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Abstract

Two novel statistical methods are applied to the prediction of transitions between

weather regimes. The methods are tested using a long, 6 000-day simulation of a

three-layer, quasi-geostrophic (QG3) model on the sphere at T21 resolution.

The two methods are the k nearest-neighbor classifier and the random-forest method.

Both methods are widely used in statistical classification and machine learning; they

are applied here to forecast the break of a regime and subsequent onset of another

one. The QG3 model has been previously shown to possess realistic weather regimes

in its Northern Hemisphere and preferred transitions between these have been deter-

mined. The two methods are applied to the three more robust transitions; they both

demonstrate a skill of 35–40% better than random and are thus encouraging for use

on real data. Moreover, the random-forest method allows, while keeping the overall

skill unchanged, to efficiently adjust the ratio of correctly predicted transitions to false

alarms.

A long-standing conjecture has associated regime breaks and preferred transitions

with distinct directions in the reduced model phase space spanned by a few leading

empirical orthogonal functions of its variability. Sensitivity studies for several predic-

tors confirm the crucial influence of the exit angle on a preferred transition path. The

present results thus support the paradigm of multiple weather regimes and of their

association with unstable fixed points of atmospheric dynamics.
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1. Introduction and motivation

The low-frequency, intraseasonal variability of the extratropical atmosphere involves phenomena

with time scales that are longer than the baroclinic-eddy life cycles and shorter than the change

of seasons, that is 10 to 100 days. This variability is characterized by the existence of large-scale,

persistent and recurrent flow patterns called weather regimes (Ghil and Robertson 2002; Molteni

2002). Several regimes have been identified in a consistent way by using diverse statistical and

statistico-dynamical methods, which have been applied to observed atmospheric data, as well as to

output from numerical models. A review of methods and results is included, for example, in Smyth

et al. (1999) and Ghil and Robertson (2002).

The concept of weather regimes has been used successfully in different fields of the atmo-

spheric sciences, from predictability through the downscaling of general circulation model (GCM)

results to climate change impact assessment. In this paper, we examine the possibility that, be-

cause of their persistence, weather regimes provide a coarse-grained, predictable component of

the atmosphere (Mo and Ghil 1988; Ghil et al. 1991) capable of circumventing the deterministic

predictability barrier of 10 to 15 days (Lorenz 1969).

Markov chains of multiple regimes have been shown to provide extended predictability, at

the cost of less detail in the predicted variables (Fraedrich and Klauss 1983; Ghil and Robertson

2002). Moreover, the most advanced numerical weather prediction models still have problems at

forecasting regime transitions. This shortcoming has been investigated, for example, in the context

of atmospheric blocking inception. Tibaldi and Molteni (1990) showed that much of the forecast

error of the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast model

was due to its inability to enter a blocked state 3–4 days into the forecast. This reflected a general

underestimation of blocking frequency in GCMs (D’Andrea and Coauthors 1998). Although much
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progress has been made since, forecasts of blocking inception still have no skill starting from a

lead time of 6 days (Pelly and Hoskins 2003).

The purpose of this article is to present a novel strategy, based on advanced statistical methods,

to forecast regime breaks and subsequent onsets. The goal is to show the applicability and promise

of such a strategy, rather than to establish an operational forecast system. For this reason, we will

work with the output of an intermediate-complexity, quasi-geostrophic, three-layer (QG3) model

introduced by Marshall and Molteni (1993). This model has been widely used to investigate

the Northern Hemisphere atmosphere’s low-frequency variability (D’Andrea and Vautard 2001;

D’Andrea 2001; Ferreira and Frankignoul 2005).

More important, the QG3 model has been recently shown to have interesting regime dynamics.

Kondrashov et al. (2004) carried out a long-time integration of this model and studied its properties

in a phase space spanned by its three leading empirical orthogonal functions (EOFs). Using two

distinct clustering procedures, these authors obtained four statistically significant weather regimes:

the two phases of the North Atlantic Oscillation (NAO+, NAO−) and the two phases of a more

hemispheric and zonally symmetric mode, which they identified with the Arctic Oscillation (AO+,

AO−). They found that these four regimes were in good agreement with previous results (Kimoto

and Ghil 1993a,b; Michelangeli et al. 1995; Corti et al. 1997). By studying the Markov chain

of transitions between regimes, they identified five highly significant transitions that could be

organized into two cycles: NAO− → NAO+ → AO+ → NAO− and AO+ ↔ NAO+.

They also showed that several specific transitions were characterized by preferential directions

in phase space. To do so, they defined for every transition an exit point on the regime boundary;

the exit vector, pointing from the regime centroid to the exit point, could then be described by

two angles on the unit sphere around the centroid. The joint probability density function (PDF)

of these two angles for the five identified transitions exhibited one or two maxima.
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The existence of such preferential directions, along which the system’s trajectory leaves a

regime, has been conjectured by Legras and Ghil (1985), based on the nonlinear dynamics of

their barotropic model on the sphere. In this model, certain regimes were associated with slowing

down of the trajectories in the neighborhood of unstable fixed points. These trajectories were

then ejected along the small number of unstable directions. Finding traces of similar behavior

in the much more realistic, baroclinic QG3 model used here renders its investigation even more

interesting in the present context.

In this article we make use of the same clustering methodology as Kondrashov et al. (2004)

to define weather regimes and the preferred transition paths between them. Statistical learning

techniques are then applied to exploit this knowledge for forecasting purposes.

The paper is organized as follows. In section 2, the atmospheric model and the pre-processing

performed to obtain the weather regimes and the transition paths are briefly described; some

details on the model appear in appendix A. In section 3, we present the two main statistical tools

of this study: the k nearest-neighbor classifier and the “random-forest” technique. Further details

about the latter are given in appendix B.

Section 4 is devoted to the main results of this study, in two cases of increasing complexity.

In section 4a, we forecast the three specific regime breaks that constitute the first transition

cycle identified by Kondrashov et al. (2004). In section 4b, we extend our study to any possible

transitions starting from the NAO− regime. In both situations, we show that our statistical

methods have verifiable predictive skill. The performance of the random-forest algorithm can also

be modulated according to the different weights one gives for different type of error: false alarms

vs. failure to predict. A sensitivity study of the forecast skill to the predictors demonstrates the

critical influence of preferred transition directions. A summary and discussion of the results follow

in section 5.
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2. The QG3 model and its weather regimes

a. The QG3 model

The model used in this study was first proposed and investigated by Marshall and Molteni (1993).

It consists in the quasi-geostrophic (QG) potential vorticity (PV) equations, integrated on the

sphere; the horizontal discretization is spectral, with a T21 truncation, and there are three levels

in the vertical (200, 500 and 800 hPa); hence the QG3 abbreviation. At each vertical level, the

prognostic equations for PV read:

∂q

∂t
= −J(ψ, q) −D(ψ) + S, (1)

where q is the potential vorticity, ψ the streamfunction and J the Jacobian operator on a pair

of two-dimensional fields. The term D(ψ) is a linear operator representing the effects of Newto-

nian relaxation of temperature, linear drag on the lower level (with drag coefficients depending

on the nature of the underlying surface), and horizontal diffusion. The spatially varying, time-

independent forcing S is designed to represent PV sources that result from processes not explicitly

included in the model. This source term is constructed empirically, as in Marshall and Molteni

(1993), to keep the model’s mean state close to that of an observed wintertime climatology; see

appendix A.

Despite its simplicity, the model has a remarkably good climatology and low-frequency vari-

ability, with a plausible stationary-wave pattern, Pacific and Atlantic storm tracks, and maxima in

low-frequency activity at the end of the storm tracks. The model also produces wintertime weather

regimes that are very similar to the observed ones (Corti et al. 1997; D’Andrea and Vautard 2000;

Kondrashov et al. 2004).
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b. The weather regimes

The main steps to calculate the weather regimes are only summarized here; further details are

given by Kondrashov et al. (2004). A 54 000-day-long, perpetual-winter integration of the QG3

model is first carried out. In order to reduce the dimension of the phase space in which the

coarse graining will be carried out, we perform an EOF analysis on the unfiltered, daily 500-hPa

streamfunction anomalies over the model’s Northern Hemisphere. We keep the first three EOFs,

thus capturing 27% of the total day-to-day variance.

Weather regimes are then identified as areas of higher probability density in this three-dimensional

phase space by applying the Gaussian mixture classification method of Smyth et al. (1999). To do

so, we assume that every weather regime (or cluster) is described by a Gaussian density function.

The total PDF is then modeled by a weighted linear combination of the individual weather regime

density functions. With the QG3 output data, we obtain four regimes that we call, following Kon-

drashov et al. (2004): NAO+,NAO−, AO+ and AO−.

The next step is to determine the Markov chain of transitions between regimes. Each weather

regime is defined in phase space as an ellipsoid whose centroid and semi-axes are given by the

mean and the covariance matrix of the corresponding Gaussian density component. The exact

volume of every cluster is fixed by a scaling factor σ = 1.25 along each axis of the ellipsoid; the

axes are the principal directions of the covariance matrix, and σ = 1 corresponds to the associated

standard deviations.

A data point is assigned to a weather regime if it lies within the corresponding ellipsoid. When

a data point belongs to several ellipsoids, we assign it to a regime according to the maximum

probability value found. With this classification, about 11% of the points are in the NAO+ regime,

13% in NAO−, 15% in AO+ and 9% in AO−; the remaining 52% of the points do not belong to
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any cluster.

c. The preferred transition paths

Each transition is characterized by an exit point. The exit point is the mid-point between two

consecutive trajectory points that lie on the opposite side of the cluster boundary, as defined in

section 2b. The exit vector is then defined as the vector pointing from the cluster centroid to the

exit point. In the three-dimensional phase space spanned by EOFs 1, 2 and 3, the coordinates of

an exit point are (x, y, z) and the unit vector in its direction can be fully described by two angles

θ and φ with:

tan θ =
z√

x2 + y2
, −π

2
< θ <

π

2
, (2)

tanφ =
y

x
, 0 < φ < 2π,

the positive pole being aligned with EOF–3. Computing the two-dimensional PDF of these two

angles using a Gaussian kernel estimator (Silverman 1986), we obtain the preferred exit directions

as the maxima of this PDF.

In Fig. 1 the PDFs of θ and φ are shown for the three transitions that will be analyzed in section

4a: NAO− → NAO+ → AO+ → NAO−. For two of them, NAO− → NAO+ and NAO+ → AO+,

the PDF has two sharp maxima close to each other; the regime break consequently occurs along

either one of two paths. In the third case, AO+ → NAO−, there is only one maximum, which

is much less pronounced. Kondrashov et al. (2004) described these three transitions as “the first

cycle of significant transitions”; they provide good examples of the two kinds of regime breaks

that these authors observed on a larger set of highly significant transitions: on the one hand sharp

and pronounced maxima, on the other less peaked angular PDFs. The first type of transition

was found to be more frequent, on the whole. We chose to study this transition cycle because it
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allowed us to compare the results here with those of Kondrashov et al. (2004) and also because

they illustrate rather well the different situations in terms of exit-angle PDFs.

[Figure 1 about here.]

3. Methodology

a. Predictands and predictors

For each individual transition we are trying to forecast, we define a data point as an event or a

non-event. Let us consider the transition NAO− → NAO+. For this transition, a point belonging

to NAO− is considered as an “event” if it is going to exit the NAO− cluster the following day,

and to enter the destination cluster NAO+ at some moment in the future, after possibly having

spent one or several days outside any regime boundary. Any other point of the NAO− regime

is considered as a “non-event.” Non-events can be points not leaving the NAO− regime the next

day (staying longer in the regime) or leaving NAO− to reach a different regime than NAO+.

Forecasting the NAO− → NAO+ regime break means to classify NAO− points into one of the two

possible outcomes: “event” or “non-event.”

Our predictors are based on the position and the velocity of a data point. In order to exploit

the preferential paths of regime breaks identified by Kondrashov et al. (2004) and in section 2c

here, we use the spherical coordinates (r, θ, φ) centered on the regime centroid and with the polar

axis aligned with the preferred transition path, rather than with EOF–3. When the transition

under consideration has two local maxima (NAO− → NAO+ and NAO+ → AO+), we use the

global maximum as the pole. Figure 2 illustrates this change of coordinates.

[Figure 2 about here.]
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In these modified spherical coordinates, the “deviation” angle formed by the current state

vector and the preferred transition direction is given by a single variable, θ. A value θ = π/2

means the state vector is perfectly aligned with the preferred exit vector, while a value of θ =

−π/2 indicates that it is in the opposite direction. The coordinate r is the distance to the

center of the regime centroid. The cartesian velocity components dx/dt, dy/dt, dz/dt, given by the

QG3 model, are also called “tendencies” and will be expressed in the spherical coordinate system

by (vr, vθ, vφ). In summary, our predictors are daily data points in spherical coordinates and their

tendencies (r, θ, φ, vr, vθ, vφ).

We have at our disposal a very long model simulation of 54 000 days, but wish to evaluate our

method in a manner that is consistent with the amount of data one can obtain from a re-analysis

data set. To do so, we will keep in the following only 6 000 days of the simulation and thus obtain

a fair estimate of our method’s forecast performance when using a realistic number of training

data. Although the QG3 model was run in a perpetual winter mode, these 6 000 days can be

thought to correspond to 50 winters of 120 days (mid-November to mid-March).

b. K nearest-neighbor classifier

We have used two forecast methods to classify events or non-events from the six predictors de-

scribed in section 3a. The first is a classical analog procedure. We dispose of a library of 6 000

days that correspond to past observed data and that constitutes a training data set. From these,

we can build a “look-up table” of predictors, classified into events and non-events.

