem numerically, the model domain
Ω is discretized introducing the uniform rectangular
grid

0 = x0
i < x

1
i < . . . < x

ni−1
i < x

ni
i = li, i = 1, 2, 3,

with grid points Ωijk = (xi1, x
j

2, x
k
3), 0 ≤ i ≤ n1, 0 ≤

j ≤ n2, and 0 ≤ k ≤ n3. At each grid point Ωijk, we
define a tricubic basis element ωlijk = ωlijk(x1, x2, x3),
l = 1, 2 as the tensor product of one-dimensional cu-
bic basis elements (Ahlberg et al., 1967). The con-
struction of bases consisting of tricubic elements ωlijk
is described by Ismail-Zadeh et al. (1998).

The vector potential is approximated by the combi-
nations

ψl(t,x1,x2,x3) ≈
∑
i,j,k

ψlijk(t)ω
l
ijk(x1, x2, x3),

l = 1, 2, (10)

and viscosity is approximated by using trilinear basis
elements φijk(x1, x2, x3):

µ(T(t, x1, x2, x3)) ≈
∑
i,j,k

µijk(t)φijk(x1, x2, x3).

The coefficients ψlijk are determined at each time
step by solving a set of linear algebraic equations
with a symmetric positive definite band matrix. The
set is solved iteratively by conjugate gradient or
Gauss–Seidel methods. The relevant software was
designed for implementing the codes on parallel com-
puters. A detailed analysis of particular implementa-
tions of iterative methods for sets of linear algebraic
equations is presented by Tsepelev et al. (1999).

4.2. Numerical method for solving the heat equation

Temperature is computed by finite-difference meth-
ods. To do this, we define a regular grid in Ω (we use
a grid finer by a factor of three than that employed to
approximate the vector potential). The first and sec-
ond order derivatives with respect to coordinates in
the heat equation are approximated by central finite
differences. The velocity in the heat equation is deter-
mined from (9) and (10).
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We employ an implicit alternating-direction method
(Marchuk, 1994) to compute temperature. Essentially,
temperature T n+1 at time t = tn+1 is found as

rn = τ(∇2T n + u · ∇T n),
[

1 − τ

2

∂2

∂x2
3

]
T ∗ = rn,

[
1 − τ

2

∂2

∂x2
2

]
T ∗∗ = T ∗,

[
1 − τ

2

∂2

∂x2
1

]
T ∗∗∗ = T ∗∗,

T n+1 = T n + T ∗∗∗,

where τ is the time step. In the modeling, the parameter
τ is chosen in such a way as to guarantee the stability
of the finite difference method, namely:

τ = 1

8

dx

umax
, dx = [h2

1 + h2
2 + h2

3]1/2,

umax = max{|ui(x)| : x ∈ Ω̄, i = 1, 2, 3},
where hk = xik − xi−1

k . To compute T n+1, n2n3 +
n1n3 + n1n2 tridiagonal systems are solved, and the
corresponding number of independent modules can be
organized to perform parallel computations of these
systems by a tridiagonal method. The representation
of the vector velocity potential based on cubic splines
employed here makes it possible to compute both ad-
vection and diffusion of temperature simultaneously
by finite-difference methods.

4.3. The algorithm for numerical solution of the
inverse problem of mantle convection

We define a uniform partition of the time axis at
points tn = ϑ2 − τn, where τ is the time step, and n
successively takes integer values from 0 to some nat-
ural number m = (ϑ2 − ϑ1)/τ. At each subinterval of
time [tn+1, tn], the solution of the problem backwards
in time consists of the following basic steps.

Step 1. Given the temperature T = T(tn, ·) at t = tn
we solve a set of linear algebraic equations derived
from Eqs. (2) and (3) and the appropriate boundary
conditions to find the velocity potential �ψ = �ψ(tn, ·).

Step 2. Eq. (9) is used to determine the velocity u =
u(tn, ·; T), corresponding to temperature T = T(tn, ·),
from the vector potential.

Step 3. The ‘advective’ temperature Ta = Ta(tn+1, ·)
is determined by solving the advection heat equation
(neglecting the diffusion term) backwards in time, and
steps 1 and 2 are then repeated to find the velocity
ua = u(tn+1, ·; Ta), corresponding to the ‘advective’
temperature.

Step 4. The velocities ua and u are used in the direct
problem (Eq. (1)) combined with the boundary condi-
tions) and the conjugate problem (7), respectively, to
find temperature T = T(tn+1, ·) at t = tn+1.

Compared to the previous algorithm of Ismail-Zadeh
et al. (2003a), step 3 is introduced here to accelerate
the convergence of temperature iterations in solving
the direct and conjugate heat problems (to satisfy
inequality (8) in a few iterations at fixed ε, see Fig. 1).

After these algorithmic steps, we obtain tempera-
ture T = T(tn, ·), velocity potential �ψ = �ψ(tn, ·), and
velocity u = u(tn, ·) corresponding to t = tn, n =
0, . . . , m. Based on the obtained results, we can use
interpolation to reconstruct, when required, the entire
process on the time interval [ϑ1, ϑ2] in more detail.
The time step is chosen automatically so that the max-
imal displacement of material points does not exceed
a sufficiently small preset value.

Thus, at each subinterval of time we apply the vari-
ational method to the heat equation only, iterate the
direct and conjugate problems for the heat equation
in order to find temperature, and determine backward
flow from the Stokes and continuity equations twice
(for ‘advective’ and ‘true’ temperatures). Compared
to the variational approach by Bunge et al. (2003), our
numerical approach is computationally less expensive,
because we do not involve the Stokes equation into
the iterations between the direct and conjugate prob-
lems (the numerical solution of the Stokes equation is
the most time consuming calculation). Moreover, our
approach admits the use of temperature-dependent
viscosity.

5. Restoration model of mantle plumes

In the modeling, we consider thermal plumes to
be formed at the depth of 648 km, approximately the
boundary between the lower mantle and upper mantle.
To verify the validity of our numerical approach, we
start our simulations by computing a forward model
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Fig. 2. Temperature-dependent viscosity used in the modeling.

of the evolution of the thermal plumes and then we
restore the evolved plumes to their earlier stages.

We assume the following dimensional model pa-
rameters: α = 3 × 10−5 K−1, �T = 2000 K, ρ0 =
3.4 × 103 kg m−3, and κ = 0.8 × 10−6 m2 s−1

(Schubert et al., 2001); the reference mantle viscosity
is µ0 = 1021 Pa s (Forte and Mitrovica, 2001); h =
720 km, and l1 = l2 = 3h, and therefore, the Rayleigh
number is Ra = 9.5 × 105. At initial time t = 0 we
assume that the upper mantle temperature increases
linearly with depth.

We consider the mantle viscosity µ to be
temperature-dependent (Busse et al., 1993):

µ(T) = exp[Q/(T +G)−Q/(0.5 +G)], (11)

whereQ = [225/ln(r)]−0.25ln(r),G = [15/ln(r)]−
0.5, and r = 20 is the effective viscosity ratio between
the upper and lower boundaries of the model domain.
The temperature dependence of this viscosity func-
tion is shown in Fig. 2. We adopt this viscosity law
for the sake of simplicity in the model and for bench-
marking of our numerical codes (Busse et al., 1993),
although the methodology described here is valid for
more general viscosity relationships (Ismail-Zadeh
et al., 2003a). The chosen temperature (and depth)
dependent viscosity profile has no minimum associ-
ated with the asthenospheric layer, while an inver-
sion of the main convection-related geophysical data
(free-air gravity, plate divergence, r.m.s. topography)
suggests the existence of a low-viscosity channel at
depths of 100–300 km with an average viscosity of

about 1020 Pa s (Forte and Mitrovica, 2001). A more
realistic viscosity profile will influence the evolution
of mantle plumes, but it will not affect results of the
restoration of mantle plumes.

In order to initiate the growth of thermal plumes, we
prescribe a small thermal perturbation on the horizon-
tal plane x3 = 0.1 (depth 648 km) at the initial time.
The time the plumes take to develop depends on the
amplitude of the initial perturbation. Hence, we com-
puted the evolution of plumes to the stage presented
in Fig. 3a and considered this stage as an initial con-
figuration of the plumes in our forward modeling.

The model domain was divided into 37 × 37 × 29
rectangular finite elements. The vector potential is ap-
proximated by tricubic splines on the elements, while
temperature, velocity, and viscosity are represented on
a more refined grid 112 × 112 × 88. The evolution
of the thermal plumes was modeled forward in time
(Fig. 3a–e). We interrupted the computations at a cer-
tain time (at 75 Myr), when the plumes had devel-
oped a mushroom geometry (Fig. 3e). The final state
of the plumes in the forward model was used as the
initial state of the plumes in backward (or restoration)
models. In the following we refer to the final state
of the thermal plumes in the forward modeling as the
‘present’ state of the plumes.

We apply the suggested numerical approach to re-
store the plumes from their ‘present’ state to the state
they were in Late Cretaceous times (75 Myr ago). To
achieve the accuracy ε = 10−8 (see Eq. (8)) we per-
formed up to 10 iterations at each subinterval of time
depending on the choice of the initial temperature
guess, T∗. Despite the number of necessary iterations,
a performance analysis demonstrated that the total
execution time for the numerical restoration of the
evolution of the plumes was only about a factor of
three (depending on the number of iterations) larger
than the time required for the forward modeling of
the plumes. The restoration method developed by
Bunge et al. (2003) is an order of magnitude more
computationally expensive.

Fig. 4 (left panel) shows the restored states of the
plumes and the temperature residuals δT

δT(x1, x2)

=
[∫ l3

0

(
T(x1, x2, x3)− T̃ (x1, x2, x3)

)2
dx3

]1/2
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Fig. 3. Mantle plumes in the forward modeling at successive times: from 75 Myr ago (a) to the ‘present’ state of the plumes (e). The
plumes are represented here and in Figs. 4–6 by isothermal surfaces at 1840 K.

between the temperature T̃ predicted by the forward
model and the temperature T restored to the same age.
The temperature residuals are within a thousandth of a
degree for the initial restoration period (from present
to about 26 Myr), and the maximum residual reaches
about δT = 25◦ at the restoration time of 75 Myr. The
computations show that the errors (temperature residu-
als) get larger the farther restorations move backwards
in time. For the heat problem, it has been shown that
the size of the time domain enters into the estimation
of the rate of convergence, and hence this size influ-
ences the errors.

