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a(t) *q (x, t) - b (t) *gradp(x, t)	 (1)

divq+Dmh9t=0

	

(2)

(m=m1-mo) ap am, ap(x,O) = am(x,O) =0

	

(3)

Taking the Laplace Transform (LT) of equation l (1) through (3)

we obtain

sG(s)P =P

G(s) = A(s)/B(s)

A(s)LTa(t),	 B(s) LTb(t)

The solution of equation (4) is

P = C1 exp(-Jx) + C2 exp(-Jdx)

(5)

(4)

(6)

where C1 d C2 are functions of s.
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Assuming further P(O,s) = Bo(s), F(h,s) = Bh(s)

P(O, s) Ci+C2 =Bo(s)

P(h,s) C1exp((Gs) '2h) +C2 exp(-(Gs) '2h) +K/s =Bh(s) (7)

which give

C1=[Bj-B0 exp(-Gs)'2h)]/[exp ((Gs)'2h) -exp(-( Gs))'2hJ (8)

C2=B0 -[Bh-Bo exp(-Gs)'2h)]/[exp ((Gs)12h) -exp(-( Gs))'2hJ

sG(x,s)1=P

	

(9)

sG(x,s)P2 =1,

]]12xx-]xxp2=o

where the factor sG(x,s) , that is the mathematical expression of

xxxx2

or integrating on x from zero to h

I'i

$ (P -P])dx=[ (-'') L-[	 L=°
0




(10)

(]JlPXh
-		 -	 -

'O'20)
= 0

'h'2xh
-
'xh'2h

= 0 (11)

or
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'2xh = 'xh2Jz /P h

C1hP2Xh Is -IP +pp = 0

'2xh	 S[JXhP2h

	

xo12oIIClh

C3hP2Xh
-
'1'2h - C30JØ Is + 'XO'O = 0

C1hF2Xh / S -	 + 'XO'O = 0

C3hP2Xh
-

'3xh'2h
-
c30P20 Is +	 = 0

(12)

(13)

(14)

(15)

C3h[SlXhP2h
-
SIXoPo]/Clh

-
'33xh'2h

-
C30P0 Is + P30P20 = 0

= I [csl IClh
-
1XhI2h

-
C3hSJXO IClh

-
]0]P 1 I(c30 Is)

(16)

'xO s{ si - P]P - si0 -	
]i }1c30

	

(17)

= -P0aIaG(s))

	

(18)

a(t) = y8(t) + H(t)e t'' /F(1 - n1) + H(t)g tdu IF(1 - u)

b(t) = cS(t) + H(t)d r'12 /F(1 - n2) + H(t)hJ tdv /f(1 - v)

(19)

E [0.1[, n2 E [0,1[ ço E [0,1[, u E [0,1[

E [O,1[,,u c [0,1{
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P

	

V/

[y +		lot" + gJ ô /8tudu]q = -[c + do"2 lOt'12 + hJ OV /Ot'dv]gr

(20)

a[(r + gs'1' +g(? -s") /1ogs/a[c + ds2 + h(s" - ?)/1ogs=G(x,s)
(21)

g =h =0

	

(22)

1/G(x,s) = a[c + dshl2 }Ia[( ± s" J

	

(23)

LT 1 (luG(s) = ('ac/cis,)/5('t,) +('c/d-y/&('/y,) [t-

00

+ (sin 7tvlizv)J (1- exp(-((y / E)u)hIvt))du /( /s)ulh(u2 + 2u coszv +1)

]] (24)

Appendix

Pi(h,s) = 1/s, PI(Os) 0;

Cj=(1 s)/[exp((Gs)'2h) - exp(-(Gs)
112

h)],

C2	 - (1s)/[exp((Gs)'2h) - exp(-(Gs)'h)],

P1(x,s)	 (1/s)[exp((Gs)'2x) - exp(-(Gs)'2x)J

/[exp((Gs) "2h) - exp(-(Gs)
112

h)],

Pi	 ((Gs) 1121S) [exp((Gs)'2x) + exp(-(Gs)'2x)J/[exp((Gs)"2h) -

exp(- (GS)1112 "2],J,






Pjo=(2/s) (Gs)'2 /[exp((Gs)'2h) - exp(-(Gs)'2h)J, (Al)

