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Abstract. The spherical block model is used to study dynamics and seismicity of the

global system of tectonic plates by means of numerical simulation. A brief description

of the model and its different modifications (with and without discretization of segments

by depth) is presented. Results of numerical experiments include the qualitative informa-

tion on displacements of plates, and on the character of their interaction along bound-

aries. Synthetic earthquake catalogs reveal some patterns of observed seismicity. Model

frequency-magnitude cumulative (FM) plots are approximately linear on definite magni-

tude intervals. The analysis of numerical simulations shows the dependence of synthetic

seismic properties on model parameters. Future studies directed to improvement of the

model and numerical algorithms are outlined.
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1 Introduction

Study of seismicity with the statistical and phenomenological analysis of real earth-

quake catalogs has the disadvantage that the reliable data cover is, in general, a

time interval of about one hundred years or less. This time interval is very short

in comparison with the duration of tectonic processes responsible for the seismic

activity. Therefore, the patterns of the earthquake occurrence identifiable in a real

catalog may be only apparent and may not repeat in the future. In this connection,

mathematical models of seismicity, i.e., of earthquake sequences, are important tools

that yield synthetic catalogs, which may cover very long time interval that allows

us to acquire a more reliable estimation of the parameters of seismic flow and to

search for premonitory patterns preceding large events. The model should be ade-

quate in the sense that it reproduces properties of observed seismicity (primarily the

Gutenberg-Richter law on frequency-magnitude (FM) relation, migration of events,

seismic cycle and so on). Only then it is possible to use a synthetic catalog, a result

of numerical simulation, for obtaining some estimates of the characteristics of an

earthquake flow.

The present paper continues the investigations of Melnikova et al. (2000) and

Rozenberg et al. (2005), who described in detail an approach to the construction
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of the spherical modification of the block model and the first results of simulation

of dynamics both of a relatively small and global systems of tectonic plates. In the

existing block models, a seismically active region is represented as a system of rigid

blocks that form a layer of a fixed thickness between two horizontal planes or concen-

tric spheres. Lateral boundaries of the blocks consist of segments of infinitely thin

plane faults. The system of blocks moves as a consequence of the prescribed motion

of the boundary blocks and of the underlying medium. The displacement of a block

may be described by three parameters (the so called two-dimensional model) as well

as by six parameters (the three-dimensional model). The displacements of blocks

at any point in time are defined so that the system is in a quasi-static equilibrium

state. Because the blocks are perfectly rigid, all deformations take place in the fault

zones and at the block bottoms. The interaction between the blocks is visco-elastic

(a “normal state”), so long as the ratio of the stress to the pressure is below a certain

strength level. When this level is exceeded in some part of a fault, a stress-drop (a

“failure”) occurs in accordance with the dry friction model. The failures represent

earthquakes. Immediately following the earthquake for some period of time, the

corresponding parts of the faults are in a “creep state”. This state differs from the

normal one because of the more rapid growth of inelastic displacements and con-

tinues until the stress falls below a given level. A synthetic earthquake catalog is

produced as a result of the numerical modeling. The information on displacements

of blocks and their interaction along boundaries is obtained. A detailed description

of block models is given, e.g., in Gabrielov et al. (1986), Soloviev and Maksimov

(2001), and Soloviev and Ismail-Zadeh (2003).

The two-dimensional plane block model has been the most extensively studied.

Models approximating the dynamics of lithosphere blocks of real seismic regions have

been built on its basis (e.g., Sobolev et al., 1999; Soloviev and Ismail-Zadeh, 2003). It

has been used to study the dependence of properties of seismic flow on the geometry

of faults and specific motions (e.g., Keilis-Borok et al., 1997; Rundquist and Soloviev,

1999). In the three-dimensional plane model (Rozenberg and Soloviev, 1997), a

vertical component of displacements has been taken into account introducing three
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additional degrees of freedom. The spherical geometry (Melnikova et al., 2000;

Rozenberg et al., 2005) has been involved after significant distortions were revealed,

while trying to simulate the motion of a system of global tectonic plates with plane

block models.

In this paper, the emphasis is on discussing the results of simulating the dynamics

of the global system of tectonic plates by means of different modifications of the

spherical block model. In addition, directions for future investigations are outlined.