To demonstrate effects of heat diffusion (and its ab-
sence) on the temperature restoration, we computed
the thermal plumes backwards in time using the heat
advection equation (with no heat diffusion). The right
panel of Fig. 4 presents the results of the modeling.
The shapes of the restored mantle plumes become no-
tably different from that of ‘true’ plumes (plumes mod-
eled forwards in time) after 26 Myr. The temperature
residuals (with no heat diffusion considered) are one
to three orders of magnitude larger than those when
heat diffusion is considered, and the minimum resid-
ual is about 100 K at the restoration time of 75 Myr.



A. Ismail-Zadeh et al. / Physics of the Earth and Planetary Interiors 145 (2004) 99–114 107

Fig. 4. Restored mantle plumes in the backward modeling and restoration errors (temperature residuals) at successive times: from the
‘present’ to 75 Myr ago. The left two panels present the model results in the case when diffusion is included in the heat transfer, and the
right two panels are for the case in which diffusion is neglected.

Thus, we have demonstrated that the neglect of heat
diffusion in the backward modeling leads to an inac-
curate restoration of mantle plumes.

Even though the coefficient of heat diffusion is
small, the neglect of diffusion in the heat equation
results in a different solution to the heat problem be-
cause of the reduction in the order of the differential
equation (Tikhonov and Samarskii, 1990). Moreover,
when mantle convection is computed forwards in

time using the heat diffusion equation and diffusion
is ignored in the backward modeling of the same
mantle convection, results are inconsistent and even
unphysical.

The comparison between ‘true’ (modeled forwards
in time) and restored (modeled backwards in time)
plumes is quite natural from the computational point
of view, but not from the geophysical point of view,
because the mantle structure in the past (initial ‘true’
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Fig. 5. Mantle plumes restored from the ‘present’ to 75 Myr ago (left panel), upbuilt plumes back to their ‘present’ state (central panel),
and the restoration errors (right panel) in the case when diffusion is included.

plumes) is unknown. Hence, we perform another nu-
merical experiment on the accuracy of the restoration
technique. We start from the ‘present’ structure of the
plumes, apply the suggested technique to restore the
past structure, run a forward model of the restored
plumes, and compare the ‘present’ structure and the
one recovered after the forward modeling. Fig. 5
presents the results of this modeling which show that
the restoration works quite well: temperature residuals
(difference between the temperature of the restored

mantle plumes and that of the plumes of the same
age in the forward model) are within hundredths of a
degree.

We have also performed similar computations with
the heat diffusion equation replaced by the heat advec-
tion equation during the backward modeling. Fig. 6
shows the results of restoration of the ‘present’ state
of the plumes to 75 Myr ago and upbuilding of the
restored plumes to the present time. The temperature
residuals are larger (by several orders of magnitude)
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Fig. 6. Mantle plumes restored from the ‘present’ to 75 Myr ago (left panel), upbuilt plumes back to their ‘present’ state (central panel),
and the restoration errors (right panel) in the case when diffusion is neglected.

than those for the case when diffusion is considered
in the backward modeling. Remarkably, the upbuilt
‘present’ state of the plumes in these two cases (with
and without diffusion in backward modeling) are very
similar in appearance, giving the false impression that
reconstructions are satisfactory even with zero diffu-
sion. Our analysis demonstrates that (i) the ‘present’
structures restored to the past are different for these
two cases and (ii) the restoration errors (temperature

residuals) are large when diffusion is neglected com-
pared to when diffusion is included in the heat transfer.

6. Discussion

Conduction and convection are two major mecha-
nisms for the transfer of heat. Conductive heat trans-
fer in the mantle is a diffusion process occurring due
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to collisions of molecules which transmit their kinetic
energies to other molecules. Convective heat transfer
is associated with the mantle motion due to buoyancy
and plays a dominant part in the general transport of
heat from the deep interior of the Earth to the surface.
In addition to transport by conduction and convection,
a hot material produces blackbody radiation, and heat
is diffused if the light emitted by one particle is par-
tially scattered or absorbed by high-frequency transi-
tions in neighboring molecules. However, according
to Hofmeister (1999) the radiative contribution is rel-
atively small across the mantle (10–15% of the total
thermal conductivity).

If heat diffusion is negligible, the thermal convec-
tion in the mantle is time-reversible. “If you have a lot
of particles doing something, and then you suddenly
reverse the speed, they will completely undo what
they did before . . . If I reverse the time, the forces are
not changed, and so the changes in velocity are not
altered at corresponding distances. So each velocity
then has a succession of alterations made in exactly
the reverse of the way that they were made before,
and it is easy to prove that the law of gravitation is
time-reversible”. With these words, the famous physi-
cist R. Feynman introduced the time reversibility in
gravity problems during the Messenger lectures on
the character of physical laws he delivered at Cornell
University in 1964 (Feynman, 1965).

Conductive heat transfer (heat diffusion) is a more
complicated phenomenon. It is practically impossible
to collect diffused heat back to the place from where
it was diffused. Consider a simple example. If a ‘cold’
room is heated by a heater installed in the room, it
becomes warmer in a few hours period. If the heater is
switched off, it is ridiculous to expect that the diffused
heat will return back to the heater or we could estimate
the initial temperature of the heater from the current
room temperature.

Similar processes occur in the Earth. The mantle
is heated from the core and from inside due to decay
of radioactive elements. Since mantle convection is
described by heat advection and diffusion, one can ask:
is it possible to tell, from the ‘present’ temperature
estimations of the Earth, something about the Earth’s
temperature in the geological past?

Even though heat diffusion is irreversible in the
physical sense, we can accurately predict the heat
transfer backwards in time using the mathematical de-

scription of backward heat advection and diffusion
without contradicting the basic thermodynamic laws.
In this paper we have suggested a numerical method
for modeling the backward heat equation in order to
solve the inverse problem of thermal convection in
the mantle. We do not solve directly the approximate
backward heat equation, but rather we search for ini-
tial temperature conditions for the approximate for-
ward heat equation.

There is a major physical limitation of the restora-
tion of mantle plumes. If a thermal feature created,
let us say, a billion years ago by a boundary layer in-
stability has completely diffused away by the present,
it is impossible to restore the feature which was more
prominent in the past. The time to which a present
thermal structure in the upper mantle can be restored
should be restricted by the characteristic thermal
diffusion time, the time when the temperatures of the
evolved structure and the ambient mantle are nearly
indistinguishable: τdiff = d2

diff/36κ, where ddiff is the
diffusion distance (see Turcotte and Schubert (2002);
p. 155, Eq. 4–113 at T → T1, where T1 is the ambient
temperature). A maximum restoration time is therefore
scale dependent, with larger structures being restorable
to times further in the past. For a structure the size
of the upper mantle thickness (ddiff = 650 km),
the time of restoration should be limited to about
470 Myr.

A part of the geophysical community may main-
tain a skepticism about the inverse modeling of ther-
mal convection. This skepticism may partly have its
roots in our poor knowledge of the Earth’s present
structure and its physical properties which cannot
allow for rigorous numerical paleoreconstructions
of the Earth’s evolution. Even considering simpli-
fied present-day structure and thermal state of the
Earth, the backward modeling of thermomechanical
evolution of the Earth is a computational challenge
and several numerical problems (e.g., restorations
to the distant past, about 400 Myr; more realistic
rheology; temperature-dependent thermal diffusiv-
ity) should be solved before the technique becomes
applicable for whole mantle convection reconstruc-
tion. An increase in the accuracy of seismic to-
mography inversions and geodetic measurements,
improvements in the knowledge of gravity and
geothermal fields, and more complete experimen-
tal data on the physical and chemical properties
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of mantle rocks will facilitate mantle reconstruc-
tions.

Physicists like to think that all you have to do is say:
‘These are the conditions, now what happens next?’
(Feynman, 1965), and hence the physicists prefer a for-
ward modeling of phenomena. On the other hand, ge-
ologists like to predict a geological evolution based on
discoveries on the Earth’s surface, and therefore they
prefer a modeling backwards in time. In geophysics
these two approaches (forward and backward model-
ing) can be combined using applied mathematics as
a tool in numerical modeling of the thermoconvective
evolution of the Earth.

We have shown in this paper that a prominent
present-day thermal feature in the mantle can be
traced back into the geological past. A mathematical
model of the thermal convection in the Earth’s man-
tle is described by a set of equations, and we have
demonstrated here that the set of equations can be
solved numerically backwards in time. Our restora-
tion methodology works well for the mathematical
model, and we show its efficiency in the framework
of this model.

We have also showed that the suggested method for
backward modeling of thermal convection works well
for the temperature-dependent viscosity (11). For in-
creased values of the temperature dependence of vis-
cosity (for more than three orders of magnitude vis-
cosity contrast), the inversion scheme might become
more sensitive to errors in backtracking the thermal
state, and a more accurate inversion scheme might
have to be developed.

7. Conclusions

The main motivation for this research comes from
the rapid progress made by seismic tomographers in
imaging deep Earth structure. Restoration of seismi-
cally imaged structures backwards in time could pro-
vide an important way to test a range of geodynamic
hypotheses. We have suggested a variational approach
to the numerical solution of the inverse problem of
thermal convection with infinite Prandtl number. We
have tested the numerical approach by restoring a
model of thermal plumes. The results of the restora-
tion models together with the error estimates demon-
strate the practicality of the suggested technique. We

have also demonstrated that restored ‘present’ struc-
tures are different when heat diffusion is neglected.
The restoration errors (temperature residuals) are large
when diffusion is neglect.