Flxh-(J/s) (Gs)
1/2

[exp((Gs) '2h) + exp (- (Gs)
'/2

h)J/[exp((Gs)'2h)

- exp(-(Gs)"2h)],

and for P3 . P3(h,s) - 1, P(O,s) = 1/s

C1 [1-exp(- (Gs) '2)/s))J/[exp((Gs)'2h) - exp (- (Gs) '2h)J,

C2=1/s- [1-exp(-(Gs)'2)/sJ/[exp((Gs)'2h) - exp(-(Gs) '2h)J, (A2)

P3(x, s) = [1-exp (- (Gs) 12))/s]/[exp((Gs)'2h) +

- exp(- (Gs)
112
h)Jexp ((Gs)'2) +

+[1/s -[1 -exp(-(Gs) '2))/s]/[exp(Gs)'2h) +

- exp(-(Gs)'2h)JJ exp(-(Gs)'2x)

P3 (x, s) = (Gs)
1/2

[1-exp (-(Gs)'2)/s] [exp((Gs) 2x)+

+ exp(-(Gs)1/2)] /

[exp ((Gs) '2h) - exp((- Gs) 112
h)] -(Gs)

1/2
exp (-(Gs) '2x)/s

PAO = (Gs) 1/21211 - exp - (Gs) '2h)/sJ /[exp((Gs)'2h,) +

- exp(- (Gs)
112
h)] -IIs],

P3xh = (Gs)
1/2

[exp((Gs) '2h) +exp((-Gsj'2h)-2/sJ /

[exp((Gs)'2h) - exp(-(Gs)'2h)J
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In the case the conditions (22) are enforced (g = h = 0, n1 =

= v,.) the LT" is reduced to that of

w [exp((w h) + exp(-w h)]/[exp(w h) - exp(-w h)], (A3)

w /[exp(w h) - exp('-w h,)], (A4)

w exp(-wh) /[exp(w h) - exp(-w h)J, w = (Gs)
112	

(A5)
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Abstract

The basic equations used to study the fluid diffusion in porous media have been set by Fick

and Darcy in the mid of the XIXth century but some data on the flow of fluids in rocks

exhibit properties which may not be interpreted with the classical theory of propagation of

pressure and fluids in porous media [Bell and Nur, 1978; Roeloffs, 198].

Concerning the fluids and the flow, some fluids carry solid particles which may obstruct

some of the pores diminishing theft size or even closing them, some others may chemically

and physically react with the medium enlarging the pores; so permeability changes during

time and the flow occurs as ifthe medium had a memory.

The scope ofthis paper is to show, with experimental data, that the permeability of sand layers may

decrease due to reassessment of the grains and consequent compaction as shown qualitatively by

Elias and Hajash [1992], He [2001] and He et al. [2002]. We also provide a memory model for

diffusion of fluids in porous media which fits well the flux rate observed in five laboratory

experiments of diffusion of water in sand. Finally we show that the flux rate variations observed

during the experiments are compatible with the compaction of sand, due to the amount of fluid

which went through the grains locally, and therefore with the reduction of porosity. All the

experiments have been set in the Applied Geology Laboratory at the department of Earth Sciences

of the University "La Sapienza" ofRome".






1. Introduction

The basic equations used to study the fluid diffusion in porous media have been set by Fick

and Darcy in the mid of the XTXtIi century. Many authors contributed in various forms,

using Darcy' s law which states that the flux is proportional to the pressure gradient, to set

equations rigorously representing the interaction between the porous media and the flow of

fluid through it and obtained equations solutions in many interesting cases [Bear, 1972;

Sposito, 1980; Steefel and Lasaga, 1994; Deweiw and Ortoleva, 1994; Indelman and

Abrainovici, 1994; Mainardi et al., 1998; Cushman and Moroni, 2001; Moroni and

Cushman 2001J. In spite of this, some data on the flow of fluids in rocks exhibit properties

which may not be interpreted with the classical theory of propagation of pressure and fluids

in porous media [Bell andNur, 1978; Roeloffs, 1988 } nor adequately with many of the new

theories.

Concerning the fluids and the flow, some fluids carry solid particles which may obstruct

some of the pores diminishing their size or even closing them, some others may chemically

and physically react with the medium enlarging the pores; so permeability changes during

time and the flow occurs as if the medium had a memory, intending that at any instant the

process of diffusion is also affected by the previous local value of pressure and flow of the

fluid. This phenomenon would be taken into account when writing equations for diffusion

of fluids in porous media.