We now consider a new point that is in NAO− at initial forecast time and we want to determine

if it is an event or not. We first search for its k nearest neighbors in the look-up table in terms of

Euclidean distance in the space of the six predictors (r, θ, φ, vr, vθ, vφ). Once the k nearest neighbors
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are identified, we count the number of “events” and “non-events” in these k table members. The

forecast then assigns the new point to the category that is the best represented among its k nearest

neighbors. It is easy to check if the forecast was correct by looking at the simulated days that

follow in time the point that we just classified. The number k of analogs kept in the procedure is

not fixed and several values, from 1 to 20, were tested to determine the one that gives the highest

probability of correct forecasts.

c. Random forests

Random forests is a more advanced classification procedure, introduced in the past fifteen years;

it is based on a generalization of classification and regression trees (CART). To the best of our

knowledge, the present work is the first use of random forests to forecast meteorological phenomena.

As in section 3b, the key idea is to assign a given point to a class based on information contained

in a set of predictors. Random forests is largely based on recursive partitioning of a training data

set by logical splits that permit accurate classifications.

Classical classification trees use successive if–then conditions to obtain a unique deterministic

tree. A ”random forest” is constructed from a set of K such deterministic trees, each based on a

random sample of training data and on using at each split within a given tree, a random sample

of predictors. Data points are then classified through a majority vote over all of the trees in the

forest. Classification trees and their extension, random forests, are usually very effective statistical

methods for classifying complex data structures when no simple relationship (linear for example)

between predictands and predictors is apparent. Random forests is described in greater detail in

appendix B here and in Breiman (2001).
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4. Forecast results

For the sake of simplicity, we first concentrate on one specific transition. This will also allow us

to introduce contingency tables and the forecast score used. The transition chosen is NAO− →

NAO+, as anticipated in section 3a. For given points belonging to the NAO− cluster, we forecast

their regime transition to NAO+ with the two methods above. There are only two outcomes

possible in this case: either there is a transition to NAO+ or not; these two outcomes are classified

as an event or a non-event. We then briefly compare the results obtained for two other single

transitions, NAO+ → AO+ and AO+ → NAO−, with the ones we got in the NAO− → NAO+

case.

In section 4b, we forecast all the possible transitions from cluster NAO−. In this case, there

are five possible outcomes: (i) no transition: the point does not leave NAO− in the next 24 h;

(ii,iii,iv) transition to one of the three other clusters; and (v) re-entry, with the trajectory exiting

the NAO− cluster and then returning to it.

a. Single-transition forecasts

1) K nearest-neighbor classifier

We apply this classifier with our data library of 6 000 days and then test it on 1 000 independent

points belonging to the NAO− weather regime. The results are summed up in a 2× 2 contingency

table that gives the discrete joint sample distribution of forecasts and validating observations.

Table 1 summarizes the definition of contingency tables, and of user and model errors. As their

name indicates, the former errors provide mainly information to the user of the forecast model,

the latter mainly to the modeler.
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[Table 1 about here.]

The contingency table found with this data set for the NAO− → NAO+ transition is presented

in Table 2. A basic difficulty of any regime-based forecast method is that a transition from a given

Regime A to a given Regime B is essentially a rare event. We immediately see in the table that

the event points are much less numerous than the non-event points: the former represent only

11% ≈ 7.5% + 3.3% of the total. This is not surprising because we consider as events only the

points that are about to leave their original weather regime in the next 24 h. As we will see later,

this makes the forecast much more difficult.

[Table 2 about here.]

To estimate the skill of this statistical predictor compared to a random guess, we use the Heidke

Skill Score (HSS) (Von Storch and Zwiers 1999) H :

H =
S − Sr

N − Sr

, (3)

with S the number of correct forecasts, Sr the number of correct forecasts that a random predictor

would give, and N the number of assessment points. A perfect predictor would get a score of 1,

whereas a value of 0 means the evaluated predictor demonstrates no skill over a random guess.

Another convenient definition of H can be given in terms of the numbers a, b, c, d introduced

in Table 1:

H =
2(ad− bc)

(a + b)(b+ d) + (a + c)(c+ d)
(4)

In the case of our regime transition forecast in Table 2, we find H = 0.40, meaning that the

k nearest-neighbor classifier is 40% better than a random guess. This result shows that the

variables we used as predictors do contain useful information for the break of the NAO− regime

and subsequent transition to NAO+.
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To better understand how this score is obtained, we must study more closely the contingency

table. The user error is especially useful in practical applications of a forecasting system. When

the model forecasts a non-event, it is wrong in 7.8% of the cases; this percentage becomes 25%

when a transition to NAO+ is forecast to occur. Both of these scores are very encouraging and

the overall user error rate is low, only 8.6% = 7.5% + 1.1%.

But these user errors must be taken with caution. The complementary point of view is to

consider the model error, which indicates how well the statistical model performs: respectively

1.2% and 69% of the non-event and event points are forecast incorrectly. Thus, in spite of its

very low rate of false alarms, the k nearest-neighbor predictor is handicapped by a relatively low

detection rate: only about one third of the transitions are forecast.

How can we explain these apparently contradictory results? In the k nearest-neighbor classifier,

we do not assign any particular cost to the two possible types of error, false negative vs. false

positive. More precisely, we implicitly consider them to be equal when we choose to classify a

point in the category best represented among its k nearest neighbors. The ratio of false negatives

to false positives is actually imposed, in this algorithm, by the data, that is by the underlying

dynamics and the variables used to forecast it. In the case of a rare event like an NAO− → NAO+

transition, the overall error is dominated by the misses compared to the false alarms, with a ratio

of about 7:1. One implication of this shortcoming is the relatively low detection rate of events,

which may not be acceptable for a practical user. Random forests may be a good way to address

this issue, as we shall see forthwith.
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2) Random forests

In our first run of the random-forest algorithm, we let the data determine the default ratio of false

negatives to false positives. As described in appendix B, a contingency table is built with data

points not used to construct the classifier. The results, presented in the light grey cells of Table 3,

are qualitatively similar to the previous ones and the HSS, H = 0.36, is also quite comparable. In

this case, neither statistical classifier demonstrates a significant advantage over the other.

[Table 3 about here.]

An interesting property of random forests, though (see again appendix B), is the algorithm’s

ability to impose unequal cost weights on false negatives and false positives, and yield therewith

different ratios between the two types of outcomes. One way of achieving this is by allowing the

bootstrap samples used in generating each random tree to overrepresent transition events vs. the

non-events.

In the previous experiment, the data gave a default ratio of about 7:1, with many more false

negatives than false positives. The results so far suggest two additional experiments, in which we

give a much greater weight to the misses than to the false alarms. The ratio of the two types of

error is now inverted; more precisely, we tried to get them as close as possible to 1:4 and 1:8. The

results of these two experiments are also shown in Table 3 in white cells (1:4 ratio) and dark grey

cells (1:8 ratio).

The detection rate increases considerably as greater weight is given to the misses: it was

initially only 28% = 100% − 72% in the default case and it is now 72% = 100% − 28% in the 1:4

ratio case and 82% = 100% − 18% in the 1:8 case. The classifier is now much better at correctly

predicting transitions, which was our initial goal.
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But this improvement of detection rate comes at the detriment of the number of false alarms.

It was only 1.7% in the default-ratio case and it rises to respectively 13% and 17% in the two new

experiments. This modification of the detection and false-alarm rates have of course direct conse-

quences for the errors that a user would expect. For a given forecast that indicates a transition,

the probability to be wrong rises from 34% to 61% and 65%, respectively.

Note, finally, that the HSS remains of comparable size: it is now 0.43 and 0.40, in the two

unequal-weight cases. It means the general skill of the classifier is not modified, what is modified

is only the distribution of the error.

3) Optimizing predictor choice

In the experiments of Table 3, a subset of the predictors is sampled at random for each split within

each tree (see section 3c and appendix B). This increases the flexibility of the fitting algorithm

by allowing predictors that are important for small fractions of the data to enter the model. To

evaluate the relative impact of each predictor on the forecasts, we present in Fig. 3 a plot of

forecast sensitivity to the predictors.

[Figure 3 about here.]

This is an “importance plot” that shows the decrease of detection rate when using the random-

forest algorithm, as each one of the six variables (r, θ, φ, vr, vθ, vφ) is rendered irrelevant to the

forecasting process. More precisely, when forecasts are made, we keep the values of five predictors

unchanged, while randomly shuffling all the values of the sixth variable, namely the one whose

importance is being evaluated. The predictor is not removed but the shuffling randomizes its

values, making them uncorrelated on the average with the class to which the point is supposed to

belong, event or non-event. This process is repeated for each predictor. When each predictor is
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shuffled in turn, we expect a decrease in the detection rate for each, because information is lost

in the shuffling. The larger the drop in the detection rate, the more critical for the forecast is the

shuffled variable.

Figure 3 was built with the 1:8 weight ratio between false positives and false negatives, but

other choices of the weights (not shown) produce only very slight differences in the results and lead

to the same conclusions. Namely, for the NAO− → NAO+ transition (Fig. 3a), two variables, vr

and θ, are much more important that the four others. This result is consistent with and expands

upon the conclusions of Kondrashov et al. (2004): it confirms the inhomogeneity of the transitions

in phase space and the crucial influence of a preferred direction.

The importance of vr may indicate that the points that are moving out of the cluster and thus

away from the centroid are characterized by specific radial velocities which are presumably larger

that the radial velocities of the other points. To assess this hypothesis, we built the PDFs of vr for

the two groups of interest, events and non-events, by using a Gaussian kernel estimator (Silverman

1986). We present the results in Fig. 4a. As expected, the transition points show, on average,

larger values of vr than the non-event points.

[Figure 4 about here.]

The sensitivity of the classifier to the high-impact variable θ is investigated by producing the

“partial-dependence plot” in Fig. 5. This plot provides an estimate of the conditional probability

of the forecast (in Log-Odds Units or “logits”) with respect to the angular variable θ.

[Figure 5 about here.]

In general, the impact on classifier results of one particular variable depends on the values of

the other predictor variables as well and cannot, therefore, be represented in a simple plot. The

partial-dependence plot in Fig. 5 isolates the dependence of correctly forecasting an event on the
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value of θ, by averaging over the values of the other predictors. In effect, the other predictors are

held constant. The algorithm for computing the results in Fig. 5 is given in appendix C.

Of the two sensitivity plots, the importance plot (Fig. 3) indicates that θ is a critical predictor

in the forecasting process, while the partial-dependence plot (Fig. 5) tells which values of θ are

most likely to yield a transition forecast. The curve in Fig. 5a shows a fairly sharp peak for θ

around π/2. It means that, as expected, a transition is more likely to be forecast for vectors that

point in direction of the preferred transition path.

4) Other transitions

We carried out a similar study for the two other transitions of the Kondrashov et al. (2004) cycle

(see section 2c above) : NAO+ → AO+ and AO+ → NAO−. We used only the random-forest

algorithm, since the results when using the k nearest-neighbor classifier (not shown) were quite

similar to those obtained when allowing the weights to be determined by the data in the random-

forest case.

As in section 4a(2), we first let the data determine the ratio of false positives to false negatives

and then we prescribe the relative weights of false outcomes so that this ratio equal about 1:4

and 1:8, respectively. Tables 4 and 5 are the contingency tables for these two transitions and

they are both quite similar to the one already discussed. We can expect approximately the same

performance in forecasting these two transitions as in Table 3 and the issue of detection rate is

still critical.

[Table 4 about here.]

[Table 5 about here.]

The sensitivity plots in Figs. 3b,c differ more substantially from Fig. 3a than Tables 4 and 5
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from Table 3. In the case of the NAO+ → AO+ transition, the angle θ is clearly more important

than all the other variables. The situation is very close to the one presented in the previous section.

As seen in section 2c, this regime break is characterized by a sharp peak in the angular PDF of

exits (Fig. 1b), which explains the importance of the angle θ, but the variable vr is less important

than in Fig. 3a. This state of affairs is confirmed by Fig. 4b, which shows that the values of vr

associated with the regime breaks are less well separated, in this case, from those of the non-events

than in Fig. 4a.

The AO+ → NAO− transition has different properties still: a group of four variables have

larger importance than the other two, with vr still the first and θ being only the third in order

of importance. As discussed in section 2c, the preferred exits are not confined in this case to a

narrow solid angle but are much more widely spread out (Fig. 1c). The dynamics of this transition

probably has a degree of complexity that requires several predictors, rather than just one or two.

We have also plotted in Figs. 5b,c the partial dependence plots for these two additional tran-

sitions. In spite of the differences noted between the three panels in Fig. 3 and those in Fig. 4,

the results in these two panels resemble quite well those obtained for the first transition we stud-

ied, namely a large, albeit broader peak for large values of θ with a maximum close to θ = π/2.

Transitions are thus more likely to be forecast when the state vector is aligned with the preferred

transition path, in all three cases.

b. Multiple-transition forecasts

We study here all the possible transitions of a point belonging to a given cluster. This leads to

distinguishing five categories, or outcomes, for the forecast. On the one hand, when a transition

does occur, the point leaves the cluster within the next 24 h to reach one of the four clusters,
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including re-entry; this gives four possible outcomes, one per cluster. On the other hand, when

the point remains in its cluster for at least 24 h more, we classify it into the fifth category called

the “non-event.”