2 Brief description of the model

Let us briefly describe the basic constructions of the spherical block model.

2.1 Block structure geometry, block motion

A spherical layer of a depth H bounded by two concentric spheres is considered.

The outer sphere represents the Earth’s surface and the inner one represents the

boundary between the lithosphere and the mantle. A block structure is a limited

and simply connected part of this layer (see Fig. 1).

Figure 1: A model block structure on the sphere.
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Partition of the structure into blocks is defined by faults intersecting the layer.

Each fault is a part of a cone surface characterized by the following two properties.

Firstly, the intersection of the fault with the outer sphere (a fault line) is an arc

of a great circle; the direction is specified for the fault line. Secondly, a vertex of

the cone lies on a straight line, which is perpendicular to the great circle plane and

passes through the center of the sphere. For such a definition of a fault, its dip angle

with the outer sphere has the same value at all points of the fault line. We denote

the dip angle (measured to the left of the fault line) as α. Thus, the geometry of

a block structure is described by a system of the fault lines on the outer sphere

enclosing the layer, and by dip angles. Faults intersect along curves, which meet the

outer and inner spheres at points called vertices. A part of such a curve between two

respective vertices is called a rib. Fragments of faults limited by two adjacent ribs are

called segments. The common parts of blocks with the limiting spheres are spherical

polygons, those on the inner sphere are called bottoms. The block structure may be

a part of the spherical shell and be bordered by boundary blocks, which are adjacent

to boundary segments. Another possibility is to consider the structure including the

whole spherical shell (covering the whole surface of the Earth) without boundary

blocks. It should be noted that the possibility of considering the closed structure is

a peculiarity of the spherical model.

The blocks are assumed to be perfectly rigid. All block displacements are as-

sumed to be negligible, compared with block sizes. Therefore, the geometry of the

block structure does not change during the simulation, and the structure does not

move as a whole. The gravitation forces remain essentially unchanged by the block

displacements and, because the block structure is in a quasi-static equilibrium state

at the initial time moment, gravity does not cause motion of the blocks.
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All vertices on the outer sphere are defined by geographic coordinates (latitude

ϕ, and longitude ψ) in a spherical coordinate system with origin at the Earth’s

center (both this system and corresponding Cartesian system are called “System-

O”, Fig. 2).

Figure 2: System-O.

In the spherical modification, all blocks (both internal and boundary (if speci-

fied)) have six degrees of freedom and can leave the spherical surface. The displace-

ment of each block consists of translation and rotation components. The translation

component is determined by a translation vector (x, y, z). The rotation compo-

nent is described by means of three angles γ, β, λ with respect to an immovable

Cartesian coordinate system, (X, Y , Z), with the origin at the mass center of the

block, point C. The X axis is directed along the parallel (latitude), the Y axis along

the meridian (longitude), the Z axis is in the direction of the Earth’s radius vector

outwards. Denote this “System-C” (see Fig. 3).
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Figure 3: System-C.

Assume that the coordinate system with axes X1, Y1, Z1 is connected to the

mass center of the block (it coincides, in the absence of block displacements, with

the immovable system of axes X, Y , Z, in which we consider all block motions).

Rotation of the block and its corresponding system (X1, Y1, Z1) with respect to the

system (X, Y , Z) is given in Fig. 4. The first angle, γ, is defined as the angle of

rotation of axes Y and Z around axis X such that if axis Z2 is the intersection of

planes XOZ1 and Y OZ, then axis Z is mapped into axis Z2 and Y into Y2. The

second angle, β, is defined as the angle of rotation of axes X and Z2 around axis Y2

providing transformation of axis Z2 into axis Z1 (Z1 is in the plane of XOZ2) and

X into X2. And the third angle, λ, is defined as the angle of rotation of axes X2 and

Y2 around axis Z1 such that X2 and Y2 transform into X1 and Y1 correspondingly.
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Figure 4: Definition of rotation angles γ, β, and λ in System-C.

According to the definition of the rotation angles, components ∆x, ∆y and ∆z of

displacement at a block point with spherical coordinates (ϕ, ψ, r) have the following

form in System-C:

∆x = x− Ŷ λ + Ẑβ, ∆y = y + X̂λ− Ẑγ, ∆z = z − X̂β + Ŷ γ, (1)

where (x, y, z) is a block shift, (X̂, Ŷ , Ẑ) are coordinates in System-C of the vector

which is directed from the mass center of the block to the point (ϕ, ψ, r), the angles

(γ, β, λ) are assumed to be small.