The scope of this paper is to show quantitatively, with experimental data, that the

permeability of sand layers may decrease due to reassessment of the grains and consequent
mechanical compaction [Elias and Hajash, 1992, He 2001, He et al. 2002].]. We will

provide, by rewriting the constitutive equation of diffusion with memory formalism, a new

model for diffusion of fluids in porous media [Caputo, 2000 ] in order to describe

permeability changes observed in the flux rate through the sand samples.

2. The laboratory experiments
The experiments were designed to obtain flow measures through a porous layer with

constant hydraulic pressure difference between the boundary surfaces of the samples.
In order to obtain considerable flux the porous medium selected is sand which showed an

adequate compaction and therefore considerable permeability and flux rate variations during
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the experiments. The grain size distributions shown in Figure l. a and 1 .b were measured by

sieves; the percentiles of the cells are shown on top of histogram.

Sand density was estimated to be Ps = (2,4 ±0. i)gr / cm' .

We used water as fluid, its temperature during all experiments was (19 ±1) °C.

A schematic description of the instrument assembled for the diffusion experiments is shown

in Figure 2.

Figure 2 : experimental device

Water-saturated sand is kept in the cell ,for medium., a cylinder shaped metal box of height

/=(11.6±0.1) cm and surface's inner diameter D,=(10.1±0.1) cm; R, R, and R, are

water-taps and R is also water source; T is a tank with input gate I and output gate U;

H= 212 ± i) cm. To obtain constant hydraulic pressure on the boundary surface in x =1,

initially, the water-taps R and R are turned on while R1 is off so that the column between

T and R gradually is filled with water.

The water flow through R is sufficiently large that takes few seconds for the column to be

filled, after this time the surplus flows out from the gate U.

Opening R1 the pressure on the boundary plane in x=1 is equal to the pressure of a water

column ofheight H and so water begins to flow through porous medium and runs out from

R[J. Note that the column is always of height H because the surplus water flows out from

the gate U. In this way a constant pressure difference is maintained between the boundary

planes in x=1 and r 0, which was verified during experiments using the pressure gauge
B.

In this configuration, measures of water flow at the boundary surface in x = 0 were obtained

by storing the water that flow through the surface in a small container with capacity of about

100 cm' and taking note of the relative time interval with 102 s precision chronometer.

The water mass in the filled container was measured using 10` g precision scale and flow

rate measured.

In order to diminish the error of the experimenter and of the devices the water mass in each

filled container was measured three times with the scale, experimenter error in starting and

stopping chronometer was evaluated to be 10 s and each flow measure is the average
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value of three containers filled in rapid succession. The estimated relative error in the flux is

then about 2%.

The following figures 3, 4, 5, 6 and 7 show all experimental data collected. In each

experiment the flow measures are separated by 20 minutes, only the first measures are

separated by 10 minutes. The data collection is limited to about 10 hours when the flow

seems to have reached a very slow and steady rate to imply that a steady state is reached.

The solid line in each figure is the theoretical flux obtained by fitting to the experimental
data the memory model which will be introduced I the following.
Note that for each experiment in the first few hours the flux rate steadily decreases defining
a transient phase. It appears that in several hours, seemingly less than 10, after the transient

phase, the flux establishes to a value that is about 70% of the initial one, only in experiment
5 it is about 46% of initial value. Opening the cell for medium after each experiment we

observed a height reduction of the sand of about 3 - 4 mm, that is about 3% of the porous
media volume, and this is an evidence of mechanical compaction.
In order to quantitatively discuss the variation of the flux rate in terms of the porous media

volume reductions we used empirical Fair and Hatch law (1933) for permeability k [Bear,

1972]

k=CMz3/(1-z)2 (1)

where z is medium porosity and CM is a geometrical medium dependent coefficient

introduced to take into account the grain size distribution, grains shape and chemical

properties of the medium.