The random-forest method is applied to the points that are in the NAO− cluster at initial time.

The same number of data, 6 000 days, is used as in the previous chapter. In the present situation,

the state vector cannot be expressed in the same system of coordinates as above. Since there are

four possible transitions for a given point, with four different preferred exit directions, it makes

no sense to choose one or another of these directions as the pole of the coordinate system. Thus,

the spherical coordinates were computed with the pole being aligned with EOF–3.

The results are shown in Table 6 which is a generalized contingency table that allows five

possible outcomes. The rows still contain the observations and the columns the forecasts. The

cells on the diagonal thus still correspond to forecasts that are correct. Although the different

possible errors and their interpretation become more complex, we can define all the same two

important types of errors: the false positives and the false negatives. The first type corresponds

to the points that are actually non-events and that are forecast as transitions. They are located in

the first row of the contingency table. The second type includes the points that are transitions and

that are forecast as non-events. These correspond to the first column of the contingency table. In

addition, we have now a new type of error that did not exist in the two-outcome case: a transition

point whose destination cluster is not correctly forecast. A point that is going to cluster AO+ and

that has been classified in the AO− transition group would fall into this category.

[Table 6 about here.]

We performed only two multiple-outcome experiments with different ratios of false positives to

false negatives. One is the control experiment, which lets the data set the weights, and the second
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is an experiment that assigns a higher cost to false negatives, so as to achieve a higher detection

rate. The control experiment yields the same result as in the two-outcome case: the false negatives

are much more numerous than the false positives and the detection rate is low.

In this more general case, the overall user error is the complement of the correct forecasts,

that is the complement of the diagonal elements. This error equals 26% ≈ 100%− (62% + 4.7% +

4.9%+2.2%+0.1%) and it is much higher in Table 6 than in Tables 2–5, where it does not exceed

16%. Indeed, the forecast of multiple outcomes is much more difficult than for only two outcomes,

especially when each type of transition is a relatively rare event.

In the other experiment, with a higher weight on false negatives, we get a better rate of

detection, and thus succeed in forecasting about half the transitions. The accuracy of the forecasts

differs from transition to transition: the best results are obtained for the AO− destination cluster,

with a model error of only 32%, while the worst results are for NAO+, with a model error of

57%. Once again, the results are considerably worse than in the two-outcome case, where the

model error at predicting a transition was about 20%. The practical interest of a multi-outcome

statistical forecast is therefore more limited than for a simpler case.

5. Concluding remarks

In this article, we have studied the predictability of the Northern Hemisphere’s low-frequency

variability in an intermediate-complexity model: the quasi-geostrophic, three-layer (QG3) model

of Marshall and Molteni (1993). This model (section 2a) exhibits four significant weather regimes

in a low-dimensional subspace spanned by the three leading EOFs of its variability. Kondrashov

et al. (2004) showed that certain regime transitions in the QG3 model are characterized by

preferred-direction paths in this phase space (see Fig. 1).
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Our goal here was to use these specific features in phase space to forecast the regime breaks

in advance. To do so, we used two statistical tools: the classical k nearest-neighbor classifier

(section 3b) and the novel random-forest method (section 3c). The application of both methods

to medium-to-long-range prediction of large-scale flow patterns appears to be new.

The model’s EOFs and weather regimes (section 2b) were computed using a 54 000 day,

perpetual-winter simulation. To put the statistical forecast methods under study to a more severe

test, we used only a 6 000 day segment of this simulation as a learning set; this corresponds to 50

winters, each 120 days long, which could be obtained from the existing reanalysis of atmospheric

observations.

We first focused on forecasting single transitions and obtained surprisingly good predictability,

even with this short learning set. We considered the cycle of three transitions NAO− → NAO+ →

AO+ → NAO− and, for each of the three, the statistical prediction is about 35 to 40% better than

random (see Tables 3–5).

A major obstacle in correctly predicting regime transitions is the fact that these are fairly rare

events. In practical situations, though, misses and false alarms may be given different weights, in

particular when the two types of forecast outcomes are qualitatively different. The random-forest

method allows one to easily assign distinct costs to false positives vs. false negatives. Of course,

any improvement in the detection rate of transitions is inevitably associated with a larger number

of false alarms and vice versa. Eventually it is the end-user’s choice to define precisely what risk is

acceptable according to the prospective application of the forecast. Since the transitions of interest

are rare events, we were able to obtain higher detection rates by assigning higher weights to the

misses than to the false alarms, while keeping the overall skill unchanged.

The preferred transition paths identified by Kondrashov et al. (2004) were found to carry

predictive information on regime transitions. Sensitivity studies to different predictors, through
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importance (Fig. 3) and partial-dependence (Fig. 5) plots showed the key role of the deviation

angle θ formed by the exit vector with the preferred exit direction. These studies indicate that a

transition is more likely to be forecast for points aligned with the preferred transition direction.

We also found that the influence of θ is more crucial when the preferred transition path is confined

within a fairly sharp solid angle: underlying exit dynamics seems to be largely dependent on θ in

this case, although the velocity component vr along the preferred exit direction also plays a role.

The role of θ decreases when the exit-vector PDF is not limited to a narrow angle but is more

spread out.

The results for the single-transition case are encouraging in view of a practical use of sta-

tistical methods in medium-to-long-range forecasting. These results provide further support for

the Legras and Ghil (1985) conjecture that (i) certain atmospheric-flow regimes are associated

with unstable fixed points in the flows’ phase space; and, hence, (ii) exit from such regimes and

subsequent transitions to other regimes originate along preferred directions of unstable growth of

perturbations.

The natural development of the present work would be to study observed data, where preferred

transition paths were also hypothesized by Kimoto and Ghil (1993a,b). This will make it possible

to compare the skill of statistical and dynamical models on specific transitions like those between

zonal and blocked states. Such transitions are of real meteorological interest and remain a problem

for numerical weather prediction models.
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APPENDIX A

Average source term

In the atmospheric model governed by Eq. (A1), the time-independent forcing S represents

sources of potential vorticity that result from processes not explicitly included in the equations:

radiative forcing, other diabatic heat fluxes (linked, for example, to precipitation), and the effect

of divergent flow. In addition the forcing implicitly contains the effects of subgrid-scale processes.

The forcing term has been estimated here empirically, following Marshall and Molteni (1993), as

follows.

From a long series of wintertime analyzed states, one can substitute q̂ and ψ̂ into Eq. (A1), for

every day of observed fields available; the hat indicates observed fields. Equation (A1) holds for

observed fields and gives a value of S for that day. Taking then the time average, represented by

the overbar, an equation for a mean field S is obtained:

S = J(ψ̂, q̂) +D(ψ̂). (A1)

Daily streamfunction fields were obtained from the ECMWF operational analysis for the

months of January and February of the years 1984–92.
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APPENDIX B

Random forests

With categorical predictands such as those used in this paper, random forests provides a

classification method. The intent is to assign classes to observations using information contained

in a set of predictors. A random forest is constructed from a large number of classification trees,

each tree based on a random sample (with replacement) of the data, and for each partitioning of

the data for each tree, a random sample of predictors. Classification trees will be described briefly,

before explaining random forests. For ease of exposition, and with no major loss of generality,

we consider in the following only a binary response variable: only two outcomes are possible, for

instance “event” and “non-event.”

a. Classification trees

Each classification tree provides a recursive partitioning of a training data set. The goal is to

construct contiguous subsets within the space defined by the predictors that are less heterogeneous

than the data before the partitioning. All possible predictors are screened before a potential

partitioning of the data is selected; the predictor eventually used at each step is the one that

decreases heterogeneity the most. Two popular measures of heterogeneity are entropy E, defined

in the binary outcome case as E = −p log p − (1 − p) log(1 − p), and the Gini index G, defined

as G = p(1 − p). In section 4a here, p is for instance the proportion of “event” points in a data

partition, with 1 − p the proportion of “non-events.”

Figure 6 represents a simple example. There is a binary response coded “A” or “B,” and two

predictors x and y. The single vertical line at x = 3, say, produces the first partition. The double

horizontal line at y = 6 produces the second partition. The triple horizontal line at y = −4
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produces the third partition. Partition boundaries must be straight lines perpendicular to the

predictor axes.

[Figure 6 about here.]

In this simple illustration, the upper-left set and the lower-right set are fully homogeneous.

There remains considerable heterogeneity in the other two sets and, in principle, their partitioning

could continue. When there are no longer any ways to further partition the data to make them

more homogeneous, the algorithm stops. Each final set is then assigned a class, based on a majority

vote of the observations in that set. Here either class A or class B would be assigned to a set

according to which has a greater proportion of observations in that set. The classification of a new

point not included in the training data set requires only to determine in which set the observation

lies and the associated class.

b. Random forests

Random forests generalizes classification trees by considering a large set of trees generated by a

process that introduces random factors. Let n be the number of training observations on hand.

The random-forest method then operates with the following steps:

1. Take a random sample of size n with replacement from the total data set on hand.

2. Take a random sample without replacement of all the possible choices of predictors included

in the data.

3. Construct the first data partition of a classification tree.

4. Repeat Step 2 and Step 3 for each subsequent split, until the classification tree is as deep as

desired. Do not prune the tree.
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5. Drop the data not included in the sample from Step 1 down the tree. Store the class assigned

to each observation along with each observation’s predictor values.

6. Repeat Steps 1–5 a large number of times (we used 500 trees in this paper), so that there is

a large number of trees, which constitute a random forest.

7. Using only the class assigned to each observation when that observation is not used to build

a tree, count the number of times over trees that the observation is classified in one outcome

category and the number of times over trees it is classified in the other outcome category.

8. Assign each observation to one of the two outcome classes by a majority vote over the set of

trees.

Random forests has five demonstrable assets. First, for the kinds of data analyzed in this

paper, there are no classifiers to date that will consistently classify and forecast more accurately.

Most will do worse, especially when the true relationships with the response are highly nonlinear

and noisy. Second, one can prove (Breiman 2001) that random forests does not overfit. This is

very important because it implies that the results will generalize well to new random samples from

the same population (i.e., data with the same characteristics except for random sampling error).

Third, because performance is determined by a contingency table computed from observations

not used to construct a given tree (i.e., observations not selected in Step 1), performance rests

on real forecasting skill. Fourth, random forests provides a means by which the relationships

between inputs and outputs can be represented in an instructive way, using importance plots and

partial-dependence plots.

Finally, there are several systematic ways in which the relative costs of false negatives and

false positives can be taken into account. The approach used in this paper gives more weight

to observations in which a transition occurs, so that if such observations are misclassified, the
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consequences are greater. This is accomplished by oversampling transition events when bootstrap

samples are drawn for each tree; in other words, transition events are made more common in

the analysis than they are in the data. The presence of such a random element in determining

the weights of events vs. non-events is the reason for achieving a targeted weight ratio only

approximately in Tables 3–5.

This is an improvement over the more classical k nearest-neighbor algorithm. Indeed, we tried

to force different cost weights with the latter method by modifying the classification process. A

point was forecast as an event if kevent/k > a with kevent the number of event points in its k nearest

neighbors and a a parameter setting the relative cost of false positives to false negatives. Equal

costs corresponds to a = 0.5, while a < 0.5 gives more weight to the false negatives compared to

the false positives. We could not get the same results than random forests especially for the larger

ratio 1:8; the overall skill dropped making the forecast of no practical interest. This is probably a

consequence of the limited size of the data set that imposes to choose a small value of k and thus,

does not allow to finely tune the value of a without being subject to critical sampling problems.

This is not an issue for random forests because the classification is made through a majority vote

over a large number of trees (we used 500 trees in this study) and not among a small number of

k nearest neighbors.

Breiman (2001) give a formal exposition of classification and regression trees (CART), while Breiman

et al. (1984) provides a formal exposition of random forests. An excellent reference to statistical

learning in general is Hastie et al. (2001).

APPENDIX C

Partial-dependence plots
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Partial-dependence plots display in Log-Odds Units (“logits”) how the probability of a particular

event (here, a transition) is related to a given predictor, the values of all other predictors being

fixed. A partial-dependence plot is constructed in the following manner.

1. Grow a forest.

2. Suppose x has v distinct values in the training data set. Construct v data sets as follows.

For each of the v values of x, make up a new data set where x only takes on that value,

leaving all other variables untouched.

3. For each of the v data sets thus obtained, predict the response using random forests.

4. For each of the v data sets, average these predictions determining the proportions p and 1−p

of trees that respectively forecast an event and a non-event. Compute in logits the ratio of

these proportions, R = 0.5 log[p/(1 − p)].