The current solution algorithm for the inverse mod-
eling of thermal convection allows us to restore tem-
perature for about a hundred million years into the
past based on the knowledge of the present temper-
ature distribution in the mantle. This algorithm does
not allow for the thermal restoration of the upper man-
tle to an age of several hundred million years (within
the limit of the characteristic thermal diffusion time).
This is associated with a coarseness of the grid used
in modeling the heat equation, and we are working on
improving the algorithm to allow grid refinement.

In addition to the application of the backward
modeling technique to problems of mantle plume and
lithospheric slab restorations, the technique can be
employed to predict paleotemperatures in sedimentary
basins. The temperature estimations in the geologi-
cal past can help in the forecasting of hydrocarbon
generation, maturation, migration, and location in the
basins.

The suggested numerical algorithm can be incor-
porated into many existing mantle convection codes
in order to simulate the evolution of mantle struc-
tures backwards in time. The methodology opens a
new possibility for restoration of mantle plumes, sub-
ducting lithosphere, plate movements, and thermo-
convective mantle flow in general. Of course, real
mantle plumes display more complex patterns and
evolution, but our simple models represent an essen-
tial step in understanding how mantle plumes (and
other mantle structures) might be reconstructed to the
past.
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Appendix A. On the stability of the solution to
the one-dimensional backward diffusion equation

Consider the following boundary-value problem for
the one-dimensional backward diffusion equation:

∂u(t, x)/∂t = ∂2u(t, x)/∂x2, 0 ≤ x ≤ π, t ≤ 0,

u(t, 0) = 0 = u(t, π), t ≤ 0,

u(0, x) = φn(x), 0 ≤ x ≤ π.

At the initial time we assume that the function φn(x)
takes the following two forms:

φn(x) = 1

4n+ 1
sin ((4n+ 1)x)

and

φ0(x) ≡ 0.

Note that

max
0≤x≤π

|φn(x)− φ0(x)| ≤ 1

4n+ 1
→ 0 at n→ ∞.

The following two solutions of the problem corre-
spond to the two chosen functions of φn(x), respec-
tively:

un(t, x) = 1

4n+ 1
exp(−(4n+ 1)2t) sin ((4n+ 1)x)

at φn(x) = φn
and

u0(t, x) ≡ 0 at φn(x) = φ0.

At t = −1 and x = π/2 we obtain

un(−1, π/2) = 1

4n+ 1
exp((4n+ 1)2)→ ∞

at n→ ∞.

At large n two closely set initial functions φn and φ0
are associated with the two strongly different solutions
at t = −1 and x = π/2. Hence, a small error in the
initial data can result in very large errors in the solution
to the backward problem, and therefore the solution is
unstable, and the problem is ill-posed.

Appendix B. Derivation of the gradient of
objective functional J

We consider the objective functional defined by
(4) and determine the gradient of the functional (see
Ismail-Zadeh et al. (2003a) for more details). An in-
crement of the functional can be represented in the
form:

J(ϕ + h)− J(ϕ)=
∫
Ω

|T(ϑ2, x;ϕ + h)− χ(x)|2dx

−
∫
Ω

|T(ϑ2, x;ϕ)− χ(x)|2dx

= 2
∫
Ω

(T(ϑ2, x;ϕ)−χ(x))z(ϑ2, x)dx

+
∫
Ω

z(ϑ2, x)
2dx,

where h(x) is a small heat increment to the unknown
initial temperature ϕ(x), and z = T(t, x;ϕ + h) −
T(t, x;ϕ) is the solution to the following forward heat
problem

∂z/∂t + u · ∇z− ∇2z = 0, x ∈ Ω, t ∈ (ϑ1, ϑ2),

σ1z+ σ2∂z/∂n = 0, x ∈ Γ, t ∈ (ϑ1, ϑ2),

z(ϑ1, x) = h(x), x ∈ Ω.
(B.1)

We show below that

2
∫
Ω

(T(ϑ2, x;ϕ)− χ(x))z(ϑ2, x)dx

=
∫
Ω

Ψ(ϑ1, x)h(x)dx,

where Ψ(t, x) = 2(T(t, x;ϕ)− χ(x)) is the solution to
the conjugate boundary problem (7). Indeed,∫
Ω

Ψ(ϑ2, x)z(ϑ2, x)dx

=
∫
Ω

∫ ϑ2

ϑ1

∂

∂t
(Ψ(t, x)z(t, x)) dxdt

+
∫
Ω

Ψ(ϑ1, x)h(x)dx.

Considering the fact that Ψ = Ψ(t, x) and z = z(t, x)

are the solutions to (7) and (B.1) respectively, and the
velocity u satisfies Eq. (3) and the boundary conditions
specified, we obtain
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∫
Ω

∫ ϑ2

ϑ1

∂

∂t
(Ψ(t, x)z(t, x))dtdx

=
∫ ϑ2

ϑ1

∫
Ω

{
∂

∂t
Ψ(t, x)z(t, x)+Ψ(t, x)∂z(t, x)

∂t

}
dxdt

=
∫ ϑ2

ϑ1

∫
Ω

z(t, x)
[
−u · ∇Ψ − ∇2Ψ

]
dxdt

+
∫ ϑ2

ϑ1

∫
Ω

Ψ(t, x)
[
−u · ∇z+ ∇2z

]
dxdt

=
∫ ϑ2

ϑ1

∫
Γ

{Ψ ∇z · n − z ∇Ψ · n} dΓ dt

+
∫ ϑ2

ϑ1

∫
Ω

{∇Ψ · ∇z− ∇z · ∇Ψ} dxdt

+
∫ ϑ2

ϑ1

∫
Ω

{zΨ ∇ · u + Ψ u · ∇z
−Ψ u · ∇z} dxdt

−
∫ ϑ2

ϑ1

∫
Γ

zΨ u · n dΓ dt = 0.

Hence, we can derive that:

J(ϕ + h)− J(ϕ)=
∫
Ω

Ψ(ϑ1, x)h(x)dx

+
∫
Ω

z(ϑ2, x)
2dx

=
∫
Ω

Ψ(ϑ1, x)h(x)dx+ o(‖h‖).

And therefore, we obtain that the gradient of the ob-
jective functional is represented as

∇J(ϕ) = Ψ(ϑ1, ·).
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Abstract 

We investigate the effects of thermal diffusion on the evolution of mantle plumes by 

means of three-dimensional numerical modeling forward and backward in time. Mantle 

plumes are fed by a hot, low viscous material from the thermal boundary layer. The 

material of the plumes is mainly advected toward the Earth’s surface with some effects 

of thermal diffusion. But the feeding can become weaker with time, and then thermal 

diffusion can take over and control the evolution of the plumes. Numerical experiments 

forward in time show that a delay or interruption in plume heat and mass transfer results 

in the diffusive disappearance of plume tails first and plume heads later. This is the 

most likely explanation for the seismically detected low velocity mantle structures 

(mantle plumes) with prominent heads and almost invisible tails at mid-mantle depths. 

We develop restoration models (backward in time) to recover strong features of mantle 

plumes in the geological past after they have dissipated due to thermal diffusion and 

analyze effects of thermal diffusion and temperature-dependent viscosity on the 

reconstruction of the mantle plumes. Also, we investigate the impact of thermal 

diffusion on the performance of our restoration (data assimilation) algorithm. For a 

given range of Rayleigh number Ra and two values of the viscosity ratio r (between the 

upper and lower boundaries of the model domain) we show that (i) the residuals 

between the temperature predicted by the forward model and that reconstructed by the 

backward modeling become larger and (ii) the restoration process becomes poorer as Ra

decreases and r increases. We assimilate temperature obtained from high-resolution 

seismic tomography data for the south-eastern Carpathians and show that diffused 

present mantle structures can be restored to their prominent state in the Miocene times. 

We discuss the problems of smoothness of model input and output data, errors 

associated with the modeling, and some other challenges in the data assimilation for 

thermo-convective flow in the mantle. (318 words) 

Keywords: 3-D mantle plume evolution, data assimilation, plume reconstruction, 

thermal diffusion, plume tail and head. 

1. Introduction 

Mantle plumes are among the most spectacular features of mass and heat transport from 

the mantle to the Earth’s surface. Thermal plumes in the mantle plausibly originate near 

either the core-mantle boundary or the upper mantle-lower mantle transition due to 

instabilities in the hot thermal boundary layers that could exist at these locations. 
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Although some mantle plumes appear to last for more than 150 Myr, they are 

nonetheless transient features: no tracks older than the Mesozoic are well established

[e.g., Condie, 2001; Jellinek and Manga, 2002]. Direct observational evidence of 

mantle plumes comes from seismic tomography which provides constraints on 

temperature and composition of present mantle structures [e.g., Ritsema et al, 1999; 

Montelli et al., 2004]. Our understanding of mantle plume dynamics comes from 

numerical (Schubert et al. [2001] provide an overview) and laboratory [e.g., Davaille,

1999] experiments.  

Numerical models of mantle plume evolution have been mainly carried out 

forward in time, i.e., from the onset of plumes to late stages of maturity. The main 

drawback of these models is that the initial conditions (conditions in the geological past) 

for the models are unknown. However, temperature and flow at the time of plume onset 

can be inferred from the present mantle temperature and flow using data assimilation 

based on combined forward and backward numerical modeling of plume evolution. The 

main motivation for the data assimilation comes from the rapid progress made by 

seismic tomographers in imaging deep Earth structure. Restoration of seismically 

imaged structures backwards in time could provide an important way to test a range of 

geodynamics hypotheses.  