The sand mass contained in the cell for medium in each experiment was in = (1550 ±30)g

(dry sand) and since no sand may go out from the cell during the experiment we can

compute the initial (I) and final (F) saturated medium porosity:

v--i1'
z ==VTII	 Ps -1-

m




	I	
'	

-	
VIPS

(2)


		

	rn
TT	 VF

z	 --		P5	 m
F -

VF
-			 =1-

VF	 VF'Os!	 (3)
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is the volume of mtergranular spaces of the sand. Using Fair and Hatch permeability

law we estimate that the difference between initial and final values of k is

Ak% 100k1 \21	 (4)k1 L

		

z(1-zF) I
Remembering Ps = (2.4 ± 0 i)g / cm', from (2) and (3) results A/C,, (26 ±3)%. This

permeability reduction justifies experimentally observed flux rate reduction.

3. The modeling oftheflux variation

In order to model the permeability variation with a mernoiy mechanism, meaning that at any

instant the process of diffusion is affected by the previous amount of fluid which went

through the pores we modified as follows the original Fick law, stating proportionality
between flux and pressure gradient

t)= -cp(,t)

	

(5)

where p is fluid pressure in the porous medium and q is fluid flow through medium,

introducing in it a derivative of fractional order n [Caputo, 2000]:

7q (Y, t) = _[ +d_
atn	

(y, t)	 (6)-]Vp

ap(,t)= ap(,t)				 (7)

, ap(,t
dlvql\x,t)+		=0			 8at
where p is variation of fluid density in medium from the undisturbed condition while y, c

and d are real numbers modulating memory formalism, a/a is the bulk modulus of the

fluid.

The fractional oreder derivative is defined as follows [Caputo, 1967; Caputo, 1969;

Podlubny, 1999 1




_____duat"		 - n) t - u)"	 (9)
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where n o,i{ and F is the Gamma function. In practice the derivative of fractional order

f t) is constructed with a weighted mean of the first order derivative j'u) in the time

interval [o,t], which is a sort of feedback system. That is, the values of )'u) at time u far

apart from t are given smaller weight than those at time ii closer to t. Hence, the weights

are increasingly smaller with increasing time separation from t to imply that the effect of

past is fading with increasing time. When ii = 0 and ff0) = 0 the fractional derivative reduce

to the functions themselves.

Importantly, the weights multiplying the first order derivative j(u) inside the integral

appearing in equation (6) can be chosen in many ways. The definition adopted in equation

(6) has been set by Caputo (1967) and is appropriate because it is algebraically simple,

allows easy solutions and has commonly been applied in previous scientific studies dealing

with electromagnetism IjJacquelin, 19841, biology [Caputo, 2002b; Cesarone, 2002] and

economy [Caputo andKolari, 2001; Caputo, 2002a; Caputo andDi Giorgio, 2003].

It is noteworthy to observe how the memory functions capture the past. What the fractional

derivative memory functions are remembering is their past values as defined by equation

(6), which implies that the function is constructed by adding to the initial value the

successive weighted increments over time. The increments per unit time are represented by
the first order derivative under the integral sign and the weights are represented by the factor

of the first order derivative in equation (9), which are decreasing with increasing time

separation from t. Thus, a variable's value is a weighted mean of its past value.

In order to fit experimental data with memory model we find in the Appendix A the Green

function of the flux q(o, t) when diffusion occurs through a slab of thickness / with pressure

boundary conditions

p(O,t)=O	 (10)

PQ, t) = K =constant	 (11)

and initial pressure condition

px,O)= K =constant	 (12)

Figure 8: porous slab

In order to obtain the flux q(o, t) we solve the equations (6) - (8) in the Laplace Transform

(LT) domain obtaining
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	KreBs_ - eBsv_	 1
P(x,s)=-		+ii	

S L	 - e_B	 ]	
	(13)

and	

dKB 1+e2B
QO,s) - '

e2&" -1			 (14)

where

Brl1 V=			 (15)
Lad ]'		 2

and s is the LT variable.

The LT-' of (15) is found in the Appendix B and the following expression of boundary flux

is obtained

- dBK ç
+00
et 2sin(v)[e2M	 iI+ 4sin(Nrl )Cos(v)eM dq		

2'	 r1'	 e2' +1_2cos(NrvM		r
	

(16)

with

r =modulus of s

M = 2Bicos(v)

N = 2BIsin(CV)

Note that in equation (9) a / a = p z /k, where p. is fluid density and k11 is bulk modulus

of fluid; water values are p =ig.cm) and k8 =2.08.10b0g.cm .s2) EDomenico and

Schwartz, 1997]. Therefore B =(y/d)(pFzIk)2 and, assuming for sand z=0.35 Bear,

1972], the boundary flux theoretical solution q(0,t) depends on memory parameter d/y and

the order of fractional derivative n through v = (1 - n) /2.