5. Finally, plot this ratio R (expressed in logits) for each of the v values of x.

Thus, partial-dependence plots show the relationship between a given predictor x and the

response averaged over the joint values of the other predictors as they are represented in the

tree structure. In this way, the other predictors are being “held constant” by matching, so that no

assumptions are being made about how the predictors are related to one another or to the response

variable. More details about partial-dependence plots can be found in Hastie et al. (2001).
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Figure 1: Probability density functions (PDFs) of regime exit angles θ and φ. Filled triangles
correspond to global PDF maxima, while open triangles mark strong secondary maxima. The
contour interval for all panels is equal to 0.2 in non-dimensional units. This figure was produced
following the procedure described in Kondrashov et al. (2004).
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Figure 2: Change of coordinate system to take into account the existence of a preferred direction
of transition. In the new coordinate system, θ is related to the angle formed by the state vector
with the preferred direction of transition.
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Figure 3: Relative importance of the predictors. The plot shows the decrease in detection rate
when a variable is shuffled and measures the importance of each variable in the forecasting process.
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Figure 4: Probability density functions (PDFs) of vr for event points (solid line) and non-event
points (dashed line). The event points, which are associated with regime breaks have on average
larger values of vr.
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Figure 5: Partial-dependence plots for θ. The ordinate is the logit of the conditional probability
of event detection with respect to the high-impact variable θ.
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Forecast

non-event event 

Model error

non-event a (true negatives) b (false alarms) b/(a+b)

Observed 

event c (misses) d (true positives) c/(c+d)

User error c/(a+c) b/(b+d) 

Table 1: Definition of a 2× 2 contingency table. The observations (actual category) of the points
are in the rows and the forecasts in the columns. The numbers a, b, c, d are the percentages of
each case obtained on the assessment data set (a+b+c+d = 100). Thus, true forecasts are on the
diagonal and correspond to true negatives a and true positives d. The misclassified points are off
the diagonal and consist in the false positives (false alarms) b and the false negatives (misses) c;
the overall user error is the sum of the off-diagonal elements b+ c.
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Forecast

non-event event 

Model error 

non-event 88.1 1.1 1.2

Observed 

event 7.5 3.3 69.4

User error 7.8 25.0 

Table 2: Contingency table with k nearest-neighbor classifier for the transition NAO− → NAO+.
A value of k = 9 nearest neighbors was found to give the best results.

41



Forecast

non-event event 

Model error

non-event 88.3 78.5 74.4 1.5 11.3 15.4 1.7 12.6 17.2

Observed 

event 7.3 2.9 1.9 2.9 7.3 8.3 72 28.0 18.3

User error 7.7 3.5 2.4 34.3 60.7 64.9

Table 3: Contingency table with random-forest algorithm for the transition NAO− → NAO+; 500
trees were used and two variables were tried at each split. Results are shown for three different
ratios of false negatives to false positives: the default ratio imposed by the data (light grey cells)
and two other ratios, approximately 1:4 (white cells) and approximately 1:8 (dark grey cells).
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Forecast

non-event event 

Model error 

non-event 83.3 67.9 63.7 2.0 13.3 21.6 2.3 20.3 25.4

Observed 

event 11.5 4.0 2.8 3.2 10.7 12.0 78.1 27.1 18.8

User error 12.1 5.5 4.2 38.2 61.7 64.4

Table 4: Contingency table with random forests for the transition NAO+ → AO+. Same algorithm
and presentation as in Table 3.

43



Forecast

non-event event 

Model error

non-event 77.0 65.9 59.9 4.1 15.2 21.2 5.0 18.7 26.2

Observed 

event 12.0 3.7 2.6 6.9 15.2 16.3 63.5 19.8 13.8

User error 13.5 5.4 4.2 37.1 50.0 56.5

Table 5: Contingency table with random forests for the transition AO+ → NAO−. Same algorithm
and presentation as in Table 3.
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Forecast

non-event NAO
+

 AO
+

AO
–
 NAO

–

Model
error

non-

event
61.7 39.7 0.6 2.5 1.0 8.6 1.0 6.5 0.2 7.5 4.6 38.7 

NAO
+

4.1 1.1 4.7 4.4 1.0 1.1 0.2 0.4 0.1 3.2 53.7 57.3 

AO
+

6.1 2.4 0.6 0.6 4.9 7.1 0.0 0.5 0.6 1.6 60.2 41.8 

AO
–

4.4 0.4 0.7 0.4 0.2 0.2 2.2 5.3 0.1 1.5 71.4 31.7 

O
b

s
e

r
v

e
d

 

NAO
–

2.9 0.7 1.2 1.2 0.4 0.0 0.5 0.7 0.1 2.4 97.6 53.7 

User error 22.1 10.4 40.6 52.1 35.0 58.4 45.5 60.2 90.0 85.4

Table 6: Contingency table with random forests for every possible transition starting from the
NAO− cluster. Two different experiments are presented: in the first one (light grey), we let the
data impose the detection rate; in the second one (white), we tried to get a higher detection rate.
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ABSTRACT

Multiple flow regimes are reexamined in a global, three-level, quasigeostrophic (QG3) model with realistic
topography in spherical geometry. This QG3 model, using a T21 triangular truncation in the horizontal, has a
fairly realistic climatology for Northern Hemisphere winter and exhibits multiple regimes that resemble those
found in atmospheric observations. Four regimes are robust to changes in the classification method, k-means
versus mixture modeling, and its parameters. These regimes correspond roughly to opposite phases of the Arctic
Oscillation (AO) and the North Atlantic Oscillation (NAO), respectively.

The Markov chain representation of regime transitions is refined here by finding the preferred transition paths
in a three-dimensional (3D) subspace of the model’s phase space. Preferred transitions occur from the positive
phase of the NAO (NAO�) to that of the AO (AO�), from AO� to NAO�, and from NAO� to NAO�, but not
directly between opposite phases of the AO. The angular probability density function (PDF) of the regime exits
that correspond to these preferred transitions have one or, sometimes, two fairly sharp maxima. These angular
PDF maxima are, in most cases, not aligned with the line segments between regime centroids in phase space
and might point to heteroclinic or homoclinic connections between unstable equilibria in the model’s phase
space. Preferred transitions paths are also determined for a stochastically forced Lorenz system to help explain
this striking feature of the QG3 model.

The episodic description of the model’s low-frequency variability via the Markov chain of multiple regimes
is complemented by an oscillatory description. Multichannel singular-spectrum analysis is applied to the trajectory
in the same 3D subspace. Two statistically significant oscillations are found and have periods of 19 and 37 days,
respectively. Both oscillations have four composites that include NAO�, AO�, and NAO�, in this order. The
fourth composite occurs between AO� and NAO�; it resembles the Pacific–North American pattern, which is
not captured by the model’s episodic description. The two oscillations have similar spatial patterns, and are
weakly phased locked. They have certain features in common with the westward-propagating Branstator–Kushnir
wave, as well as with the standing oscillation that arises from the oscillatory topographic instability of Ghil and
associates.

1. Introduction and motivation

Numerous studies of atmospheric observations have
shown that low-frequency variability (LFV) is charac-
terized by the existence of large-scale persistent and
recurrent flow patterns, also called weather regimes.
Weather regimes can be objectively identified in model
results, as well as in observations, using various clas-
sification or clustering methods (see Table 1 in Ghil and
Robertson 2002). The dominant regimes of Northern
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Laboratoire de Météorologie Dynamique, Ecole Normale Supérieure,
Paris, France.

Corresponding author address: Dr. Dmitri Kondrashov, Depart-
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E-mail: dkondras@atmos.ucla.edu

Hemisphere (NH) wintertime circulation are most often
identified as the Pacific–North American (PNA) pattern,
the reverse PNA (RNA), the North Atlantic Oscillation
(NAO), and the Arctic Oscillation (AO). The positive
and negative phases of the NAO correspond to zonal
and blocked flow in the Atlantic sector, in the same way
the PNA and RNA do so over the Pacific sector of the
NH. The AO (Thompson and Wallace 1998; Wallace
2000) is a hemispheric, annular mode that has been
strongly associated with the sectorial NAO.

Marshall and Molteni (1993) introduced a spectral,
three-level, quasigeostrophic (QG3) model in spherical
geometry and showed that it has a fairly realistic NH
winter climatology; it also exhibits multiple weather re-
gimes that resemble those found in observations. These
authors computed so-called neutral vectors that have the
smallest time derivative, by linearizing the model’s
equations around its mean state. These neutral vectors
were shown to be associated with the subspace of the
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system’s phase space in which two quasi-stationary
states are located. The long-time integration of the full
QG3 model with a specially chosen forcing generated
weather regimes similar to those defined by the neutral
vectors.

The QG3 model has been widely used for studies of
NH atmospheric LFV. Corti et al. (1997) analyzed lead-
ing NH teleconnections patterns and blocking from a
long run of the QG3 model. The forcing sources in this
run were computed using the European Centre for Me-
dium-Range Weather Forecasts (ECMWF) objective
analyses of the streamfunction field in wintertime and
the condition of zero tendency for the potential vorticity.
The model reproduced the observed wintertime mean
state, as well as low-frequency and high-frequency var-
iations of the atmospheric streamfunction field. Both the
PNA and the NAO patterns were realistically simulated;
the statistics of blocking frequency and duration in the
Euro-Atlantic and Pacific sectors compared also rea-
sonably well with the observations. Molteni and Corti
(1998) investigated the dynamical origin of long-term
variations in the statistical properties of the QG3
model’s LFV.

D’Andrea and Vautard (2001) and D’Andrea (2002)
analyzed the correspondence between global quasi-sta-
tionary states found in a low-order model and the QG3
model’s weather regimes, as identified by cluster anal-
ysis. Their low-order model was constructed by pro-
jecting the equations on a few leading EOFs of the QG3
model. These authors found the flow-dependent param-
eterization of a closure term to be essential for the good
performance of their low-order model. Given such a
closure, approximate correspondence between the QG3
weather regimes and quasi-stationary states of the low-
order model was obtained.

Extended-range weather prediction depends in a cru-
cial way on skill at forecasting the duration of a regime
event or other persistent anomaly, which is under way
at initial forecast time, and the subsequent onset of an-
other persistent anomaly, after the break of the current
one (Ghil 1987). We use the QG3 model to address
extended-range predictability in terms of the multiple-
regime paradigm (Ghil and Robertson 2002). Our main
purpose is to describe more precisely the preferred tran-
sition paths between regimes.

In section 2, the model is described briefly. In section
3, we identify robust weather regimes by two indepen-
dent clustering methods, k-means (Michelangeli et al.
1995) and Gaussian mixture modeling (Smyth et al.
1999). In section 4, we show that highly significant
transitions take place along preferred paths in a low-
dimensional phase space. For better understanding, we
also examine in the appendix the preferred transitions
paths in a stochastically forced Lorenz (1963a) system;
in this case, the paths can be fully explained using
known dynamical properties of the underlying nonlinear
system.

In section 5 we complement the episodic description

of the model’s LFV, as given in sections 3 and 4, by an
oscillatory one: multichannel singular-spectrum analy-
sis is used to identify intraseasonal oscillations and con-
nect them with the Markov chain of transitions between
regimes. In section 6, we argue that the preferred tran-
sitions paths demonstrated in the QG3 model suggest
that a similar analysis of numerical weather prediction
models could help forecast regime breaks and subse-
quent onsets. To do so would require an efficiently de-
signed observational system that is able to track spatial
signatures of regime transitions.

2. Atmospheric model

The global model of Marshall and Molteni (1993) is
governed by the equations for conservation of potential
vorticity at the 200-, 500-, and 800-hPa pressure levels,
written in shorthand notation as

�q
� �J(�, q) � D(�) � S, (1)

�t

where t is time; � is the streamfunction; q the potential
vorticity; J the quadratic Jacobian operator; and D rep-
resents linear dissipation, in particular Newtonian cool-
ing, Ekman dissipation on the 800-hPa wind, and hy-
perviscosity. The drag coefficients depend on the nature
of the underlying surface. The model uses an expansion
in spherical harmonics with a triangular truncation of
T21 and realistic topography. The gridpoint values of
the topography and sea–land mask represent averages
over areas of 1000 km2.

Equation (1) is forced by time-independent, but spa-
tially varying sources S of potential vorticity. These
sources represent the average effects of diabatic heating
and advection by divergent flow, and are determined
from a condition requiring that, for a given climatolog-
ical dataset of observed fields, the time derivatives of
vorticity vanish. The dataset of observed fields is given
by ECMWF analyses of the streamfunction field at the
three levels of the QG3 model, for the two winter
months January and February, from 1984 to 1992. With
this forcing, the QG3 model reproduces the observed
climatology of the underlying dataset, as well as pro-
viding good simulations of wintertime midlatitude var-
iability. Marshall and Molteni (1993) and Corti et al.
(1997) provide details of the model and of its perfor-
mance.

3. Cluster analysis

The dataset for this analysis was obtained from a
54 000-day perpetual-winter simulation of our QG3
model. In order to examine robust features of the mod-
el’s phase-space structure, it is necessary to reduce the
dataset’s dimensionality. For this purpose, we apply
empirical orthogonal function (EOF) analysis to the
unfiltered 500-hPa-level streamfunction anomalies in
the model’s NH. The anomaly field is sampled once a
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TABLE 1. Classifiability index of the k-means algorithm: k is the
prescribed number of clusters, while d is the number of the EOFs
retained for the analysis.

k � 3 k � 4 k � 5

d � 2
d � 3
d � 4
d � 5

1.000
1.000
1.000
1.000

0.973
1.000
1.000
1.000

1.000
1.000
0.819
0.807

TABLE 2. Cross-validated log-likelihood for 18 000 data points,
using only the first third of the full dataset: the lower the absolute
value of this score, the more likely the corresponding k value is for
a given d.

k � 1 k � 2 k � 3 k � 4 k � 5

d � 2
d � 3
d � 4
d � 5

�22 770
�31 839
�40 445
�48 342

�22 296
�31 314
�39 889
�47 737

�22 255
�31 274
�39 836
�47 682

�22 248
�31 233
�39 815
�47 681

�22 245
�31 233
�39 821
�47 687

TABLE 3. Cross-validated log-likelihood for the entire set of 54 000 data points.

k � 1 k � 2 k � 3 k � 4 k � 5

d � 2
d � 3
d � 4

�67 749
�94 685

�120 233

�66 396
�93 114

�118 494

�66 286
�92 926

�118 311

�66 226
�92 823

�118 158

�66 214
�92 760

�118 113

day and the data points are weighted by the cosine of
their latitude.