Data assimilation is defined as the incorporation of present (observations) and 

past (initial conditions) data in an explicit dynamical model to provide time continuity 

and coupling among the physical fields. The basic principle of data assimilation is to 

consider the initial condition as a control variable and to optimize the initial condition in 

order to minimize the discrepancy between the observations and the solution of the 

model. Data related to a thermo-convective mantle flow can be assimilated by using 

sequential filtering, variational technique, and some others methods [e.g., Wunsch,

1996; Talagrand, 1997]. In sequential filtering a numerical model is computed forward 

in time for the interval for which observations have been made, updating the model each 

time where observations are available. Bunge et al . [1998, 2002] used this approach to 

compute mantle circulation models. Despite sequential data assimilation well adapted to 

mantle circulation studies, each individual observation influences the model state only 

at later times. Information propagates from the geological past into the future, however 

no information is carried back into the past. This limitation is of disadvantage in 
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thermo-convective mantle circulation studies, where knowledge of the mantle at present 

is much more detailed than that at earlier times [Bunge et al., 2002].  

The use of variational data assimilation in solid Earth dynamics (to estimate 

initial mantle temperature and flow in the geological past) has been put forward by 

Bunge et al. [2003] and Ismail-Zadeh et al. [2003a, b]. This idea is based on a 

variational technique applied to solve the coupled heat, momentum and continuity 

equations in order to find the model representation that is most consistent with the 

observations. That best estimate can then be used to analyze geodynamic processes or 

initialize a model setup more accurately. Ismail-Zadeh et al. [2004] presented a data 

assimilation algorithm for numerical restoration of a three-dimensional model of present 

prominent mantle plumes to past stages and showed a high-accuracy in recovering the 

initial configurations of these plumes. The two major objectives of this study are (i) to 

estimate effects of thermal diffusion and temperature-dependent viscosity on the 

evolution of mantle plumes and (ii) to recover the structure of mantle plumes prominent 

in the past from that of present plumes weakened by thermal diffusion.  

Conduction and convection are two major mechanisms for the transfer of heat. 

Conductive heat transfer in the mantle is a diffusion process occurring due to collisions 

of molecules which transmit their kinetic energies to other molecules. Convective heat 

transfer is associated with the mantle motion due to buoyancy and plays a dominant part 

in the general transport of heat from the deep interior of the Earth to the surface. The 

thermal conductivity of mantle material depends on pressure and temperature. A model 

for thermal conductivity in the sub-lithospheric mantle, based on the experimental study 

(photon lifetimes obtained from infrared reflectivity) by Hofmeister [1999], shows that 

the thermal conductivity increases with depth from about 2 to 7 W m-1 K-1. In addition 

to transport by conduction and convection, a hot material produces blackbody radiation, 

and heat is diffused if the light emitted by one particle is partially scattered or absorbed 

by high-frequency transitions in neighboring molecules. Badro et al. [2004] showed 

experimentally a substantial increase in radiative thermal conductivity in the lower 

mantle. The change in the radiative conductivity of lower mantle minerals will influence 

the lower mantle dynamics and plume evolution, because the increase in thermal 

conductivity results in a decrease of the Rayleigh number and hence in an increase of 

thermal diffusion. 
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We briefly describe the model setup and numerical method in section 2 and the 

variational data assimilation approach to the reconstruction of mantle plumes in section 

3 (details of this approach can be found in Ismail-Zadeh et al. [2004]). We present 

three-dimensional forward numerical models of mantle plume weakening due to thermal 

diffusion and analyze the influence of thermal diffusion and viscosity ratio on the 

evolution of mantle plumes in section 4. These diffused plume structures are then 

restored to their prominent state in the past, and we analyze the effects of thermal 

diffusion and viscosity on the reconstruction of mantle plumes in section 5. The 

efficiency of the data assimilation technique is illustrated in section 6 in terms of the 

number of iterations required to obtain the target temperature and flow velocity in the 

past. In sub-section 7.1 we discuss how the numerical results on fading mantle plumes 

can explain the recent seismic tomography observations of low velocity anomalies 

extending down to mid-mantle depths. We show in sub-section 7.2 the applicability of 

the numerical reconstruction method (data assimilation approach) to ‘real’ (that is, 

imaged by seismic tomography) mantle structures, and present conclusions in section 8.  

2. Model problem and numerical approach 

We study the problem of mantle plume evolution in the three-dimensional model 

domain ],0[]3,0[]3,0[ 321 hxhxhx =×=×==Ω , where x=(x1, x2, x3) are the Cartesian 

coordinates and h is the depth of the domain. We assume that the mantle behaves as a 

Newtonian incompressible fluid with a temperature-dependent viscosity and infinite 

Prandtl number. Rising mantle plumes are modeled as hot fluid jets ascending into the 

relatively cold ambient fluid heated from below. The mantle flow is described by heat, 

motion, and continuity equations [Chandrasekhar, 1961]. To simplify the governing 

equations, we make the Boussinesq approximation [Boussinesq, 1903] keeping the 

density constant everywhere except for buoyancy term in the equation of motion. We 

note that a variable (temperature-dependent) density [Ismail-Zadeh et al., 2003a] and an 

adiabatic internal heating [Bunge et al., 2003] can be also used in the forward and 

backward modeling of thermo-convective mantle circulation. In the Boussinesq 

approximation the dimensionless equations take the form: 

,/ 2TTtT ∇=∇⋅+∂∂ u ),,0( ϑ∈t ,Ω∈x    (1) 

[ ] eE RaTTP +=∇ )(div η , }//{ ijji xuxu ∂∂+∂∂=E , )1,0,0(=e , (2) 

0div =u , ),,0( ϑ∈t Ω∈x .     (3) 
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Here T , t , u=(u1, u2, u3), P , and η  are dimensionless temperature, time, velocity, 

pressure, and viscosity, respectively. The Rayleigh number is defined as 

113 −−∆= κηρα refref ThgRa , where α  is the thermal expansivity, g is the acceleration due 

to gravity, refρ  and refη  are the reference typical density and viscosity, respectively; 

T∆  is the temperature contrast between the lower and upper boundaries of the model 

domain; and κ is the thermal diffusivity. In Eqs. (1)-(3) length, temperature, and time 

are normalized by h , T∆ , and 12 −κh , respectively.  

At the boundary of the model domain we set the impenetrability condition with 

perfect slip conditions: 0,0/ =⋅=∂∂ nunuτ , where n is the outward unit normal 

vector at a point on the model boundary, and τu  is the projection of the velocity vector 

onto the tangent plane at the same point on the model boundary. We assume zero heat 

flux through the vertical boundaries of the box. The upper and lower boundaries are 

isothermal surfaces, and we set 0=T  and 1=T  at these boundaries, respectively.  

Equations (1)–(3) together with the boundary conditions describe a thermo-

convective mantle flow. To solve the problem forward or backward in time we assume 

the temperature to be known at the time of plume onset ( 0=t ) or at the present time 

( ϑ=t ). 

Temperature in the heat equation (1) is approximated by finite differences and 

determined by the implicit alternating direction method [Marchuk, 1994]. A numerical 

solution to the Stokes equations (2) is based on the introduction of a two-component 

vector velocity potential and on the application of the Eulerian finite-element method 

with a tricubic-spline basis for computing the potential [Ismail-Zadeh et al., 2001]. Such 

a procedure results in a set of linear algebraic equations with a symmetric positive-

definite banded matrix. We solve the set of equations by the conjugate gradient method 

[Fletcher and Reeves, 1964]. The numerical algorithm was designed to be implemented 

on parallel computers. The reader is referred to Ismail-Zadeh et al. [2001, 2004] for 

more detail. 

3. Variational data assimilation 

Data assimilation techniques has been pioneered by meteorologists and used very 

successfully to improve operational weather forecasts [e.g., Kalnay, 2003]. Data 

assimilation has also been widely used in oceanography [e.g., Bennett, 1992] and in 
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hydrological studies [e.g., McLaughlin, 2002]. However, the application of the method 

to problems of mantle dynamics is still in its infancy.  

The variational data assimilation is based on a search of the best fit between the 

forecast model state and the observations by minimizing an objective functional (a 

normalized residual between the target model and observed variables) over space and 

time. To minimize the objective functional over time, an assimilation time interval is 

defined and an adjoint model is typically used to find the derivatives of the objective 

functional with respect to the model states. The variational data assimilation is well 

suited for smoothing problems (we discuss the problem of smoothness of the initial data 

and solution in Appendix A).  

The method for variational data assimilation can be formulated with a weak 

constraint where errors in the model formulation are taken into account as control 

parameters (generalized inverse) [Bunge et al., 2003] or with a strong constraint where 

the model is assumed to be perfect except for the errors associated with the initial 

conditions [Bunge et al., 2003; Ismail-Zadeh et al., 2003a]. There are several sources of 

errors in forward and backward modeling of thermo-convective mantle flow, which we 

discuss in Appendix B. The generalized inverse of mantle convection considers model 

errors, data misfit and the misfit of parameters as control variables. Unfortunately the 

generalized inverse presents a tremendous computational challenge and is difficult to 

solve in practice. Hence, Bunge et al. [2003] considered a simplified generalized inverse 

imposing a strong constraint on errors (ignoring all errors except for the initial condition 

errors). Therefore, the strong constraint makes the problem computationally tractable.  

We consider the following objective functional 
2

)();,()( ⋅−⋅= χϕϑϕ TJ , where 

⋅  denotes the norm in the space )(2 ΩL (the Hilbert space with the norm defined as 

2/1

2 )(=
Ω

xx dyy ). Since in what follows the dependence of solutions of the 

thermal boundary value problems on initial data is important, we introduce these data 

explicitly into the mathematical representation of temperature. Here );,( ϕϑ ⋅T  is the 

solution of the thermal boundary value problem (1) at the final time ϑ , which 

corresponds to some (unknown as yet) initial temperature distribution )(xϕ ;

);,()( 0TT xx ϑχ =  is the known temperature distribution at the final time, which 

corresponds to the initial temperature )(0 ⋅T . The functional has its unique global 
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minimum at value 0T≡ϕ  and 0)( 0 ≡TJ , 0)( 0 ≡∇ TJ . To find the minimum of the 

functional we employ the gradient method (k= 0, …, j, …): 

)(1 kkkk J ϕβϕϕ ∇−=+ ,       (4) 

})(/)(),1/(1min{ kkk JJk ϕϕβ ∇+= , *0 T=ϕ ,    (5) 

where *T  is an initial temperature guess. The gradient of the objective functional 

( )kJ ϕ∇  decreases steadily with the number of iterations, and it provides the 

convergence of the method. Meanwhile the absolute value of kβ  increases with the 

number of iterations, and it can result in instability of the iteration process [Samarskii 

and Vabischevich, 2004]. To avoid the instability, we use Eq. (5) to minimize the 

parameter kβ . The gradient of the objective functional J∇  is in fact the solution to the 

adjoint problem: 

,/ 2ZZZ ∇=∇⋅−∂∂ uτ ),0,( ϑτ −∈−= t     (6) 

)),();,((2),0( xxx χϕϑ −= TZ Ω∈x ,

with uniform boundary conditions (see Appendix B in Ismail-Zadeh et al. [2004]; also 

Bunge et al. [2003]).  