With extreme values theorem it is seen that

IimsQ(O,s)= limq(O,t)=O		 (17)s-+O

	

t-++co

limsQ(O,s)= limq(O,t)= -	
	(18)
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4.Fitting the model to the experimental data

The experimental data show that in several hours flux seems close to stabilization and, since

we will describe only the transient phase of diffusion (c 0), we obtained the data, to fit to

the model, by subtracting the original data the average of the last few hours of flux (let's

call it qAS). The data of the five experiments run indicate that q is a good candidate for

asymptotic flux and new data are good to represent the diffusion transient phase we want to

describe.

In order to best fit memory model to experimental data we minimized the following two

variables function

ADv9
= _LER. - qt1,v, -

qAs
7		ND i=1	 r) (19)

where ND is the number of experimental data for each experiment, ED1 are the data

obtained in the laboratory at the time t.

The results of fitting for the five experiments are shown in the following table

ii AD(g.s') qAS(g.s)

Experiment 1 0.46± 0.01 0.008±0.001 0.8 30.3

Experiment 2 0.58±0.01 0.014±0.002 0.41 27.1

Experiment 3 0.54±0.01 0.012±0.002 0.52 27.5

Experiment 4 0.54± 0.01 0.010± 0.001 0.55 27.2

Experiment 5 0.58±0.02 0.046±0.003 0.8 27.1

Note that experiment 5 is a bit different from the others, in fact the initial flux is higher and

the transient reaches steady state at about 46% of the initial value while the others reach

steady state at about 71% the initial value. Taking into account only the first four

experiments it results that both for n and d/y the average quadratic discrepancy (AQD) is

compatible with the relative average value (AV); values are shown in the table below
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n

Average value 0.53 0.011

AQD 0.04 0.002

The procedure to obtain best fits is indicated in the Appendix C.

5. Conclusions

hi all experiments we have observed that flux decreases in time to about 71% of initial value

and that the volume of sand reduces of about 3%; moreover, using empirical Fair and Hatch

law for permeability, the sand volume and flux reductions seem compatible; which proves
that mechanical compaction occurring during diffusion is cause by the permeability changes
which in turn cause the flux variations.

The classic theory, in the case of constant diffusivity, with constant boundary and initial

conditions, would give a constant flux contrary to the results of our laboratory experiments.
One would have to introduce in the equations a time variable diffusivity which is a priory
unknown and would have to be determined monitoring the permeability changes caused by
the flux in the sand.

Note that for each experiment the value of the minimum AD numerically computed is about

2% of average observed flux and that the order of the fractional derivatives has a standard

deviation of 0,048 or 9% of the average value which, taking into account the variety of

samples, is rather satisfactory and, with the low value of AD, confirms the validity of the

model.

We have also seen that, with the boundary and initial conditions used, the relaxation time of

the flux, that is the time to reach stability, is about 10 hours which in turn implies that the

compaction of the sand in the sample has the same relaxation time. However in terms of the

memory model the flux and the associated relaxation time are now defined by two

parameters, and not only one as in the classic theory; the parameters are the order of

fractional derivative n and d,u/,vpF, where ,u is the viscosity of the fluid, which are called

pseudodiffusivity Caputo, 20001.
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AppendixA

It is useful to rewrite memory relations in one dimension:

[ a lap(x,t)
(A. 1)atn ax

ap(x, t) = ap(x, t) (A.2)

aq(x,t ap(x,t+ -o
ax at (A3)

hi this appendix we find the LT of the Green function of the flux resulting from (A. 1) -

(A.3) with boundary and initial condition given by (11) - (13).

The LT of (A. 1), (A.2) and (A.3) are respectively

'Q(x, s) = -( + ds'7 (x, s) (A.4)

aP(x, s) = aR(x, s) (A.5)

Q (x, s)+ sR(x, s)
- px,O) = 0 (A.6)

With R(x, s) LT[p(x, s)].