2.2 Interaction between blocks, equilibrium equations

The translation vector and the angles of rotation are found from the condition that

the sum of all forces acting on the block, and the total moment of these forces,

are equal to zero at every point in time (the structure is assumed to be in a quasi-

static equilibrium state). The interaction of the blocks with the underlying medium

takes place on the inner sphere. The motions of the boundary blocks (if they are

specified) and of the underlying medium, considered as an external action on the

structure, are assumed to be known. As a rule, they are described as rotations on

the sphere, i.e., axes of rotation and angular velocities (Euler vectors) are given.
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Another possibility consists in specifying a field of velocities (by some law or point-

wise) for points belonging to the boundary blocks and/or the underlying medium.

Depending on the way of treating the depth of the spherical layer, two modifi-

cations of the model are worked out. Since this depth is significantly less than the

linear dimensions of a block structure, it seems reasonable to consider only points

belonging to a fault line on the Earth’s surface while computing the properties of

block interaction. Thus, it is assumed that all characteristics are described only by

coordinates (ϕ, ψ) and do not depend on H. This version of the model is called the

“modification without depth”. Its advantage consists in essential saving of running

time during simulations. The cons are obvious: (i) actually, dip angles are not prop-

erly taken into account; (ii) studying the mechanism of spreading an earthquake

along a fault is impossible; (iii) a range of changing the model magnitude is signifi-

cantly narrowed. That is why the second modification (“modification with depth”,

more complicated but more adequate) is designed.

Consider a point with coordinates (ϕ, ψ) belonging to some fault separating

blocks with numbers i and j, with block i on the left, and block j on the right.

Denote by ~et the unit vector tangent to the fault line at this point and directed

along the fault. Let it have coordinates ~et = (e1, e2, 0) in the rectangular coordinate

system with origin at the point (ϕ, ψ) and axes introduced analogously to those of

system-C (call it “system-P”). Define the vector ~el = (−e2 cos α, e1 cos α,− sin α),

which lies on the plane tangent to the fault’s surface at the given point and is

perpendicular to the vector ~et (α is a dip angle of the fault). Introduce also the

vector ~en = (−e2 sin α, e1 sin α, cos α) that is perpendicular to this plane. Let the

righthanded triple (~et, ~el, ~en) define the rectangular coordinate system with the origin

at the point (ϕ, ψ), “system-T”, see Fig. 5.

Let (∆r
x, ∆r

y, ∆r
z) be the vector of relative displacement of blocks at the point (ϕ,

ψ) in system-P. Components of displacement on the plane tangent to fault’s surface

at this point in system-T are correlated with ∆r
x, ∆r

y and ∆r
z as follows:

∆t = ∆r
xe1 + ∆r

ye2, ∆l = −∆r
xe2 cos α + ∆r

ye1 cos α−∆r
z sin α,

∆n = −∆r
xe2 sin α + ∆r

ye1 sin α + ∆r
z cos α.
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Figure 5: System-T.

The elastic force per unit area (ft, fl, fn) applied to the point of the fault is

defined by

ft = Kt(∆t − δt), fl = Kl(∆l − δl), fn = Kn(∆n − δn). (2)

Here, δt, δl, δn are corresponding inelastic displacements, the evolution of which is

described by the equations

dδt

dt
= Wtft,

dδl

dt
= Wlfl,

dδn

dt
= Wnfn. (3)

The coefficients Kt, Kl, Kn, Wt, Wl, and Wn in (2) and (3) may be different for

different faults.

Now, calculate the components of relative displacement, ∆r
x, ∆r

y and ∆r
z, with

the use of formulae (1). We obtain

∆r
x = ∆i

x −∆j
x, ∆r

y = ∆i
y −∆j

y, ∆r
z = ∆i

z −∆j
z, (4)

where (∆i
x, ∆i

y, ∆i
z) and (∆j

x, ∆j
y, ∆j

z) are vectors of displacement (in system-P)

of the point (ϕ, ψ) as a point of blocks i and j, respectively. In order to obtain

the components of these vectors, one should multiply the displacements in system-C

(defined by (1)) by the transformation matrix from system-C (corresponding to the

10



block) to system-P (omitted here due to length). Let us note only that in this way

one can determine the displacements both for points on any fault and on the block

bottom.