We define a uniform partition of the time axis at points nttn δϑ −= , where tδ

is the time step, and n successively takes integer values from 0 to some natural number 

/m tϑ δ= . At each subinterval of time [tn+1, tn], the search of the temperature T  and 

flow velocity u at t = tn+1 consists of the following basic steps.  

Step 1. Given the temperature ),( xntTT =  at ntt =  we solve a set of linear 

algebraic equations derived from Eqs. (2) and (3) with the appropriate boundary 

conditions in order to determine the velocity u.

Step 2. The 'advective' temperature ),( 1 x+= nadvadv tTT  is determined by solving the 

advection heat equation backward in time, neglecting the diffusion term in Eq. (1). This 

can be done by replacing positive time steps by negative ones [see Ismail-Zadeh et al.,

2003b].  

Given the temperature advTT =  at 1+= ntt  steps 1 and 2 are then repeated to find 

the velocity );,( 1 advnadv Tt xuu += .
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 Step 3. The heat equation (1) is solved with appropriate boundary conditions and 

initial condition ),()( 10 xx += nadv tTϕ  forward in time using velocity advu  in order to find 

);,( 0ϕxntT .

Step 4. The adjoint equation (6) is then solved backward in time with 

appropriate boundary conditions and initial condition );,(),( 0ϕxx nn tTtT =  using 

velocity u  in order to determine )( 0ϕJ∇ .

Step 5. The coefficient 0β  is determined from Eq. (5), and the temperature is 

updated (i.e. 1ϕ  is determined) from Eq. (4).  

Steps 3 to 5 are repeated for jϕ  and jβ  (j = 1, 2, 3,…) until 

εϕϕδϕ <∇+=
2

)()( jjj JJ , where ε  is a small constant. Temperature jϕ  is then 

considered to be the approximation to the target value of the initial temperature 

),( 1 x+ntT . And finally, step 1 is used to determine the flow velocity )),(;,( 11 xxu ++ nn tTt .

Step 2 introduces a preconditioner to accelerate the convergence of temperature 

iterations in Steps 3 to 5 at high Rayleigh number. At low Ra, Step 2 is omitted and uadv

is replaced by u. 

4. Forward modeling of mantle plume diffusion 

Mantle plumes evolve in three distinguishing stages: (i) immature, i.e., an origin and 

initial rise of the plumes; (ii) mature, i.e., plume-lithosphere interaction, gravity 

spreading of plume head and development of overhangs beneath the bottom of the 

lithosphere, and partial melting of the plume material [e.g., Ribe and Christensen, 1994; 

Moore et al., 1998]; and (iii) overmature, i.e., slowing-down of the plume rise and 

fading of the mantle plumes due to thermal diffusion [Davaille and Vatteville, 2005]. 

The ascent and evolution of mantle plumes depend on the properties of the source 

region (that is, the thermal boundary layer) and the viscosity and thermal diffusivity of 

the ambient mantle. The properties of the source region determine temperature and 

viscosity of the mantle plumes. Structure, flow rate, and heat flux of the plumes are 

controlled by the properties of the mantle through which the plumes rise. While 

properties of the lower mantle (e.g., viscosity, thermal conductivity) are relatively 

constant during about 150 Myr lifetime of most plumes, source region properties can 

vary substantially with time as the thermal basal boundary layer feeding the plume is 
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depleted of hot material. Complete local depletion of this boundary layer cuts the plume 

off from its source. It is the subsequent evolution of the plume that interests us here.  

We study only the late stage of the mantle plume evolution associated with the 

fading of the plume due to thermal diffusion and model the evolution of mantle plumes 

deprived of source material through numerical experiments of three-dimensional 

thermal convection in a bottom heated box. The mantle behaves as a Newtonian fluid on 

geological time scales, and a dimensionless temperature-dependent viscosity law [Busse 

et al., 1993] given by 

+
−

+
=

G

M

GT

M
T

5.0
exp)(η

is used in the modeling, where M = [225/ln(r)] – 0.25 ln(r), G =15/ln(r) – 0.5 and r is 

the viscosity ratio between the upper and lower boundaries of the model domain. We 

model the plume evolution for two viscosity profiles: r = 20 (model A) and r = 200 

(model B). The temperature-dependent viscosity profile has its minimum at the core-

mantle boundary. A more realistic viscosity profile [e.g., Forte and Mitrovica, 2001] 

will influence the evolution of mantle plumes, though it will not influence the 

restoration of the plumes. The model domain is divided into 37×37×29 rectangular 

finite elements to approximate the vector velocity potential by tricubic splines, and a 

uniform grid 112×112×88 is employed for approximation of temperature, velocity, and 

viscosity.  

Initially we model the evolution of mature mantle plumes, although it is not a 

subject of this study and introduced here in order to obtain initial temperature data for 

models of mantle plume diffusion. With 5103 −×=α K-1, 4000=refρ  kg m-3,

3000=∆T  K, h=2800 km, 22108×=refη  Pa s, and 610−=κ  m-2 s-1, the initial 

Rayleigh number is 5105.9Ra ×= . While plumes evolve in the convecting 

heterogeneous mantle, at the initial time we assume that the plumes develop in a 

laterally homogeneous temperature field and hence consider that the mantle temperature 

in the model increases linearly with depth.  

Mantle plumes are generated by random temperature perturbations at the top of 

the thermal source layer associated with the core-mantle boundary. The mantle material 

in the basal source layer flows horizontally toward the plumes. The reduced viscosity in 

this basal layer promotes the flow of the material to the plumes. Vertical upwelling of 

hot mantle material is concentrated in low viscosity conduits near the centerlines of the 
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emerging plumes. The plumes move upward through the model domain, gradually 

forming structures with well-developed heads and tails. When the viscosity of the 

uppermost mantle is high enough compared to the plume viscosity, the plume heads 

start to spread horizontally. In the case of a less viscous uppermost mantle, this occurs 

at shallower depth (compare Fig. 1a and 2a). We interrupt the numerical experiment at a 

certain time when the hot material in the source layer is nearly depleted and the plume 

heads are mushroom-shaped. We consider the final temperature predicted by the model 

as an initial temperature for numerical models of thermal diffusion of mantle plumes 

that interest us in this study. To enhance thermal diffusion and reduce heat advection, 

we impose reduction in the Rayleigh number. A change of the Rayleigh number in a 

physical system is to be associated with a change of the material properties in time. 

Laboratory experiments focusing on the transient behavior of thermal plumes show that 

the flow velocity of rising plumes decreases strongly at the late stage of plume 

evolution (see Fig. 3b in Davaille and Vatteville [2005]). The gradual decrease in the 

flow velocity enhances thermal diffusion (see Eq. 1), and meanwhile the lowering of the 

flow velocity is associated with a decrease in the Rayleigh number (see Eq. 2). Hence 

the lowering of the Rayleigh number is made only to reduce flow velocity and to 

increase the thermal diffusion relative to the thermal advection in the models. 

We develop three independent experiments assigning various Ra less than the 

initial Ra by one to three orders of magnitude. Here we present the case Ra = 9.5×103, a 

two order of magnitude reduction with respect to the initial Rayleigh number, for two 

viscosity models (A and B). Figures 1 (a-c) and 2 (a-c) show several stages in the 

diffusive decay of the mantle plumes. The thermal plumes diminish in size with time 

and the plume tails disappear before the plume heads. We note that the figures present a 

hot isothermal surface of the plumes. If colder isotherms are considered, the 

disappearance of the isotherms will occur later. But anyhow, hot or cold isotherms are 

plotted, plume tails will vanish before their heads. Results of recent laboratory 

experiments [Davaille and Vatteville, 2005] support strongly our numerical findings 

that plumes start disappearing from bottom up and fade away by thermal diffusion. 

At different stages in the plume decay one sees quite isolated plume heads, 

plume heads with short tails, and plumes with nearly pinched off tails. Different 

amounts of time are required for different mantle plumes to vanish into the ambient 

mantle, the required time depending on the geometry of the plume tails. Temperature 

loss is greater for sheet-like tails than for cylindrical tails. The tails of the cylindrical 
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plumes (e.g., Fig. 1c, in the left part of the model domain) are still detectable after about 

230 Myr. However, at this time the sheet-like tail of the large plume in the right part of 

the model domain (Fig. 1a) is already invisible and only its large head is preserved in 

the uppermost mantle (Fig. 1c). Two-dimensional numerical experiments of steady state 

convection [Leitch et al., 1996] reveal a significant change in the centerline temperature 

of sheet-like plume tails compared to the cylindrical plume tail due to heat conduction 

in the horizontal direction. Also, our numerical experiments show that the widths of 

mantle plumes decrease rapidly with a decrease in Rayleigh number.  

5. Recovering prominent mantle plumes from their weakened present stage 

We use the numerical approach described in section 3 to reconstruct the prominent state 

of the plumes in the past from their ‘present’ weak state. Figures 1 and 2 illustrate the 

reconstructed states of the plumes (middle panel) and the temperature residuals Tδ

(right panel) between the temperature )(xT  predicted by the forward model and the 

temperature )(
~

xT  reconstructed to the same age: 

( )
2/1

0

3

2

32132121 ),,(
~

),,(),( −=
h

dxxxxTxxxTxxTδ .