Substituting (A.6) in (A.5) we find

aP= --[Qjx,s)-p(x,O)]		 (A.7)

Differentiating (A.4) with respect to x and substituting in (A.7) we obtain

I flc+as

	

1
P =-[asP -ap(x, o)J		 (A.8)	a

Here, in order to reduce the number of free parameters and to simplify the formulae, we set

c 0 which is justified as follow: it seems that in several hours, seemingly less than 10

hours, the flux stabilizes but we cannot rule out that it is asymptotically nil. If the flux were

constant after 10 hours then the rigorous solution requires that c ˆ 0, which implies that

asymptotically the flux is constant as required by Darcy's law which does not apply here.

We have two options:

1. consider the transient phase which is asymptotically nil

2. consider that after the transient phase the flux stabilizes
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However, since we have no indication of the asymptotic value, also for simplicity of

computation, we studied only the transient phase and set c = 0.

So equation (A.8) becomes

d

	

a
_sfl2P =-sP-p(x,O)			 (A.9)	a

substituting (A.2) into (A.9) and renaming n2 n we find

=		 - sp(x,O)]	 (A. 10)ad

The general solution of (A. 10) is

P(x, s) = C1 s)eB8 + C2s)e_B	 +	 (A. 11)

where B = [ra/adj'2 and v = (]-n)/2.

Substituting the boundary conditions (11) and (12) in equation (A. 11) we obtain

K		 e_B

s e-e"			 (A.12)

e'

s e_Bsvl - eBst'l		(A.13)

and so general solution (A.11) becomes

P(x, s)
- K reBs_	 1

+1
[ e1 _e-Bs

Differentiating (A. 14) with respect to x and substituting in (A.4) we obtain

dKB r eBsv (x-l) +e (l-x) 1
Q(X, S)

7S
V

[		e
BSVI -e'1	 ]	

(A.15)

Appendix B

In this appendix we find the LT of (15), to be fit to experimental data, by integrating

etQ(O,s) along the path of figure B. 1 below.
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When the radius R1 of the inner circle I goes to infinity arid the radius I?2 of the outer

circle F2 goes to zero the residual theorem (RT) states that the integral is equal to the sum of

residuals inside the path.
Path of integration in figure B. 1 can be divided as follow

F1 + +FHA + FAB + FBD + FDE (B.1)

and when R1 -* 0 we fmd that BD
-

CD and FffA
-

FHK Let's compute the contributes of

integration along F1, CD and ffK

Figure BA: path of integration in the complex plane

Concerning the integral along F1, when the radius R1 goes to zero the Taylor series of

Q(O,s) near s = 0 is

2dKB[	 1

	

1CAO, s - L2BlshI + (2V )j	
(B.2)





Because of v E

	

we obtain1 2[

2dKB	 s'
urnsQ(O, s) = urn -
sO	 R1		 7	 (2Bls" + o(s21'))	

0	
(B.3)

and so integral along F1 is nil.

To compute integrals along FCD and ffK' it is useful to rewrite eQ(0,s) with s

dBK
-	
	iRze19eR2t

COs(9) iR2tsin(9)

I

1 + e2lB] cos(9v) i21BR' sin(v)

Ri,9V		21BR2cos(9v)
i21BR'sin(,9V)	 (B.4)

'e	 (e
when R2 goes to infinity imaginary exponential can be neglected because limited in [- i;i],

cos(9v) E ]o,i[ because 9	 /T	 I-n
-T[ u]_ ir,-[and

	

E
]o,i[.

So we obtain
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CIBKurn -	 iR2e119eR2t cos()iR2tsin()	
1+ e21

	

cos(I/)ei2lBRsin(v) =0
R2 _> +00	 2'	 R'e'9'(e21B	

cos(9i') i2lBRsin(9v) - i)

	

(B.5)

and integrals along CD and ffK are nil because function inside integral sign is nil.

Function etQ(O, s) has no singularity in the complex plain except in the origin, already

analyzed. For RT, renaming estQ(O, s) I(s), we have

+iR2

urn f I(s)ds = urn fI(s)ds+ f I(s)ds+ f J(s)ds =0
R1-O

R2-3-fo3 "T	 R2_>	 iR2	 DE

	

FF11

and so, dividing all for 2,r

TL[Q(O,s)]= Jim - f I(s)ds_ f I(s)dsl
RI >0 2,tiLR2	 FDE	 FH	 J

(B.6)

(B.7)

For the integral along DE we set s = re and obtain

I(re
i) = 'DE(r) =

dBK

2'

et (I + ezr
V

)

e""r1' ~ezl'v -1 (B8)

with

Z =M-i-IN

M = 2Blcos(xw)