In system-P (associated with a point (ϕ, ψ) of the block bottom) the elastic force

per unit area, (fu
x , fu

y , fu
z ), is of the form:

fu
x = Ku(∆

u
x − δu

x), fu
y = Ku(∆

u
y − δu

y ), fu
z = Kn

u∆u
z , (5)

where δu
x , δu

y are the corresponding inelastic displacements, the evolution of which

is given by the equations:

dδu
x

dt
= Wuf

u
x ,

dδu
y

dt
= Wuf

u
y . (6)

It is assumed that there is no inelastic displacement in the vertical direction (along

axis z). The coefficients Ku, Kn
u , and Wu in (5) and (6) may be different for differ-

ent blocks. The vector (∆u
x, ∆

u
y , ∆

u
z ) of relative displacement of the block and the

underlying medium at the point (ϕ, ψ) considered in system-P is defined by (1) and

(4) analogous to the case of finding the displacement at a fault point.

As mentioned above, components of the translation vectors of the blocks, and

angles of their rotation around the mass centers of the blocks, are found from the

condition that the total force and the total moment of forces acting on each block

(written in system-C corresponding to the block) are equal to zero. This is the con-

dition of quasi-static equilibrium of the system, and at the same time the condition

of energy minimum.

It is important that the dependence of forces and moments on displacements

and rotations of blocks is linear. Therefore, the system of equations for determining

these values must be linear:

Aw = b. (7)

Here, the components of the unknown vector w = (w1, w2, . . . , w6n) are components

of translation vectors of blocks and angles of their rotation (n is the number of

blocks), i.e., w6m−5 = xm, w6m−4 = ym, w6m−3 = zm, w6m−2 = γm, w6m−1 = βm,

w6m = λm (m = 1, 2, . . . , n). The elements of matrix A (6n × 6n) and of vector b
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(6n) are determined from rather complicated formulae, which are deduced from (1)–

(6) with the transformation of forces and moments to system-C. For brevity sake,

these formulae are omitted here. It should be noted that the matrix A does not

depend on time and its elements are calculated only once, at the beginning of the

process. The components of vector b depend on time, explicitly, because of motions

of the underlying medium and boundary blocks and, implicitly, because of inelastic

displacements.

2.3 Discretization

The model uses dimensionless time. When interpreting the results, some realistic

value should be given to one unit of dimensionless time. For computational purposes,

time discretization is performed by introducing a time step ∆t. The state of the

block structure under consideration is determined at discrete times ti = t0 + i∆t

(i = 1, 2, . . .), where t0 is the initial time. The transformation from the state at ti

to the state at ti+1 is made as follows: (i) new values of inelastic displacements δu
x ,

δu
y , δt, δl, δn are calculated from equations (3) and (6); (ii) translation vectors and

rotation angles at ti+1 are calculated for the boundary blocks (if they are specified)

and the underlying medium; (iii) components of b in system (7) are found, and

this system is used to determine the translation vectors and rotation angles for the

blocks.

For the calculation of various curvilinear integrals, one should discretize (divide

into cells) the spherical surfaces of the block bottoms and fault segments. The

values of forces and inelastic displacements are assumed to be equal for all points of

a cell. Note that, according to the assumption, in the modification without depth

segments are not subject to discretization by depth. Another important remark is

the following: in the case when in the modification with depth we tend its value

to zero, we should not expect the closeness of simulation results to corresponding

results obtained by the modification without depth. The reason is in the essential

distinction from the “calculative viewpoint”: in the modification without depth,

curvilinear integrals over fault segments are integrals over the line of intersection

12



between the segment and the outer sphere, whereas in the modification with depth,

these integrals are taken over segment surfaces.

2.4 Earthquake and creep

For every time moment, we calculate the value of a quantity κ by the following

formula

κ =

√
f 2

t + f 2
l

P − fn

, (8)

where P is the parameter, which may be interpreted as the difference between the

lithostatic and the hydrostatic pressure (P has the same value for all faults).