The spatial patterns of the leading EOFs (not shown)
are similar to those obtained by Corti et al. (1997) and
by D’Andrea and Vautard (2001). The 10 leading EOFs
are responsible for 51% of the variance of the dataset:
the first mode captures 12.5%, the second one 6.5%, the
third one 5.2%, and the tenth one 3.1%. There is a slight
break of slope in the variance curve after EOF-4, with
the following eigenvalues forming a rather flat spec-
trum; the cumulative variance captured by the leading
four EOFs equals 29%. Analyzing the streamfunction
fields at the 250- and 800-hPa levels (not shown) reveals
very similar leading EOF patterns; this similarity in-
dicates a predominantly barotropic structure of the mod-
el’s LFV, captured by the leading EOFs of the unfiltered
data, with a finer structure present at the lower pressure
level.

In order to objectively identify weather regimes in
the QG3 model simulation, we apply two independent
clustering methods (see Table 1 of Ghil and Robertson
2002) and compare the results. One method uses the k-
means algorithm of Michelangeli et al. (1995) and the
other uses the Gaussian mixture model of Smyth et al.
(1999). Both these studies applied their respective meth-
ods to the classification of NH weather regimes in ob-
served geopotential height fields.

For a given number d of leading EOFs, both methods
provide a number of clusters k and the cluster centroids
in a d-dimensional subspace of the model’s phase space.
We want each cluster to correspond to a weather regime
of the QG3. Therefore, it is critical for our study to
optimize the classification into clusters over various sub-
spaces. The number of EOFs d and clusters k can be
used as parameters to measure the robustness of the
classification, along with diagnosing the similarity of
the patterns themselves.

The k-means algorithm is based on the dynamic clus-
ter method and formulated as follows. Given a pre-
scribed number k of clusters in a d-dimensional space,
it attempts to find an optimal partition of the data into

the k clusters that minimizes the sum of the variances
within each cluster. A data point belongs to a cluster if
its distance to the cluster centroid is less than one stan-
dard deviation of all distances within a cluster. In order
to determine the optimal k, Michelangeli et al. (1995)
proposed the use of a classifiability index. This index
measures the stability of the cluster solutions as a func-
tion of k, across different initial (random) seeds of the
algorithm, based on the correlation between the cluster
centroids. Table 1 gives the classifiability index of our
QG3 model simulation for 2 � d � 5. Clearly, it is very
high for both k � 3 and k � 4; it follows that, based
on this classifiability index alone, we cannot identify
the optimal set of clusters in the QG3 model.

The Gaussian mixture model uses a linear combi-
nation of k Gaussian density functions, and differs from
the k-means algorithm in the following two important
aspects. First, each data point in the d-dimensional space
can have a degree of membership in several clusters,
depending on its position with respect to the centroid
and the weight of a cluster (Smyth et al. 1999; Hand et
al. 2001). Second, the mixture model has a built-in cri-
terion for determining the optimal number of clusters
supported by the data. This criterion is based on the
cross-validated log-likelihood, shown in Table 2: the
higher its algebraic value for a given dimension d, the
more likely it is that k is the correct number of clusters
for that d.

The mixture model consistently gives log-likelihood
curves that saturate at k � 3 and have a very weak
maximum. Thus, we can choose either k � 4 or k � 5
as the optimal number of clusters, according to this meth-
od. Hannachi and O’Neill (2001) found that when the
data are not Gaussian, the mixture model tends to overfit
them, so that the apparently optimal number of clusters
increases with the length of the dataset. This seems to
be the case here, too. In fact, when using 54 000 data
points (see Table 3), rather than the 18 000 points of Table
2, the cross-validated log-likelihood curves have a ten-
dency to saturate at higher values of k.



1 MARCH 2004 571K O N D R A S H O V E T A L .

TABLE 4. Correlation coefficients between pairs of clusters given
by the mixture model, on the one hand, and k-means clusters, on the
other, when retaining k clusters: (a) k � 3, (b) k � 4, and (c) k �
5. In each case, correlations are given for the pairs identified by best
visual match, and 1 � n � k.

(a) n � 1 n � 2 n � 3

d � 2
d � 3
d � 4
d � 5

0.999
0.996
0.996
0.992

0.995
0.995
0.994
0.990

0.993
0.993
0.994
0.986

(b) n � 1 n � 2 n � 3 n � 4

d � 2
d � 3
d � 4
d � 5

0.991
0.997
0.997
0.996

0.959
0.986
0.996
0.994

0.947
0.982
0.995
0.991

0.913
0.970
0.989
0.985

(c) n � 1 n � 2 n � 3 n � 4 n � 5

d � 2
d � 3
d � 4
d � 5

0.993
0.994
0.999
0.999

0.993
0.990
0.998
0.997

0.980
0.925
0.996
0.993

0.969
0.919
0.979
0.990

0.954
0.628
0.949
0.882

FIG. 1. PDF of the QG3 model’s 500-hPa streamfunction field, as
estimated by the mixture model for d � 3 and k � 4. The PDF is
projected onto the plane spanned by (a) PC 1 and PC 2 and (b) PC
1 and PC 3; 20 contour levels are used. The heavy ellipses correspond
to semiaxes equal to 0.75� in each principal direction, while the light
ones correspond to 1.25�. Arrows indicate the preferred transition
paths obtained in section 4b. The mixture model centroids have the
following coordinates: NAO� � (�0.44, 0.75, �0.09), NAO� �
(�0.10, �0.31, �0.46), AO� � (�0.71, �0.23, 0.29), and AO� �
(1.14, �0.03, 0.25).

Since the cross-validated log-likelihood of Smyth et
al. (1999) supports both k � 4 and k � 5, while the
classifiability index of Michelangeli et al. (1995) sup-
ports either k � 3 and k � 4, we compare the anomaly
maps of the centroids produced by both methods (see,
e.g., Table 2 in Robertson and Ghil 1999) in order to
choose the optimal number of clusters. To do so, we
compute the pattern correlation coefficients of the clus-
ter centroids in physical space for pairs of visually sim-
ilar streamfunction anomaly maps produced by the two
clustering methods and compare the results for different
values of k. We obtain the maps that correspond to the
cluster centroids in the d-dimensional subspace by com-
puting the EOF expansion of the 500-hPa streamfunc-
tion field, that is the QG3 model’s second level, trun-
cated at a particular value of d.

Table 4 shows the correlation coefficients between
corresponding pairs of clusters obtained from either
method. Agreement between the two methods is very
good for all values of d when using k � 4 (Table 4b),
while for k � 5 (Table 4c) we find that only four of the
clusters correlate well. The numerical correlation values
are as good or better when using k � 3 (Table 4a); in
this case, however, the actual patterns (not shown) do
not match as well as those that were identified in pre-
vious work by other methods and from actual obser-
vational datasets as dominating NH LFV [see also the
discussion in Smyth et al. (1999) and Ghil and Rob-
ertson (2002)].

Therefore, we choose k � 4 as the optimal set of
clusters for our QG3 model. The probability density
function (PDF) based on the mixture model for d � 3
and k � 4 is shown in Fig. 1, in the phase plane spanned
by principal components (PCs) 1 and 2 (Fig. 1a), and
by PCs 1 and 3 (Fig. 1b). All PCs are normalized by
the standard deviation of PC 1. The coordinates of the

cluster centroids for d � 3 are given in the figure cap-
tion; in higher dimensions (d � 4) they are very close
to zero, which leads us to choose d � 3 for analyzing
cluster properties. The size of the clusters is set by
choosing a covariance ellipsoid around each cluster cen-
troid.

Figure 1 shows the clusters’ complex three-dimen-
sional (3D) structure given semiaxes of the ellipsoid
that correspond in length to 0.75 (heavy) and 1.25 (light)
times the standard deviation in each direction. The
names of the clusters are chosen based on the maps of
the centroids, which will be discussed next. The arrows
in Fig. 1 are projections of vectors that lie along pre-
ferred transitions paths between regimes and will be
discussed in section 4.

The anomaly maps of the 500-hPa streamfunction
centroids shown in Fig. 1 are plotted in Fig. 2. Cluster
AO� (Fig. 2d) occupies a distinct region on the PDF
ridge that stretches along PC 1, while clusters NAO�,
NAO�, and AO� are located around the global PDF
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FIG. 2. Mixture model centroids for d � 3 and k � 4, showing streamfunction anomaly maps at 500
hPa: (a) NAO�, (b) NAO�, (c) AO�, and (d) AO�. Negative contours are dashed and land masses are
shaded; twenty contour levels between maximum and minimum values are used, with the following intervals
(in 106 m2 s�1): (a) 1.1, (b) 0.8, (c) 0.8, and (d) 1.1.

maximum. Cluster NAO� (Fig. 2a) is shifted away from
the origin along PC 2, while clusters AO� (Fig. 2c) and
NAO� (Fig. 2b) are shifted away from the PC-1 axis,
in opposite directions with respect to PC 3.

Each of the regimes in Fig. 2 represents, roughly, one
of the opposite phases of two spatial patterns. The maps
in Figs. 2a and 2b capture the two extreme phases of
the NAO, with the pattern in Fig. 2a completing a wave-
number-3 pattern outside the Atlantic sector. The maps
in Figs. 2c and 2d have a large central anomaly that
extends over the whole Arctic and a pronounced zonally
symmetric component. The two maps thus have im-
portant features in common with the opposite phases of
the AO (Thompson and Wallace 1998) and with Mo and
Ghil’s (1988) north–south seesaw, while Fig. 2d also
exhibits a substantial wavenumber-4 component.

We denoted these four regimes, therefore, by NAO�

(Fig. 2a) and NAO� (Fig. 2b), AO� (Fig. 2c), and AO�

(Fig. 2d). The spatial patterns in Fig. 2 resemble well
four of the five clusters found by D’Andrea and Vautard
(2001) in the QG3 model, by using the k-means method.

We recall that NAO� and NAO� correspond to the zonal
and blocked phases of the jet in the western North At-
lantic, while AO� and AO� are composites of hemi-
spherically high-index and low-index flow (in the sense
used by J. Namias, C.-G. Rossby, and H. Willet in the
1950s). The lack of symmetry between NAO� and
NAO�, as well as between AO� and AO�, points to
the potentially nonlinear origin of these regimes.

4. Markov chain of transitions

a. Transition probability matrix

Given the clustering results of section 3, we proceed
now to the main part of this study, namely, investigating
in detail the Markov chain of transitions between the
four regimes. In a d-dimensional subspace of the
model’s phase space, each weather regime is defined by
the ellipsoid of covariance around the centroid, whose
semiaxes equal the corresponding singular values, that
is, the square roots of the eigenvalues of the covariance
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TABLE 5. Regime statistics for different cluster sizes. The cluster
size is determined by the scaling factor of the standard deviation �
along each semimajor axis.

Size NAO� NAO� AO� AO� Total

0.75�

1.25�

Events
Days
Events
Days

908
1602
1970
5248

1137
2030
2375
6956

1026
1930
2319
6740

673
1322
1665
5603

3744
6884
8329

24 547

FIG. 3. Distribution of cumulative residence time (solid lines) in the model’s regimes for cluster
sizes of 0.75� and 1.25�, where � refers to the standard deviation of each regime, along each
semimajor axis (omitting subscripts). Dashed lines correspond to one standard deviation, above and
below the mean of the residence time distribution, within a population of 100 red-noise surrogate
data samples (see text for details). (a)–(d) The four regimes shown in Figs. 1 and 2.

matrix of each Gaussian component (or a fixed multiple
thereof; see Fig. 1). A data point is assigned to a weather
regime if it lies within the corresponding ellipsoid. If a
data point belongs to several ellipsoids, we assign it to
a cluster according to the maximum probability value
found from the mixture model. We can vary the size of
all four ellipsoids, and therefore the number of data
points that belongs to each of the four clusters, by using
the same scaling factor along the semiaxes of all four.

A regime event is defined as the number of consec-
utive points (days) along the model trajectory that fall
within a given cluster (Mo and Ghil 1987, 1988; Kimoto
and Ghil 1993b). Table 5 shows the number of distinct
events in each regime and the total number of days spent
in the regime for scaling factors of 0.75 and 1.25. A
total number of about 25 000 days out of the entire run
of 54 000 days belong to one of the large-size clusters

(1.25�), while for the smaller clusters (0.75�) the total
regime population is of about 7000 days.

The distribution of residence times for each of the
regimes is shown in Fig. 3 (solid), together with asso-
ciated significance curves (dashed); the latter corre-
spond to one standard deviation of the residence time
distribution within a population of 100 red-noise sur-
rogate data samples (following Dole and Gordon 1983).
Each surrogate sample consists of three AR(1) time se-
ries that have the same length, variance and lag-1 au-
tocorrelation coefficient as the QG3 model’s three lead-
ing PCs; the surrogate’s regime residence time is de-
termined by the time spent by the sample trajectory in
the cluster ellipsoides of our mixture model.