The dimensional temperature residuals are within a few degrees for the initial 

restoration period (from present to about 150-200 Myr backward, Figs. 1i and 2h). The 

computations show that the errors (temperature residuals) get larger the farther the 

restorations move backward in time (e.g., 300≈Tδ K at the restoration time of more 

than 300 Myr). Compared to the case of Ra = 9.5×105 [see Ismail-Zadeh et al., 2004], 

one can see that the residuals become larger as the Rayleigh number decreases or 

thermal diffusion increases (Figs. 1 and 3) and viscosity ratio increases (Fig. 2). We 

introduce the critical temperature residual TTcr ∆= 2.0δ such that the quality of mantle 

structure recovery is estimated to be bad if crTT δδ > . The quality of the restoration 

depends on the dimensionless Peclet number 
κ
maxhu

Pe = , where maxu  is the maximum 

flow velocity. According to the numerical experiments, the Peclet number 

corresponding to the critical temperature residual K600=crTδ  is Pe=10; Pe should not 

be less than about 10 for a high quality plume restoration. 
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In numerical experiments backward in time we observe an increase in the noise of 

the restored temperatures when time approaches the time of plume onset (see, e.g. Fig. 

1g). Samarskii et al. [1997] studied a one-dimensional backward heat diffusion problem 

and showed that the solution to this problem becomes noisy if the initial temperature 

guess is slightly perturbed, and the amplitude of this noise increases with the initial 

perturbations of the temperature guess. They suggest using a special filter to reduce the 

noise and illustrate the efficiency of the filter. This filter is based on the replacement of 

iterations (4) by the following iterative scheme: 

)()( 1 kkkk JB ϕβϕϕ ∇−=−+ ,       (7) 

where yyBy 2∇−= . Unfortunately, employment of this filter increases the number of 

iterations to obtain the target temperature and it becomes quite expensive computa-

tionally, especially when the model is three-dimensional. Therefore, our approach to 

this problem is to run the model backward to the point of time when the noise becomes 

relatively large.  

6. Performance of the numerical algorithm 

Here we investigate the impact of diffusion on the performance of our restoration 

algorithm for various Ra and r and compare it with that of Ra=9.5×105. The 

performance of the algorithm is evaluated in terms of the number of iterations n

required to achieve a prescribed relative reduction of nδϕ . Figure 4 presents the 

evolution of the objective functional )( nJ ϕ  and the norm of the gradient of the 

objective functional )( nJ ϕ∇  versus the number of iterations at time about θ5.0 . For 

other time steps we observe a similar evolution of J and J∇ .

Both the objective functional and the norm of its gradient show a quite rapid 

decrease after about 5 iterations for Ra = 9.5×105 (curves 1) [Ismail-Zadeh et al., 2004]. 

The same rapid convergence as a function of adjoint iterations is observed in the Bunge

et al. [2003] case. As Ra decreases and thermal diffusion increases (curves 2 and 3) the 

performance of the algorithm becomes poor: more iterations are needed to achieve the 

prescribed ε . All curves illustrate that the first 4 to 6 iterations contribute mainly to the 

reduction of nδϕ . The curves approach the horizontal line with an increase in the 
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number of iterations, because 
kβ  tends to zero with a large number of iterations (see Eq. 

5). The increase of J∇  at k = 2 is associated with uncertainty of this gradient at k = 1.  

Implementation of minimization algorithms requires the evaluation of both the 

objective functional and its gradient. Each evaluation of the objective functional 

requires an integration of the model equation (1) with the appropriate boundary and 

initial conditions, whereas the gradient is obtained through the backward integration of 

the adjoint equations (6). The performance analysis shows that the CPU time required to 

evaluate the gradient J is about the CPU time required to evaluate the objective 

functional itself, and this is because the direct and adjoint heat problems are described 

by the same equations. 

7. Discussion 

7.1. Mantle plume heads yes, tails no 

A plume is hot, narrow mantle upwelling that is invoked to explain hotspot volcanism. 

In a temperature-dependent viscosity fluid such as the mantle, a plume is characterized 

by a mushroom-shaped head and a thin tail. Upon impinging under a moving 

lithosphere, such a mantle upwelling should therefore produce a large amount of melt 

and successive massive eruption, followed by smaller but long-lived hot-spot activity 

fed from the plume tail [Morgan, 1972; Richards et al., 1989; Sleep, 1990]. Meanwhile, 

slowly rising plumes (a buoyancy flux of less than 103 kg s-1) coming from the core-

mantle boundary should have cooled so much that they would not melt beneath old 

lithosphere [Albers and Christensen, 1996]. 

A mantle plume is a well-established geological structure in computer modeling 

and laboratory experiments. Numerical experiments on dynamics of mantle plumes 

[Trompert and Hansen, 1998; Zhong, 2005] showed that the number of plumes 

increases and the rising plumes become thinner with an increase in Rayleigh number. 

Disconnected thermal plume structures appear in thermal convection at Ra greater than 

107 [Hansen et al., 1990; Malevsky et al., 1992]. At high Ra (in the hard turbulence 

regime) thermal plumes are torn off the boundary layer by the large-scale circulation or 

by nonlinear interactions between plumes [Malevsky and Yuen, 1993]. Plume tails can 

also be disconnected when the plumes are tilted by plate scale flow [e.g., Olson and 
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Singer, 1985; Steinberger and O'Connell, 1998]. Here we discuss an alternative 

mechanism for the disconnected mantle plume heads and tails.  

Mantle plumes are generated at the top of the thermal boundary layer (TBL), 

which is produced by conductive heating of the material at the core-mantle boundary (or 

upper-and-lower mantle boundary). When the TBL becomes unstable, any perturbation 

of the TBL top leads to upwelling. Injection of hot material from the source TBL layer 

into the colder mantle generates strong plumes that are fed for a while from the layer. 

Colder material overlying the source layer (e.g., portions of lithospheric slabs subducted 

to the core-mantle boundary) replaces hot material at the locations where the source 

material is fed into mantle plumes. Some time is required to recover the volume of 

source material depleted due to plume feeding [Howard, 1966]. Because the volume of 

upwelling material is comparable to the volume of the TBL feeding the mantle plumes, 

hot material could  eventually be exhausted, and mantle plumes would be starved 

thereafter.  

We evaluate the volume pV  of source material that moves into a single plume 

from the core-mantle boundary over the time interval pt  (required by the plume to 

reach the base of the lithosphere), and compare that with the volume TBLV  of the TBL 

material conductively generated over the same time interval pt . For plume height hp =

2600 km and tail radius rp ranging from 100 to 200 km, the volume ppp hrV 2π=  is 

estimated to be 0.8 to 8103.3 ×  km3.

The velocity of plume upwelling 

2/1

4
=

p
p c

gQ
w

ηπ
α

 can be estimated 

analytically from a solution to the boundary layer equations for the steady-state flow 

above a source of heat in a fluid whose viscosity is a temperature-dependent [Olson et 

al. 1993]. The velocity pw  and the time pt  ( pp wh /= ) depend on the plume viscosity 

pη  as a function of depth and the heat flux α/BcQ = , where B is the buoyancy flux of 

the plume and c is specific heat. For the typical mantle values given in section 4 (Table 

1), B= 3000 to 6000 kg s-1, and 2010=pη  to 2110 Pa s, the volume 
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πκδ  is the TBL thickness) would range from about 

8103.6 ×  to 9104.1 ×  km3 for the time range of 11 to 48 Myr and the rδ  range of about 

35 to 70 km.  

The seismic tomography study [Montelli et al., 2004] has revealed 32 present 

mantle plumes with radii ranging from 100 to 400 km. Even if only half of the 

seismically imaged plumes are assumed to have deep mantle roots, we can conclude that 

the material of the TBL is insufficient to simultaneously feed them. This suggests that 

only a few mantle plumes can be fed from the TBL at any time and that other plumes 

are in a phase of thermal diffusive decay. While the discrimination of low-velocity 

anomalies (seen in seismic tomography models) in active and less active plumes is a 

challenging problem, laboratory and numerical experiments can provide us with the 

information. 

Recent laboratory experiments on convective instabilities in a layer of fluid with 

temperature-dependent viscosity and heated from below have shown the generation and 

evolution of thermal plumes and the transient features of the plumes [Silveira et al.,

2005; Davaille and Vatteville, 2005]. The temperature difference applied at the lower 

boundary was chosen such that the Rayleigh number is comparable to that of the Earth’s 

mantle. Initially, a TBL forms at the hot boundary, its thickness increasing by diffusion. 

When the local Rayleigh number based on the TBL thickness reaches a critical value, 

the TBL becomes unstable and breaks up to produce plumes [Howard, 1966]. A plume 

reaches the top boundary and spreads laterally. Once the hot TBL has been emptied, the 

plume tail begins to disappear from the bottom up, leaving only the cooling and 

shrinking sublithospheric overhangs. The cycle of plume development repeats once the 

critical thickness of the TBL is reached. The analogue experiments have shown that the 

mean velocity of the fluid decreases with the maturity of the plumes and hence thermal 

diffusion becomes a major agent in the heat transfer.  

Our numerical results on the diffusive decay of mantle plumes with depleted 

source regions may have important implications for the interpretation of seismic 

tomographic images of mantle plumes. Finite-frequency seismic tomography images 

[Montelli et al., 2004] show that a number of plumes extend to mid-mantle depths but 

are not visible below these depths. From seismological point of view, the absence of the 

plume tails could be explained as a combination of several factors [Romanowicz and 
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Gung, 2002]: elastic velocities are sensitive to composition as well as temperature; the 

effect of temperature on velocities decreases with increasing pressure [Karato, 1993]; 

and wavefront healing effects make it difficult to accurately image low velocity bodies 

[Nolet and Dahlen, 2000]. The ‘disappearance’ of the plume tails can hence be 

explained as effects of poor tomographic resolution at deeper levels. Apart from this, 

our results demonstrate the plausibility of finding a great diversity in the morphology of 

seismically-imaged mantle plumes, including plume heads without tails and plumes 

with tails that are detached from their sources. 