N = 2Blsin(ii-v)

For the integral along F we set s = re" and in the same way we have

dBK et (I + ez*rv
I(re -i

)= 'Fli (r) =
-

2' e -/."]/ r" (eZr
(B.9)

Substituting (B.8) and (B.9) in (B.7) we obtain

TL-'[Q(O,s)]= q1(0,t)= 1J[IFH (r) - 'DE (r)]dr

+00

2,ri0
(B. 10)

Renaming w = z-v we have
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dBK e_rt 1 r	 I	 Z*rv
IFH(r)_IDE(r)=[_	

e	 1+e	 j

y rV ] [ ez* -1

-e	 1+e= Y(r).
[e10

(I + e ). (e
- i) -ic° ( Zrv

(e
z*

_i).(e' i)

with

+ezr"		=
e	 -1

(e
z*rv - i)

(B.ll)

dBK et 1

Renaming i . NUM(r) the upper part of the ratio in (B.11) and DEN(r) the lower part in the

same ratio we obtain




Zi	 2Mrv	 z,.v) ei
(
Zrv	 2Mr'

	

ZrVi.NUM(r)=e1w(e	 -1+e	 -e	 -	 e	 -1+e	 -e)

=e io
(e2M1 -1 + 2isin(NrvM1J )

- e_i(e2M/ -1- 2isin(Nrv MrV)

= j. [2 sin(w)(e2M' _i)+ 4cos(co)sin(Nrh/
Mr1		

(B.12)

and




	DEN(r) = (e
z*1	

(e' -1)= e2' --1/Ir	 2 cos(Nrv). e" + 1			 (B. 13)
So finally we have

f'i\

qt)	
dBK		e -t-t 2sin(,V)[e

2AYr v - I]+ 4sin(Nrv)cos(-rv)em"v	
f	 2AIIr v			 dr-

2' +1- 2cos(NrM' (B.14)

Appendix C

We will illustrate here how we found the minimum of AD defined in equation (19). Note

that q(0, t) is an integral depending on the two variables v and d/7 and, since it is difficult

and time consuming to analytically compute it, we decided to find numerically the

minimum running the following routine [Caputo andPlastino, 1998] with MATLAB code:

1.	 find with several attempts a portion of domain of AD, [v1 ; v2 ; , in which
Lii i2]

the minimum is

2.	 chose the steps Av and Ad/y so that the portion of domain chosen becomes a

bidimensional lattice as shown in figure 9
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Figure C.!: biditnensional lattice

3.	 Start research computing AD in a point (gray rectangle in figure C.2) and in the

eight neighborhoods of the lattice (black circles)

4.	 Select among these the point with the minimum AD (rectangle in figure C.3)

5.	 Compute AD in neighborhoods of previous step selected point (black circles in

figure C.3), excluding those already computed (gray circles in figure C.3)

6.	 Repeat steps 4 and 5 until a point is selected twice consecutively; this is the point
of minimum in the lattice.

Figure C.2: starting point and its neighborhoods

Figure C.3: selected point and its neighborhoods

Note that there can be in the lattice other points of local minimum for AD different from the

absolute one, these points are traps and stop routine giving wrong results. In order to make

sure that the point found at the end of the run was the absolute minimum we started from

different points of the same lattice and made sure that the final point was the same in any
case.

Glossary

Ps		 .
CM-3]	 Mass of sand per unit volume

k	 [cm2]

		

Permeability

[dimensionless]

	

Porosity

q(x, t) 19-s- . cni2	 Fluid mass flow rate in porous medium

AX, t) II . 2 cm'	 Pressure of the fluid

p(x,t) 19 cin]	 Variation of fluid mass per unit volume in the porous

medium from the undisturbed condition

PF 19. CM-3} Mass of fluid per unit volume

-2 -1
kB 19-S cm Bulk modulus of fluid

19-S . cm-'] Viscosity of fluid

ci,u [s' . cm2 1 Pseudodiffusivity
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Esperimento 4 Sabbia di Stintino gialla (S.S.G4)

j

h210.20±0.05 (cm)

n = 0.4300 10.0025

B = 0.00040 ± 0.00005 (s)





D= 0.00185 ± 0.00005 (s')





	SM	 0.2281 (g s1)

S.S.G. 4
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