The persistence distributions are exponential in na-
ture, and are similar in length and frequency of occur-
rence to those obtained by Corti et al. (1997) for the
blocking episodes. The negative slopes of the residence
curves become larger (in absolute value) and more equal
to each other as the cluster size decreases (compare the
curves for 0.75�, labeled by squares, with those for
1.25�, labeled by diamonds). For the large-size clusters
(diamonds), the low-index cluster AO� (Fig. 3d), albeit
of relatively small total size (see Table 5), is visibly
more persistent than the rest, while the sectorially zonal
cluster NAO� (Fig. 3a) is visibly less persistent. The
zonal NAO� regime is clearly less persistent than the
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TABLE 6. Transition probabilities estimated using the mixture model. Transitions that are significantly higher at the 95% level with respect
to 10 000 random shuffles of the sequence of regime events are in bold, while entries that are italicized are significantly lower at the 95%
level for the same test. The entries in the table are for clusters of size 0.75�, 1.0�, and 1.25�, in this order. Not all rows sum exactly to
1.00 because of round-off effects.

0.75�/1.00�/1.25� NAO� NAO� AO� AO�

NAO�

NAO�

AO�

AO�

0.33/0.29/0.25
0.26/0.27/0.26
0.24/0.29/0.29
0.11/0.09/0.10

0.27/0.23/0.21
0.32/0.28/0.25
0.38/0.39/0.40
0.20/0.22/0.26

0.34/0.41/0.44
0.27/0.28/0.30
0.31/0.27/0.25
0.13/0.10/0.10

0.06/0.07/0.10
0.15/0.17/0.19
0.07/0.05/0.06
0.56/0.59/0.53

corresponding AR(1) process and the blocked NAO� is
slightly more persistent (although the difference is sig-
nificant at larger durations only for 0.75�), while AO�

and AO� cannot be said to be significantly different
from the AR(1) process.

Table 6 shows transition probabilities between the
clusters using the sequence of regime events along the
trajectory. Note that when a trajectory exits a particular
cluster, defined by the mixture modeling approach (as
in Fig. 1), it may cross a ‘‘fuzzy’’ region of phase space,
populated by data points that are not classified, before
it ends up inside another cluster or the same one. Self-
transitions are also counted, in addition to those that
lead to another cluster, for computing transition prob-
abilities between clusters.

Monte Carlo simulation was applied to provide a sta-
tistical significance test for the elements of the transition
matrix, following Vautard et al. (1990). The test is de-
signed to take into account the difference in size be-
tween regimes and uses random shuffling of the se-
quence of regime events in the model simulation, subject
to the constraint of the number of events in each regime
being fixed and equal to the one in Table 5. The tran-
sition probabilities between regimes that are higher or
lower than the Monte Carlo result at the 95% level
appear in Table 6 in bold or italics, respectively. The
results are similar (not shown) when only regime events
that last for 3 days or longer have been considered. Note
that each row in the table sums to unity, for all three
cluster sizes being reported (0.75�, 1.00�, and 1.25�).

The transition probabilities and their significance are
fairly similar for the small and large clusters. The fact
that there are more reentries for smaller-size clusters is
entirely expected, since events of a given length are
more likely to be erroneously ‘‘chopped up’’ into two
or more events that belong to the same cluster, when
its size is smaller; this finding merely suggests, there-
fore, that 1.25� is a somewhat better choice of scaling
factor than 0.75� or 1.00�. All but one of the transitions
were found to be significantly different from a random
shuffle for the largest clusters. The AO� regime has a
higher reinjection rate than the other three regimes, in-
dependently of scaling factor. By the previous reasoning
about reentries and cluster size, this scale independence
of its higher reinjection rate agrees with AO� having
the highest persistence (see Fig. 3d).

Taking the highest transition probability, excluding

reentries, in every row, we obtain the preferential cycle
of transitions: NAO� → AO� → NAO� → NAO�; the
only disagreement between the estimates obtained with
different scaling factors for this cycle is for the leg
NAO� → NAO� and so we have selected the transition
for which all three estimates agree. A second cycle that
is apparent only for 1.0� and 1.25� is AO� ↔ NAO�.
Transitions from each of the three regimes that have a
small or negative PC-1 component to AO� are unlikely
by themselves but, taken together, they obviously add
up to the low-index hemispheric regime AO� being
reachable from the higher-index part of the phase space.
Direct transitions between AO� and AO� are very un-
likely for all cluster sizes considered.

It is clear from this examination of the transition prob-
ability matrix that the model’s LFV is quite nonlinear,
with direct transition from the zonal to the blocked phase
of the NAO, NAO� to NAO�, as well as between the
high- and low-index phases of the AO, AO� to AO� or
vice-versa, being quite unlikely. This agrees with the
conclusions drawn from such transition matrices for NH
observations by Mo and Ghil (1988) and Kimoto and
Ghil (1993b). Given the model’s degree of realism, on
the one hand, and much greater availability of data
points, on the other, we are thus motivated to explore
certain details of its trajectory in phase space.

b. Preferred transition paths

To do so, we compute the exit angle from its regime
for each events. When the model trajectory exits a clus-
ter, we determine the phase space coordinates (x, y, z)
of the exit point, which is defined as the midpoint be-
tween two consecutive trajectory points that lie on op-
posite sides of the cluster boundary. The exit vector is
then defined to point from the cluster centroid to the
exit point. In the 3D subspace spanned by EOFs 1, 2,
and 3, with coordinates (x, y, z), each exit vector is
uniquely defined by two angles: tan� � y/x, 0 � � �
2	, and tan
 � z/(x2 � y2), � 	/2 � 
 � 	/2.

We then compute two-dimensional (2D) PDF distri-
butions of the exit angles in the (�, 
) coordinates for
all of the regime events using a Gaussian kernel esti-
mator (Silverman 1986). This estimator approximates a
PDF by assigning a localized kernel density function of
a given shape (Gaussian in our case) to each data point.
The PDF estimate at any point in phase space is then
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FIG. 4. Two-dimensional (2D) PDF of regime
exit angles for the largest-size clusters: (a)
NAO� → AO�, (b) NAO� → AO�, (c) NAO�

→ AO�, (d) AO� → NAO�, and (e) AO� →
NAO�. Asterisks correspond to the straight line
that connects the two cluster centroids in ques-
tion, filled circles correspond to the vectors de-
termined by the composite transition patterns in
Fig. 5, and filled triangles correspond to global
PDF maxima, while open triangles mark strong
secondary maxima. The contour interval for all
panels is equal to 0.2 in nondimensional units.
For economy of space, the scaling along the ab-
scissa (� axis) is twice that along the ordinate
(
 axis).

given by the sum of these kernel density functions. We
use the data-adaptive version of the kernel estimator
(Kimoto and Ghil 1993a) and modify it to account for
the periodic nature of the PDF in the � direction. The
PDFs so obtained are too noisy for smaller-size clusters
(0.75� and 1.00�), due to the small number of regime
events. We show therefore in Fig. 4 only the exit-angle
PDFs for the largest-size clusters (1.25�), a choice that
is also consistent with the earlier argument in section
4a on this size being less subject to reentries. The global
PDF maxima in Fig. 4 are indicated by filled triangles,
while open triangles mark strong secondary maxima,
asterisks correspond to the straight line that connects
the two cluster centroids in question, and filled circles
correspond to the transition vectors determined by the

transition patterns (see below).
Inspection of Fig. 4 demonstrates that most of the

highly significant transitions (see again Table 6) occur
along one or two narrow solid angles in phase space.
For example, the NAO� to AO� and NAO� to NAO�

transitions (Figs. 4a,b) have a narrow double peak in
the PDF distribution, while the NAO� to AO� transition
(Fig. 4c) has a single narrow maximum. The transitions
from AO� to NAO� and AO� to NAO� (Figs. 4d,e),
while still highly significant, are not quite as sharply
confined in this angular PDF. As expected from the con-
clusions of section 4a, the preferred directions of tran-
sition lean away from the straight line that connects the
cluster centroids. To examine more closely the possible
connections between a model’s nonlinear dynamics and
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FIG. 5. Spatial transitions patterns: (a) NAO� →
AO�, (b) NAO� → AO�, (c) NAO� → AO�, (d)
AO� → NAO�, and (e) AO� → NAO�. Ten con-
tour levels are used between maximum and mini-
mum values, with the following intervals (in 106

m2 s�1): (a) 1.0, (b) 1.3, (c) 1.0, (d) 1.1, and (e)
1.1.

its preferred regime transition angles, we study these
connections for the Lorenz (1963a) system in the ap-
pendix.

From the example of the Lorenz model we conclude
that the observed maxima in the PDF distributions of
the regime exit angles in our QG3 model are likely to
be determined by the dynamical properties of the un-
derlying nonlinear system of equations. These properties
include the linearly stable and unstable directions of the
steady states, as well as genuinely nonlinear, finite-am-

plitude behavior away from these steady states. Unlike
in the Lorenz model, a distinct feature of both the NAO�

→ AO� and NAO� → NAO� transitions is the ap-
pearance of a double peak in the exit-angle PDFs (see
Figs. 4a,b). Such fine details of the regime transitions
are being further examined in a nonlinear, stochastically
forced system of 15 ordinary differential equations that
represents a low-order version of the QG3 model (D.
Kondrashov et al. 2003, unpublished manuscript).

The spatial patterns associated with the preferred tran-
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sition paths are shown in Fig. 5. These patterns corre-
spond to ‘‘second-order anomalies,’’ that is, to devia-
tions from the cluster centroids in a preferred direction
of transition. For any transition in Fig. 4, we compute
a composite anomaly map of the exit points from the
regime, and then subtract from it the anomaly map of
the cluster centroid. The patterns so obtained are robust
with respect to cluster size and the length of the sim-
ulated dataset (not shown). These patterns are signifi-
cantly different from those obtained by just taking the
differences between the cluster centroids: compare the
position of the filled circles with that of the asterisks in
Figs. 4a–d. Also, the patterns for transitions back and
forth between a pair of clusters are strongly anticorre-
lated but the correlation is significantly distinct from
�1.0; thus, for NAO� ↔ AO�, it is �0.53, while for
AO� ↔ NAO�, it is �0.62.

The transitions between NAO� and AO� and back
(Figs. 5a,e) exhibit both a strong SW–NE-oriented di-
pole, extending over much of the central North Pacific
and Gulf of Alaska. Those between NAO� and AO�

share a strong, N–S-oriented dipole (with opposite po-
larities, obviously, in Figs. 5c and 5d) but the transition
in Fig. 5c also has a strong feature in the central North
Pacific, which Fig. 5d lacks. Finally, the NAO� →
NAO� transition (Fig. 5b) is characterized by a wave
train across North America that suggests a downstream
influence of the Rockies (Kalnay-Rivas and Merkine
1981).

The projection of these transition patterns on the three
leading EOFs determines the preferred transition vectors
indicated by arrows in Fig. 1; the magnitude of these
vectors, though, is not related to velocity in phase space
and thus gives no indication on the rapidity of the cor-
responding regime break. The relative direction of the
arrows is consistent with the correlation coefficients be-
tween the patterns: for example the arrows that corre-
spond to the back-and-forth transitions between the pairs
NAO� ↔ AO� and AO� ↔ NAO� are almost at right
angles to each other in Fig. 1a, in both cases. Note that
this agreement is not self-evident, since the pattern cor-
relations are computed in the full physical space, while
the arrows correspond to projections onto a low-di-
mensional subspace.

5. Intraseasonal oscillations

In sections 3 and 4, we have provided an episodic
description of the model’s LFV, based on the Markov
chain of transitions between its four regimes. Given the
overall realism of the model’s LFV, it seems appropriate
to complement this description, if possible, with an os-
cillatory one that uses unstable limit cycles to describe
the preferred trajectories in the model’s phase space.

Advanced spectral methods (Ghil et al. 2002) permit
the statistically reliable identification and description of
the least unstable limit cycles (see, in particular, Fig. 1
there). We apply singular spectrum analysis (SSA) to

study the model’s intraseasonal oscillations and attempt
to connect them with the statistically significant closed
cycle NAO� → AO� → NAO� → NAO� in regime
transitions. Multichannel SSA (M-SSA) generalizes sin-
gle-channel SSA to extract oscillatory modes of vari-
ability from a multivariate time series and is especially
useful in the study of amplitude- and phase-modulated
signals. Keppenne and Ghil (1993) and Plaut and Vau-
tard (1994), among others, have applied M-SSA to iso-
late oscillatory components in observations of atmo-
spheric LFV.

We apply M-SSA to the three leading PCs of the 500-
hPa streamfunction anomalies of our model integration,
{Xl(t): t � 1, . . . , N}, with N � 54 000. The choice
of three channels, 1 � l � L � 3, is based on the
conclusions of section 3, where we found d � 3 to be
the optimal dimension of the subspace in which to com-
pare the results of our two clustering methods. The no-
tation here follows Ghil et al. (2002; see, in particular,
Table 1 there) and we use the trajectory matrix approach
of Broomhead and King (1986a,b), to compute the lag-
covariance matrix.