The mathematical model of mantle plume dynamics described by a set of 

equations (1)-(3) is simple, and many complications are omitted. A viscosity increase 

from the upper to the lower mantle is not included in the model, although it is suggested 

by studies of the geoid [Ricard et al., 1993], post-glacial rebound [Mitrovica, 1996], 

and joint inversion of convection and glacial isostatic adjustment data [Mitrovica and 

Forte, 2004]. Our model does not include phase transformations [e.g., Liu et al., 1991; 

Honda et al., 1993a,b; Harder and Christensen, 1996], although the phase changes can 

influence the evolution of mantle plumes retarding/accelerating their ascent. The 

coefficient of thermal expansion [e.g., Chopelas and Boehler, 1989; Hansen et al.,

1991; 1993] and the coefficient of thermal conductivity [e.g., Hofmeister, 1999] are not 

constant in the mantle and vary with depth and temperature. Moreover, if Badro et al.

[2004] findings of a significant increase in the radiative thermal conductivity at high 

pressure are relevant to the lower mantle, plume tails should diffuse away even faster 

than it is predicted by our models. 

Mantle plumes exist within the large-scale convective flow, which may disrupt 

the plumes before they diffuse thermally [e.g., Richards and Griffiths, 1988]. 

Steinberger [2000] performed numerical experiments to clarify an interplay between a 

large-scale mantle flow and mantle plume and hotspot dynamics and showed that during 

the rise plume tails can be tilted toward large-scale mantle upwellings. Meanwhile, we 

believe that the possible deformation of plume tails should not significantly alter our 

results on thermal diffusion of the plumes. 

Several reasons constrain us to consider in the present study the simplified 

mathematical model as the first (principal) step to sophisticated models. The use of the 

variational data assimilation techniques for the problems of mantle convection began 

only recently [Bunge et al., 2003; Ismail-Zadeh et al., 2003a]. This technique requires 

to derive adjoint equations (to estimate initial temperature conditions in the mantle) 
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each time when the set of the equations is changed. The cost to be paid is in software 

development since an adjoint model has to be developed. Moreover, since we analyze 

effects of thermal diffusion on the fate of mantle plumes, we avoid many complications 

and considered only the most essential component of mantle plume dynamics, namely, 

temperature-dependent viscosity. While inclusion of these complications and other 

model refinements are worthwhile, our experiments do show that thermal diffusion 

plays an important role in the fate of mantle plumes and it provides an explanation for 

the ‘variety’ of mantle plumes observed in seismic tomographic images. 

7.2. Assimilation of present temperature derived from seismic tomography

The variational assimilation of synthetic data (mantle plumes generated by computer 

simulations) showed a possibility to restore strong features of the plumes after their 

thermal diffusion. In this sub-section we illustrate how real (no synthetic) present 

crust/mantle temperature can be assimilated into the geological past. For this aim we 

use recent teleseismic body-wave tomography data, which image the lithosphere and 

asthenosphere for the southeastern Carpathians [Martin et al., 2005]. We should note 

that the region is not associated with a mantle plume activity and chosen because of 

high-resolution seismic tomography data made available to the authors.  

The seismic tomographic model of the region consists of eight layers of different 

thickness (from 15 to 50 km), which are each subdivided laterally into 42×42 km2

blocks [Martin et al., 2005]. To restrict numerical errors in our data assimilation we 

smooth the velocity anomaly data using spline interpolations between the blocks and the 

layers. To convert the P-wave seismic velocity anomalies beneath the region into 

temperature we model initially synthetic P-wave seismic velocities considering the 

effects of anharmonicity (composition), anelasticity and partial melting on the seismic 

velocities [Ismail-Zadeh et al., 2005]. The anharmonic (frequency independent and non-

attenuating) part of the synthetic velocities is calculated on the basis of published data 

on laboratory measurements of density and elastic parameters of the main rock-forming 

minerals [Bass, 1995] at various thermodynamic conditions for the composition of the 

crust and mantle (57.9% Ol, 16.3% CPx, 13.5% Opx, and 12.3% Gt; Green and Falloon

[1998]) and the slab (69% Ol, 10% CPx, 19% Opx, and 2% Gt; Agee [1993]). Once the 

synthetic velocities are calculated for a first-guess temperature, an iteration process is 

used to find the ‘true’ temperature, minimizing the difference between the synthetic and 

‘observed’ (in seismic tomography experiments) velocities. The temperature in the 
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shallow levels of the region is constrained from measured surface heat flux corrected for 

paleoclimate changes and for the effects of sedimentation [Demetrescu et al., 2001]. 

Figure 5 (a) illustrates several depth slices of the present temperature model derived 

from the seismic tomography data.  

We assimilate the present temperature data into the geological past to restore the 

prominent thermal features of the Earth's structures in the region. We use the following 

parameters in this case study: h = 670 km, the aspect ratio (ratio between horizontal and 

vertical lengths of the model) is 1.5, r = 1000, 1700=∆T  K, 3400=refρ  kg m-3,

2110=refη  Pa s, Ra = 5.2×105. Other parameters are the same (see Table 1). To reduce 

the numerical noise in the data assimilation, we regularize the solution by using the 

quasi-reversibility method by Lattes and Lions [1969]. Figure 5 (b) shows the 

temperature restored to 22 Myr ago.  

Early Miocene subduction beneath the Carpathian arc and subsequent gentle 

continental collision transported cold and dense lithospheric material into the hotter 

mantle [Sperner et al., 2005]. The cold (blue) region seen at the 20 km slice of the 

restored temperature (Fig. 5b) can be interpreted as a crustal portion of a lithospheric 

slab. The structure is almost invisible at the relevant slice of the present temperature, 

because the cold slab has been warmed up (and hence has faded away) due to thermal 

diffusion since an active slab subduction in the region has ended about 10 Myr ago. 

Thermal conduction in the shallow Earth (where viscosity is high) plays a significant 

part in heat transfer compared to thermal convection. The deeper we look into the 

region (see the slices at depths of 60 km and 130 km in Fig. 5b), the larger are effects of 

thermal advection compared to diffusion: the cold (dense) lithosphere has moved 

upwards to the place where it has been in the Miocene times. At 280 km depth a shape 

of the colder slab is clearly visible at the slice of the present temperature (Fig. 5a) and 

practically invisible at the slice of the restored temperature (Fig. 5b), because the slab 

did not reach the depth 22 Myr ago.  

Thus, the assimilation of the present temperature derived from seismic 

tomography data shows that prominent thermal mantle structures can be restored from 

their present diffused stage. 
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8. Conclusion 

In this paper, models of mantle plume weakening due to thermal diffusion have been 

analyzed. Injection of hot material from the thermal source layer into the colder mantle 

generates strong plumes that are fed from the source layer for a while. But the feeding 

from the source layer can weaken with time and then thermal diffusion takes over and 

controls the subsequent evolution of the mantle plumes. The plumes begin to diffuse 

away and the plume tails are the first structures to disappear. The tails of different 

plumes vanish at different times depending on the geometry of the tails. The 

morphological diversity of the plumes predicted by the numerical experiments is  

similar to the plume diversity observed in seismic tomographic images [Montelli et al., 

2004; Zhao, 2004].  

We have also studied how the restoration process (data assimilation algorithm) 

works in recovering strong features of mantle plumes after they have weakened by 

thermal diffusion and in the presence of a large depth gradient of mantle viscosity. The 

restoration process becomes poor as both diffusion and viscosity gradient increase. For 

a given range of Rayleigh number and two values of the viscosity gradient, the 

convergence rate of the objective functional shows a large variation, which implies that 

the performance is very sensitive to the magnitude of both diffusion and viscosity 

gradient. 

The present temperature obtained from high-resolution teleseismic tomography 

data for the south-eastern Carpathians has been assimilated into the geological past. 

Results of this case study suggest that the data assimilation can be used to restore initial 

mantle temperatures and can allow revealing prominent thermal structures in the mantle 

from their present diffused stage. A part of the geophysical community may maintain 

skepticism about the assimilation of present mantle-related data to the geological past. 

This skepticism may partly have its roots in our poor knowledge of the Earth's present 

structure and its physical properties which cannot allow for rigorous numerical 

paleoreconstructions of the mantle evolution. An increase in the accuracy of seismic 

tomography inversions and geodetic measurements, improvements in the knowledge of 

gravity and geothermal fields, and more complete experimental data on the physical and 

chemical properties of mantle rocks will facilitate mantle reconstructions. 
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Appendix A. Challenges in variational data assimilation for thermo-convective 

flow in the mantle 

Although the variational data assimilation technique described above can theoretically 

be applied to many problems in mantle and lithosphere dynamics, a practical 

implementation of the technique for modeling of real geodynamic processes backward 

in time (to restore the temperature and flow pattern in the past) is not a simple task. 

Smoothness of the initial data (present temperature) and of the target temperature 

(restored temperature in the past) is an important factor in backward modeling. 

Moreover, a choice of the initial temperature guess 0ϕ  in iteration scheme (4) is not 

trivial. 

A1. On the smoothness of the initial temperature

The solution );,( ϕϑ ⋅T  of the heat problem (1) is a sufficiently smooth function 

and belongs to space )(2 ΩL . The present temperature δχ  derived from the seismic 

tomography is a representation of the exact temperature χ  of the Earth and so it must 

also belong to this space and hence be rather smooth; otherwise, the objective functional 

J cannot be defined. Therefore, before any assimilation of the present temperature data 

can be attempted, the data must be smoothed. The smoothing of the present temperature 

improves the convergence of the iterations. However, there are still some numerical 

issues associated with the solution of the improperly posed problem (we remind the 

reader that the inverse problem of thermal convection is improperly posed [e.g., 

Tikhonov and Arsenin, 1977]).  

If the initial temperature guess 0ϕ  is a smooth function, all successive 

temperature iterations kϕ  in scheme (4) should be smooth functions too, because the 

gradient of the objective functional J∇  is a smooth function since it is the solution to 
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the adjoint problem (6). The temperature iterations kϕ  are disturbed by small 

computational errors which are inherent in any numerical experiment (see Appendix B). 

These perturbations grow with time unless the iteration scheme (7) or a similar one 

[Samarskii and Vabischevich, 1995] is used as discussed in section 5. Another 

possibility is to use the quasi-reversibility method [Lattes and Lions, 1969] to regularize 

a temperature field. 

A choice of the initial temperature guess 0ϕ  (smooth versus discontinuous 

functions) influences the convergence of the iterations. There are however no general 

“recipes” for the choice of the initial temperature guess, and this depends mainly on the 

experience of computer modelers in solving such numerical problems. 

A2. On the smoothness of the target temperature 

If mantle temperature in the geological past was not a smooth function of space 

variables, recovery of this temperature using the technique described in this paper is not 

effective because the iterations converge very slowly to the target temperature. Here we 

explain the problem of recovering the initial mantle temperature at the time of plume 

onset on the basis of three one-dimensional model tasks: restoration of a smooth, piece-

wise smooth and discontinuous target function. We note that the temperature in the 

Earth's mantle is not a discontinuous function but its shape can be close to a step 

function. 

We consider that the dynamics of a physical system is described by the Burgers 

equation  ,10, ≤≤=+ tuuuu xxxt π20 ≤≤ x  with the boundary conditions 0)0,( =tu ,

0)2,( =πtu , 10 ≤≤ t  and the condition πθ 20),;,1( 0 ≤≤= xuxuu  at t = 1, where the 

variable u can denote temperature. The problem is to recover the function 

π20),(00 ≤≤= xxuu  at 0=t (the state in the past) from the function 

πθθ 20),( ≤≤= xxuu  at 1=t  (its present state). The finite difference approximations 

and the variational method are applied to the Burgers equation with the appropriate 

boundary and initial conditions.  

Task 1. Consider the sufficiently smooth function π20),sin(0 ≤≤= xxu . The 

functions 0u  and θu  are shown in Fig. A1a. Figures A1b and A1c illustrate the 

iterations kϕ  using the iterative scheme similar to (4) for 6,4,0=k  and the residual 
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),()()( 606 xxuxr ϕ−= π20 ≤≤ x  respectively. We see that iterations converge rather 

rapid for the sufficiently smooth target function. 

Task 2. Now consider the continuous piece-wise smooth function 

3/20),2/(30 ππ ≤≤= xxu  and ),2/(32/30 πxu −= ππ 23/2 ≤≤ x . Figure A2 

presents (a) the functions 0u  and θu , (b) the successive approximations kϕ  for 

1000,4,0=k , and (c) the residual πϕ 20),()()( 100001000 ≤≤−= xxxuxr , respecti-

vely. This example shows that a large number of iterations is required to reach the target 

function . 

Task 3. Consider the discontinuous function 0u  which takes 1 at 

3/43/2 ππ ≤≤ x  and 0 in other points of the closed interval π20 ≤≤ x . Figure A3 

presents (a) the functions 0u  and θu , (b) the successive approximations kϕ  for 

1000,500,0=k , and (c) the residual πϕ 20),()()( 100001000 ≤≤−= xxxuxr , respecti-

vely. We see that convergence to the target temperature is very poor.  

To improve the convergence to the target function, a modification of the 

variational method based on a priori information about a desired solution was suggested 

by Korotkii and Tsepelev [2003]. Figure A3 (d) shows the successive approximations 

kϕ~  for 50030,,0=k , and (e) the residual πϕ 20),(~)()(~
5000500 ≤≤−= xxxuxr ,

respectively. The approximations kϕ~  based on the method of gradient projection 

[Vasiliev, 2002] converge to the target solution better than approximations generated by 

Eq. (4).  

Appendix B. Errors in forward and backward modeling

A numerical model has three kinds of variables: state variables, input variables, and 

parameters. State variables describe the physical properties of the medium (velocity, 

pressure, temperature) and depend on time and space. Input variables have to be 

provided to the model (initial or boundary conditions), most of the time these variables 

are not directly measured but they can be estimated through data assimilation. Most 

models contain also a set of parameters (e.g., viscosity, thermal diffusivity), which have 

to be tuned to adjust the model to the observations. All the variables can be polluted by 

errors.  

There are three kinds of systematic errors in numerical modeling of 

geodynamical problems: model, discretization, and iteration errors. Model errors are 
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associated with the idealization of Earth dynamics by a set of conservation equations 

governing the dynamics. The model errors are defined as the difference between the 

actual Earth dynamics and the exact solution of the mathematical model. Discretization 

errors are defined as the difference between the exact solution of the conservation 

equations and the exact solution of the algebraic system of equations obtained by 

discretizing these equations. And iteration errors are defined as the difference between 

the iterative and exact solutions of the algebraic system of equations. It is important to 

be aware of the existence of these errors, and even more to try to distinguish one from 

another.  

Apart from the errors associated with the numerical modeling, another two 

components of errors are essential when mantle temperature data are assimilated into 

the past: (i) data misfit associated with the uncertainties in the present temperature 

distribution in the Earth's mantle and (ii) errors associated with the uncertainties in 

initial and boundary conditions. Since there are no direct measurements of mantle 

temperatures, the temperatures can be estimated indirectly from either seismic wave 

(and their anomalies), geochemical analysis or through the extrapolation of surface heat 

flow observations. Many models of mantle temperature are based on the conversion of 

seismic tomography data into temperature. Meanwhile, a seismic tomography image of 

the Earth's mantle is a model indeed and incorporates its own model errors. Another 

source of uncertainty comes from the choice of mantle compositions in the modeling of 

mantle temperature from the seismic velocities. Therefore, if the present mantle 

temperature models are biased, information on temperature can be improperly 

propagated to the geological past.  

The temperature at the lower boundary of the model domain we used in forward 

and backward numerical modeling is, of course, an approximation to the real 

temperature which is unknown and may change over time at this boundary. Hence, 

errors associated with the knowledge of the temperature (or heat flux) evolution at the 

core-mantle boundary are another essential component of errors which can be 

propagated into the past during the data assimilation.  

In numerical modeling a sensitivity analysis assists in understanding the stability 

of the model solution to small perturbations in input variables or parameters. For 

instance, if we consider mantle temperature in the past as a solution to the backward 

model, what will be its variation if there is some perturbation on the inputs of the model 

(e.g. present temperature data)? Unfortunately, the sensitivity analysis in the variational 
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data assimilation presents a challenge associated with cumbersome computations of the 

Hessian matrix of the objective functional [Le Dimet et al., 2002], and hence it is 

omitted in our study. 
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Table 1. Notation: Model parameters and values 

Symbol Parameter Value 

h depth of domain, km 2800 

g acceleration due to gravity, m s-2 9.8 

P pressure, Pa  

r viscosity ratio 20 (A), 200 (B) 

t∈[0,ϑ] time, yr  

T temperature, K  

Tref reference temperature, K 3270 

Tsurf surface temperature, K 270 

T0 initial dimensionless temperature  

T* initial dimensionless temperature guess  

∆T= Tref - Tsurf temperature drop, K 3000 

δT dimensionless temperature residual  

u = (u1, u2, u3) velocity, cm yr-1   

Pe Peclet number  

Ra Rayleigh number  

α thermal expansivity, K-1 3×10-5

χ dimensionless temperature at time t=ϑ

κ thermal diffusivity, m2 s-1 10-6

η viscosity, Pa s  

ηref reference viscosity, Pa s 8×1022

ρref reference density, kg m-3 4000  
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Figure Captions 

Figure 1. Model A1 (r = 20 and Ra = 9.5×103). Mantle plume diffusion in the forward 

modeling at successive diffusion times: from 334 Myr ago to the ‘present’ state of 

the plumes (left panel, a-d). Restored mantle plumes in the backward modeling 

(central panel, e-g) and restoration errors (right panel, h-j). The plumes are presented 

here and in Figs. 2 and 3 by isothermal surfaces at 3000 K. 

Figure 2. Model B1 (r = 200 and Ra = 9.5×103). Mantle plume diffusion in the forward 

modeling at successive diffusion times: from 305 Myr ago to the ‘present’ state of 

the plumes (left panel, a-d). Restored mantle plumes in the backward modeling 

(central panel, e-g) and restoration errors (right panel, h-j). 

Figure 3. Model A2 (r = 20 and Ra = 9.5×102). Mantle plume diffusion in the forward 

modeling: from 480 Myr ago (a) to the ‘present’ state of the plumes (b). Restored 

mantle plumes in the backward modeling (c) and restoration errors (d). 

Figure 4. Relative reductions of the objective functional J (left panel) and the norm of 

the gradient of J (right panel) as functions of the number of iterations. Curves: r=20 

and Ra=9.5×105 (1, Ismail-Zadeh et al. [2004]), Ra=9.5×103 (2), Ra=9.5×102 (3);

r=200 and Ra=9.5×103 (4); Ra=9.5×102 (5). 

Figure 5. Present and restored (to 22 Myr ago) temperature beneath the south-eastern 

Carpathians at depths of 20, 60, 130, and 280 km. (a) Temperatures derived from P-

wave velocity anomalies. (b) Temperature restored by data assimilation. Isolines 

present the surface topography.  

Figure A1. Recovering the sufficiently smooth function u0 from the smooth guess 

function θu . (a) Plots of 0u  and θu ; (b) successive approximations to 0u ; and (c)

the residual function. 

Figure A2. Recovering the continuous piece-wise smooth function u0 from the smooth 

guess function θu .

Figure A3. Recovering the discontinuous function u0 from the smooth guess function 

θu .


