The multichannel trajectory matrix X is formed by first
augmenting each channel Xl(t) of the vector time series
X(t) with M lagged copies of itself, to yield Xl(t). The
full augmented trajectory matrix is then given by

X � (X , X , . . . , X ).1 2 L (2)

The window width M determines the range of oscillation
periods to be detected; to encompass the full range of
intraseasonal oscillations, we have used values of M up
to and including 100 days. The grand lag-covariance
matrix CX is given by

1
TC � X X, (3)X N�

where N� � N � M � 1.
The eigenvectors of the matrix CX are known as

space–time EOFs (ST-EOFs). The associated space–
time PCs (ST-PCs) are single-channel time series that
are computed by projecting X onto the ST-EOFs. M-
SSA identifies an oscillation in the multivariate time
series when two consecutive eigenvalues of CX (ordered
by size) are nearly equal, the corresponding ST-EOFs
are periodic, with the same period and in quadrature,
and the associated ST-PCs are in quadrature as well.
Following Allen and Robertson (1996) we apply, in ad-
dition to the criteria above, a Monte Carlo test to as-
certain the statistical significance of the oscillations de-
tected by M-SSA.

Figure 6 shows the eigenvalues obtained by M-SSA
with a window width of M � 100 days; these equal the
variances associated with the corresponding eigenmode.
The two arrows in Fig. 6 point to the M-SSA modes
8–9 and 15–16, which form two significant oscillatory
pairs, with a period of 37 and 19 days, respectively. In
addition, these pairs pass the lag-correlation test (not
shown) of Plaut and Vautard (1994): on both sides of
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FIG. 6. Singular spectrum obtained by M-SSA of our model’s 54 000-day model integration, in a
3D subspace. Filled circles show M-SSA eigenvalues, plotted against the dominant frequency associated
with the corresponding space–time PCs. Arrows indicate two significant pairs with periods of 19 and
37 days, respectively; note that the two circles in either pair are almost indistinguishable. The confidence
intervals correspond to the 5% and 95% percentiles of 100 Monte Carlo simulations of a red-noise
process with the same length, variance and lag-one autocorrelation as the model time series being
tested; see text and section 4.2 of Ghil et al. (2002) for details.

lag 0, the two successive extrema of the lag-autocor-
relation of the corresponding ST-PCs exceed 0.5 in ab-
solute value. The reconstructed components (RCs) of
the 8–9 and 15–16 pairs describe the unstable limit cycle
associated with the corresponding pair in the reduced
phase space.

We analyze the behavior of the oscillation by using
composite maps keyed to the phases of the oscillation,
as in Plaut and Vautard (1994). Figures 7a–d show four
successive, equally populated composites that corre-
spond to one half-cycle of the 37-day oscillation. The
cycle of regime transitions NAO� → AO� → NAO� is
easily identified. After passing through the NAO� (Fig.
7a) and AO� (Fig. 7b) phases, however, the next phase
of the oscillation resembles the PNA pattern (Fig. 7c),
before reaching the NAO� phase (Fig. 7d).

There is a certain similarity between some phases of
this oscillation and certain phases of the westward-prop-
agating Branstator (1987)–Kushnir (1987) wave, as doc-
umented also by Dickey et al. (1991), Ghil and Mo
(1991), and Plaut and Vautard (1994); see especially
Fig. 5 of Branstator (1987). There are also marked dif-
ferences, however, such as the 37-day period here versus
that wave’s period of 23–25 days, and the very pro-
nounced features of Fig. 7 in the North Atlantic–Eu-
ropean sector. We constructed therefore a movie (not

shown, but available upon request from the correspond-
ing author; also see our Web site http://www.atmos.
ucla.edu/tcd), based on 100 composite maps of the cy-
cle, rather than the eight composites for the full cycle
used to construct Fig. 7.

The movie makes it clear that the 37-day cycle here
is mainly a standing oscillation, with occasional north-
eastward propagation of certain features. In particular
it shows strong interaction between the Rockies, on the
one hand, and a low and a high that switch places in a
counterclockwise fashion between lying upstream and
downstream of this mountain range, on the other. The
period and standing features of this oscillation, as well
as its interaction with the Rockies, resemble certain
characteristics of the oscillatory topographic instability
of Ghil and associates (Legras and Ghil 1985; Ghil
1987; Ghil and Mo 1991; Ghil et al. 1991; Ghil and
Robertson 2002).

Phase composites of the 19-day oscillation (not
shown) are almost identical to Figs. 7a–d. This simi-
larity in spatial patterns, as well as the ratio between
the periods of the oscillations being so close to 2, make
one suspect that they are related as (sub-) harmonics of
each other. Following Plaut and Vautard (1994) and Koo
et al. (2002), we calculated the histogram of simulta-
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FIG. 7. Phase composites of the 37-day oscillatory mode, as given by the RCs 8 and 9 of the M-SSA.
The phase angle � in the plane spanned by the sum of RCs 8 and 9, on the one hand, and by the derivative
of this time series, on the other, is obtained for each day t of the simulation; the circle (0, 2	) in this plane
is then subdivided into eight equally populated arcs of circle, each containing 6750 points [RC-8 � RC-
9, 
(RC-8 � RC-9)] with �(t) inside that arc. (a)–(d) Four composite maps of all the days t that fall within
four such successive arcs; (a)–(d) shown thus cover one-half of the oscillation cycle, while the four additional
panels (not shown) have very similar patterns, with the sign reversed. The composite maps are those of
streamfunction anomalies at 500 hPa, as in Fig. 2, with the same plotting conventions and contour intervals.

neous phase occurrences of the two oscillations. This
calculation shows that they are weakly phase-locked to
each other; that is, they appear to be so when the cal-
culation is done for certain window widths.

Another possible connection between the episodic
and oscillatory description of preferred trajectories in
phase space is to determine the average time taken by
the model to complete the Markov-chain cycle NAO�

→ AO� → NAO� → NAO�. As suggested by Fig. 1
in Ghil et al. (2002), we computed this average only for
those segments of trajectory that actually complete such
a cycle by starting in one of these three regimes, passing
through the other two in succession, and returning to
the starting regime. The average cycle period computed
in this way equals approximately 19 days, which is con-
sistent with the shorter period of oscillation detected by
M-SSA.

Legras and Ghil (1985) highlighted the slowing down
of trajectories near unstable equilibria. Following this
suggestion, Vautard (1990) used trajectory speeds as
clustering criteria in observational data, while Mukou-
gawa (1988) and Vautard and Legras (1988) used them
in intermediate models of lesser complexity than the
present ones; see also Table 1 in Ghil and Robertson
(2002). We want to know, therefore, whether there is a
systematic connection between any of the regimes and
the slow phases of the oscillations described by M-SSA.

To investigate this connection, if any, we compute
the velocity in the reduced phase space spanned by the
three leading EOFs, along the trajectory of RCs 8–9,
during a particular 100-day-long oscillatory spell. The
velocity components are obtained by central differenc-
ing the time series for each of the three channels in the
RCs. Figures 8a–c display the three velocity compo-
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FIG. 8. Phase velocity in a space of three leading EOFs along the trajectory of RCs 8–9 and
15–16 during two high-amplitude oscillatory spells: (a), (b), (c) three velocity components
(nondimensional units); (d) absolute value for RCs 8–9; (e)–(h) the corresponding figures for
RCs 15–16. Symbols mark the clusters that the trajectory traverses at that moment.

nents, and Fig. 8d presents the speed. Likewise, the three
velocity components and the speed for a 150-day-long
oscillatory spell with a 19-day period (RCs 15–16) are
plotted in Figs. 8e–h.

Each velocity component is highly periodic, with the
periods of 37 and 19 days, respectively, and the speed
goes through phases of significant acceleration and de-
celeration. The period of the speed (Figs. 8d,h) seems
to equal half the period of the velocity components, in
the case of both unstable orbits. Alternate minima of
the speed are associated with NAO� and AO�, for the
39-day cycle (Fig. 8d), as well as for the 19-day cycle
(Fig. 8h).

6. Concluding remarks

a. Summary

We have examined the low-frequency variability
(LFV) of the NH midlatitude atmosphere in the inter-
mediate-complexity QG3 model of Marshall and Mol-
teni (1993). The model is based on the QG equations
for the conservation of potential vorticity and it has three
levels in the vertical and T21 truncation in the horizontal
(see section 2.) Using fairly realistic topography, land–
sea contrast and residual forcing (see Corti et al. 1997),
it produces respectable climatology and LFV.
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FIG. 8. (Continued)

1) MARKOV CHAIN

We analyzed a 54 000-day-long perpetual-winter in-
tegration of this model from the point of view of coarse-
graining its phase space (Ghil 1987; Haines 1994; Ghil
and Robertson 2002). The first step in this approach is
to verify the presence of clusters in the dataset that
corresponds to multiple weather regimes. These repre-
sent, in principle, regions of higher probability density
function (PDF) on the model’s attractor.

Using both the k-means method of Michelangeli et
al. (1995) and the Gaussian mixture modeling of Smyth
et al. (1999), and optimizing the result with respect to
both methods (see Tables 1–4 here and Robertson and
Ghil 1999), we obtained four NH clusters (Fig. 1) in
the subspace of the four leading EOFs of the simula-
tion’s 500-hPa streamfunction field. The projections of
the cluster centroids of the fourth and subsequent EOFs

are very small and so the remainder of the analysis was
carried out in a 3D subspace (see Fig. 1).

The four clusters (see Fig. 2) are NAO� and NAO�,
that is, the zonal and blocked phases of the North At-
lantic Oscillation (NAO), and AO� and AO�, that is,
the high- and low-index phases of the Arctic Oscillation
(AO). These four regimes are not identical to but in
fairly good conceptual agreement with the observational
results of Cheng and Wallace (1993), using hierarchical
clustering, and those of Smyth et al. (1999), using a
Gaussian mixture model for a slightly different NH da-
taset.

As discussed by Smyth et al. (1999) and Ghil and
Robertson (2002), the four regimes that are best sup-
ported by synoptic experience, as well as statistical anal-
ysis of the upper-air data for the past half-century, are
the zonal and blocked phases of westerly flow in the
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Atlantic–Eurasian and Pacific–North American (PNA)
sector, respectively. Seeing the PNA-sector patterns re-
placed in our classification by the hemispheric AO� and
AO� ones is thus not too surprising: the latter two over-
lap largely in the Atlantic–Eurasian sector with NAO�

and NAO�, respectively, from which they differ mostly
by very strong centers of action in the PNA sector (see
again Fig. 2).

The second step in the multiple-regime approach to
LFV is to determine the Markov chain of transitions
between regimes (Ghil 1987; Mo and Ghil 1988; Mol-
teni et al. 1990; Kimoto and Ghil 1993b). In the lan-
guage of dynamical systems theory, this corresponds to
a particular representation of the ‘‘skeleton of the at-
tractor,’’ which we take here to mean its most interesting
and robust part.

To get the most reliable results for the transition prob-
abilities from this long run, we used ellipsoidal clusters
based on the Gaussian mixture model that had semiaxes
ranging from 0.75� to 1.25�, with � the variance in the
corresponding principal direction (see Fig. 1 and Tables
5 and 6). Transitions were evaluated for significance
with respect to statistical testing for fixed-size ellipsoids
at the 95% level, as well as by comparing results ob-
tained with different-size clusters. Excepting self-tran-
sitions, we found five transitions to be highly significant
(see Table 6): NAO� → AO�, NAO� → NAO�, AO�

→ NAO�, AO� → NAO�, and NAO� → AO�; the
first three were significant independently of cluster size,
the last two only for larger clusters (1.25�).

These five significant transitions can be organized
into two cycles. The first one, NAO� → AO� → NAO�

→ NAO�, is significant at the 95% level, independently
of cluster size. The second one, AO� ↔ NAO� is only
so for the larger-size clusters. It is remarkable that direct
transitions between the opposite phases of the AO are
significantly unlikely, at the 95% level, independently
of cluster size. Likewise a direct transition from the
zonal NAO� to the blocked NAO� is quite unlikely (see
again Table 6). As previously argued by Mo and Ghil
(1988) and Kimoto and Ghil (1993b), based on obser-
vational data, the present model results strongly support
the nonlinear origin of these well-established NH re-
gimes.

The third step in our coarse-graining approach had
only been suggested in previous work (Ghil 1987; Ghil
and Childress 1987, section 6.4). This step consists of
examining whether there are preferential directions in
which the system’s trajectory in phase space leaves the
regimes and it has been carried out here for the first
time, to the best of our knowledge.

We performed this step in two different ways. First,
we computed, in the 3D subspace spanned by the
model’s three leading EOFs, the exit PDF on the unit
sphere around each regime centroid (shown in Fig. 4
for the larger-size clusters). The solid-angle PDFs for
all but two significant transitions exhibit one (NAO� →
AO�) or two (NAO� → AO� and NAO� → NAO�)

sharp peaks; the single peak for AO� → NAO� and the
double one for AO� → NAO� are somewhat broader
and thus the PDF maxima, while still present, are less
pronounced.

Second, we computed full-map composites of all the
regime breaks associated with the five significant tran-
sitions. To be included in such a composite, the anomaly
map has to be the midpoint between a data point on the
full phase-space trajectory that has just left a cluster and
the preceding one, just inside the cluster. The difference
between this composite exit anomaly and that of the
cluster centroid from which exit occurred is shown, for
each significant transition, in Fig. 5. It is also projected
on the three leading EOFs and then on the unit sphere
around each cluster centroid. The results are shown as
filled circles in Figs. 4a–e.

For each panel in Fig. 4 we have thus to compare
three points: the asterisk that shows the direction of the
straight line passing through the two regime centroids
involved in the transition, the filled triangle that indi-
cates the global maximum of the exit-angle PDF, and
the filled circle, as just explained. The difference in
locations between the filled circle and the filled triangle
corresponds to the fact that the former is computed using
only the values of PCs 1–3 of each map, while the latter
is based on the actual map (including, as it were, all
PCs). This difference is only sizable for Fig. 4a.

Clearly, in the case of the exit-angle PDFs with a
single sharp peak (Fig. 4c) the filled triangle marks this
peak. For the double-peaked PDFs the preferred mean
exit angle (filled circle) lies roughly between the two
peaks (Figs. 4b,e). Only for the transition AO� → NAO�

(Fig. 4e) does the straight line that passes through the
two centroids (asterisk) lie close to the preferred mean
exit angle (filled triangle or filled circle); see also Figs.
1a,b. It follows that the actual preferred paths for tran-
sitions between pairs of clusters lean overwhelmingly
away from the line segment that unites the correspond-
ing pair of centroids.

2) INTRASEASONAL OSCILLATIONS

A complementary way of describing the skeleton of
our model’s attractor is by using the least-unstable pe-
riodic orbits (Ott et al. 1994, and references therein).
We carried out multichannel SSA (M-SSA) of the
54 000-day-long trajectory (Plaut and Vautard 1994;
Ghil et al. 2002) in the same subspace spanned by the
three leading EOFs as for the Markov chain. Two pairs
of oscillatory modes are statistically significant at the
95% level (Fig. 6); they have periods of 37 days (modes
8–9) and 19 days (modes 15–16). The spatial patterns
associated with a half-cycle of the 37-day oscillation
are shown in Fig. 7; they are NAO� → AO� → PNA
→ NAO�. The Markov-chain cycle NAO� → AO� →
NAO� → NAO� thus appears embedded in the 37-day
oscillation.

In fact, the average time taken by all the trajectory
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segments that complete the above cycle of three resi-
dence times in NAO�, AO�, and NAO�, as well as the
three transitions indicated, equals about 19 days. The
composite patterns for the 19-day oscillation resemble
very well those of the Fig. 7, but the two oscillations
do not seem to be phase locked.

The spatiotemporal patterns of the oscillations present
certain similarities with the Branstator (1987)–Kushnir
(1987) wave, on the one hand, and the oscillatory to-
pographic instability of Ghil and associates (Ghil 1987;
Ghil and Robertson 2002, and further references
therein), on the other. A closer evaluation of these sim-
ilarities, as well as of the differences, goes beyond the
purpose of the present paper.

b. Discussion

The preferred transition paths between the two re-
gimes found in a stochastically forced Lorenz (1963a)
model (see Figs. 9 and 10) also point away from the
line segment uniting the two centroids. In this simple
case, the dynamic cause of this statistical result is well
known: it is associated with the geometry of the unstable
and stable manifolds of the original, deterministic model
version’s unstable fixed points (Guckenheimer and
Holmes 1983; Ghil and Childress 1987, section 5.4) and
with the fact that the deformation of these manifolds,
as model parameters change, leads to the existence of
hetero- and homoclinic ‘‘explosions’’ (Sparrow 1982)
that generate its deterministic chaos. The stochastic
forcing (Sutera 1980) merely plays the role of the small-
scale, high-frequency components of the QG3 model
and smears out the PDF associated with the determin-
istic Lorenz model’s chaotic behavior.

Hetero- and homoclinic orbits are well understood to
play a major role in the nonlinear behavior of dynamical
systems in general, in spite of their elusiveness (Wiggins
1988). A homoclinic orbit arises when a fixed point’s
unstable manifold returns as its stable manifold. A het-
eroclinic connection involves the unstable manifold of
a fixed point becoming the stable manifold of another
fixed point. The importance of such orbits in the irreg-
ular behavior of atmospheric and oceanic models, and
maybe of the actual atmosphere and oceans, has recently
been discussed more widely. We sketch, therefore, a
brief history of these applications and how it might
relate to the results of this paper.

Lorenz (1963b) was the first, to the best of our knowl-
edge, to mention the potential role of a heteroclinic orbit
in transition to chaos for an atmospheric model. Ghil
and Childress (1987, sections 5.3 and 5.5) discussed at
length this role in connection with the Shilnikov (1965)
‘‘route to chaos.’’ These authors also discussed, at some
length, the role of unstable equilibria and a homoclinic
orbit (see Fig. 6.12 and section 6.4 there) in the genesis
of regimes, as well as in their persistence, slow onset,
and rapid break. Both hetero- and homoclinic orbits are
hard to compute exactly, because of their existence at

isolated parameter values only. Still, they can strongly
influence the behavior of the system at neighboring pa-
rameter values. A simple illustration is given in Ghil
and Childress (1987, Fig. 12.10 and section 12.2) for
an oscillatory paleoclimate model.

Kimoto and Ghil (1993b) and Weeks et al. (1997)
mentioned the possible role of a heteroclinic orbit in
giving rise to regime transitions. Hetero- and homoclinic
orbits were shown to play an important role in the in-
terannual and interdecadal LFV of the midlatitude
ocean’s wind-driven circulation (Meacham 2000; Chang
et al. 2001; Nadiga and Luce 2001; Simmonet et al.
2003a,b). Crommelin (2002, 2003) explored in detail
the role of such orbits in a low-order and an interme-
diate-order model of the extratropical atmosphere, re-
spectively.

It is plausible that the statistically significant transi-
tions between our model’s four regimes are related to
the presence, at nearby parameter values, of heteroclinic
connections between unstable fixed points that lie near
the cluster centroids. This conjecture is supported by
the results of D’Andrea and Vautard (2001) and
D’Andrea (2002), who found a good correspondence
between their low-order model’s quasi-stationary states
and the QG3 model’s regimes. The presence of hetero-
clinic connections is especially likely in the case of the
transitions that lean quite noticeably away from the
straight-line segments between pairs of centroids. Work
in progress (D. Kondrashov et al. 2003, unpublished
manuscript) using a lower-order, stochastically forced
model is pursuing further the possible connections be-
tween preferred transitions and nonlinear dynamics in
the QG3 model.

The model’s closed Markov chain cycle and its 37-
day oscillatory mode both exhibit composite 500-hPa
maps that resemble the NAO�, AO�, and NAO� spatial
patterns in this order. This strong similarity is another
illustration of the interesting, but elusive, relationship
between the episodic, multiple-regime description of at-
mospheric LFV and the oscillatory one, based on in-
traseasonal oscillations (Kimoto and Ghil 1993b; Plaut
and Vautard 1994; Ghil and Robertson 2002; Koo and
Ghil 2002). It is quite possible, although still to be con-
firmed (see the previous paragraph), that these three
regimes, all of which lie in the PC-1 � 0 half of the
model’s phase space, are connected by heteroclinic or-
bits. Not all three of these need coexist at exactly the
same set of parameter values; it suffices that the appro-
priate parameter values lie close to each other and to
those that are most realistic for matching the model
behavior to NH atmospheric LFV.

Last, but not least, the original motivation for un-
dertaking this study was our interest in exploiting sat-
ellite data, including satellite images, for the early iden-
tification of regime breaks. The preferred transition pat-
terns shown in Figs. 5a–e have synoptic features that
are easily identifiable and can foretell an abrupt break
in a given regime, while the day’s map lies still within
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FIG. A1. PDF distribution of the stochastically perturbed Lorenz
model, as estimated by a mixture model with k � 2, projected onto
(a) the (X, Y ) plane and (b) the (X, Z ) plane. All three time series
have been normalized by the standard deviation of X (t) and filled
circles correspond to the two unstable steady states W1 and W2 (see
text for details). Contours as in Fig. 1 and the heavy solid ellipses
correspond to 1.0�. Arrows indicate the preferred transition paths
obtained by the method described in section 4b.

a fairly small distance of that regime’s centroid. This
identification might be done numerically, within the
evolution of an operational forecast-analysis cycle that
uses an advanced numerical weather prediction model.

It might also be possible to identify these transition
patterns by using directly advanced image processing
methods on cloud imagery or other fields produced by
satellite-based instruments, with or without the use of
model assimilation of these fields. It is true that spatio-
temporal LFV patterns captured in observational data-
sets only reflect a few tens of percent of the total var-
iance of the data (Kimoto and Ghil 1993a,b; Brunet
1994). Still, advanced data mining and knowledge dis-
covery tools from computer science and nonparametric
statistics (Hand et al. 2001) can help extract this infor-
mation from the high level of weather noise, due to its
regularities in space or time.
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APPENDIX

Regime Transition Angles in the Lorenz Model

The Lorenz (1963a) system of three coupled, nonlin-
ear, ordinary differential equations is obtained by spec-
tral truncation of the Boussinesq equations for 2D Ray-
leigh–Bénard convection. We use this system subject to
stochastic forcing, following Sutera (1980):

Ẋ � �sX � sY � �, (A1a)

Ẏ � �XZ � rX � Y � �, (A1b)

Ż � XY � bZ � �, (A1c)

where � is a white-noise process (see below). In the
original Lorenz system (for � � 0) the parameters s �
10, r � 28, and b � 8/3 lead to chaotic internal vari-
ability caused by the system’s instabilities and nonlin-
earity (see also Guckenheimer and Holmes 1983; Ghil
and Ghildress 1987).

There are two unstable steady states at W1 � (6 ,�2
6 , 27) and W2 � (�6 , �6 , 27). Each of these�2 �2 �2
states is stable in one direction, and unstable in the other
two. The third steady state W0 � (0, 0, 0) is stable along

the Z axis and in one additional direction, and unstable
in the third. Due to the oscillatory instability of W1 and
W2, the trajectories spiral out around either one of these
two points with increasing amplitude. As each such spi-
ral reaches a threshold value imposed by the system’s
quadratic nonlinearity, it leaves the neighborhood of the
unstable point it started from, crosses near the axis of
mirror symmetry given by X � Y � 0, and lands near
the opposite unstable point. This behavior then repeats
itself in the opposite direction so that the trajectory
switches irregularly from the neighborhood of W1 to that
of W2 and back. These repetitions occur irregularly in
time and give rise to two regimes in the Lorenz system,
each of which consists of the spiral segments of orbit
around W1 and W2, respectively.

To make the analogy with the QG3 model more re-
alistic, we stochastically force the Lorenz system with
a white-noise term � � �(t), having variance � 2.2��

This forcing provides a crude approximation of the ef-
fect of the smaller scales and higher frequencies on the
LFV of the QG3 model and the atmosphere. More pre-
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FIG. A2. PDF distribution of regime exit angles for the Lorenz model’s two clusters. Asterisks correspond
to the line connecting the cluster centroids, and filled triangles correspond to PDF maxima.

cisely, we transform the system (A1) into its proper
stochastic differential form:

dX � f(X)dt � � d�,� (A2)

where X � (X, Y, Z)T, and f is the nonlinear, deter-
ministic right-hand side of (A1), while �(t) is the ap-
propriate Wiener process whose ‘‘derivative’’ is the
white noise �(t). We use a Euler scheme with a time
step of 0.01 (Kloeden and Platen 1992) to obtain a long

realization of the stochastic process governed by (A2)
for 50 000 time steps.

The strong non-Gaussian nature of the Lorenz at-
tractor leads to a systematic bias toward a higher number
of clusters when a cross-validated log-likelihood pro-
cedure is used (Hannachi and O’Neill 2001). Since we
know already the true equations generating the data and
the regimes in our system, we apply the mixture model
with two clusters to the time series of (X, Y, Z). In the
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original Lorenz system (� � 0) the trajectories are bound
away from the points W1 and W2 at this value of s, r,
and b. Stochastic forcing fills in these gaps, as seen in
Figs. A1a,b of the mixture model’s PDF, projected on
the X–Y and X–Z planes, respectively. The arrows in
Fig. A1 are projections of vectors that lie along preferred
transition paths between regimes that are obtained by
the same method as described in section 4.

The regime exit angles � and 
 and their PDF dis-
tributions for the Lorenz system’s two clusters are com-
puted with the same procedure as for the QG3 model,
and the results are shown in Fig. A2. The locations of
the two sharp maxima are explained by the orbit’s cross-
ing from one regime into the other in the vicinity of the
Z axis. When the orbit’s projection on the X–Y plane
spirals out within one of the clusters, it approaches the
origin along the stable direction of the W0 state; this
direction does not coincide with the straight line that
passes through W1 and W2. The orbit then leaves the
neighborhood of the origin along the unstable direction
of the W0 state, thus entering the other cluster. The val-
ues of � at the PDF maxima are therefore higher than
the value that corresponds to the W1 → W2 line segment.
The negative but small value of 
 at the PDF maximum
is caused by the orbit proceeding in the negative direc-
tion along the Z axis while exiting either cluster.

Ideally, the symmetry of the dynamics about the Z
axis should lead to the symmetry of the exit-angle PDF
between the two regimes; this symmetry would imply
that Figs. A2a and A2b should be identical, modulo a
shift of 	 in the � direction. The length of the dataset
here, however, has been chosen to match approximately
the length of the QG3 model integration, in appropriate
units. Therefore the mismatch between Figs. A2a and
A2b gives an idea of the sampling-error effect in Figs.
4a–e.

The connection between the detailed geometry of re-
gime transitions in the Lorenz model, as captured in
Figs. A1 and A2, and the structure of the stable and
unstable manifolds of the unstable fixed points W0, W1,
and W2 should be apparent by inspecting Figs. 5.10 and
5.11 of Ghil and Ghildress (1987). Sparrow (1982) has
investigated thoroughly the role of homoclinic and het-
eroclinic orbits that arise from these manifolds, given
changes in the Lorenz (1963a) model’s parameters s, r,
and b, in generating the model’s chaotic behavior.
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