For every fault, three levels of κ are specified. They satisfy the inequalities

B > Hf ≥ Hs. (9)

It is assumed that the initial conditions for numerical simulation of the block struc-

ture dynamics satisfy the inequality κ < B for all cells of the fault segments. If,

at some time ti, the value of κ in some cell of a fault segment reaches level B, a

failure (“earthquake”) occurs. By failure we mean slippage by which the inelastic

displacements δt, δl, δn in the cell change abruptly to reduce the value of κ to the

level Hf . The new values of the inelastic displacements are calculated from

δe
t = δt + γeξtft, δe

l = δl + γefl, δe
n = δn + γeξnfn, (10)

where δt, δl, δn, ft, fl, fn are the inelastic displacements and the components of the

elastic force vector per unit area just before the failure. The coefficients ξt = Kl/Kt

(ξt = 0 if Kt = 0) and ξn = Kl/Kn (ξn = 0 if Kn = 0) account for inhomogeneities of

displacements along the plane tangent to the fault (in various directions), and normal

to that plane (they account for the possibility that the same value of the elastic force

per unit area can result in different changes of different inelastic displacements). The

coefficient γe is given by

γe =

√
f 2

t + f 2
l −Hf (P − fn)

Kl

√
f 2

t + f 2
l + KnHfξnfn

. (11)
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It follows from (2) and (8) through (11) that after the calculation of new values of

the inelastic displacements and elastic forces, the value of κ in the cell is equal to Hf .

It should be noted that after the calculation according to (2) and (10), the signs of

the elastic forces must be the same as just prior to the failure. For this reason, some

cases require additional processing. Only then are the new components of vector

b computed, and the translation vectors and angles of rotation for the blocks are

found from (7). If for some cell(s) of the fault segments κ > B, the entire procedure

is repeated. This is done until all cells satisfy the condition κ < B, at which point

the state of the block structure at time ti+1 is determined as described in Section

2.3.

All cells of the same fault, in which failure occurs at the same time, are considered

as a single earthquake. The parameters of the earthquake are defined as follows: (i)

the time of the event is ti; (ii) the epicentral coordinates are the weighted sums of

the corresponding coordinates of the cells involved in the earthquake (the weight of

each cell is given by its length (in the modification without depth) or area (in the

modification with depth) divided by the sum of lengths/areas of all cells involved

in the earthquake); (iii) the magnitude is calculated in the first modification by the

formula proposed in Wells and Coppersmith (1994):

M = 1.16 lg L + 5.08, (12)

where L is the total surface rupture length of cells (in km) involved in the earthquake;

and in the second modification by the formula proposed in Utsu and Seki (1954):

M = 0.98 lg S + 3.93, (13)

where S is the total area of cells (in km2) involved in the earthquake. In the modi-

fication without depth, it is possible to attribute the same depth to all earthquakes.

An argument to use formulae (12), (13) as a definition of the model magnitude is

the fact that the energy released through an earthquake depends mainly on the total

size (area) of fault’s part covered by this earthquake.

Immediately after the earthquake, it is assumed that the failure cells are in the

creep state. This implies that, for these cells, parameters W s
t (W s

t > Wt), W s
l
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(W s
l > Wl), and W s

n (W s
n > Wn) are used instead of Wt, Wl, and Wn in equations

(3). They may be different for different faults. The failure cells are in the creep

state so long as κ > Hs; when κ ≤ Hs, the cells return to the normal state, after

which Wt, Wl, and Wn are used in (3).

Thus, a synthetic earthquake catalog is produced as a result of the simulation.

3 Numerical simulation:
modification without depth

To compare two modifications of the spherical block model, we consider results of

numerical modeling of the dynamics and seismicity of the global system of tectonic

plates. This block structure is a closed one including the whole spherical shell

(covering the whole surface of the Earth). It does not have lateral boundaries and

therefore boundary blocks are not specified for it. Previous analysis (Rozenberg et

al., 2005) proved that the dynamics and seismicity of the global system of tectonic

plates is more accurately modeled by means of the closed block structure than with

the structure for that boundary blocks are specified. Therefore, in this study we

restrict ourselves by considering the closed system of plates only. In this section, we

analyze numerical results obtained by means of the modification without depth.

Specifically, the structure contains the following plates: South America, Nazca,

Cocos, Caribbean, Africa, Arabia, Somalia, India, Philippines, Australia, North

America, Eurasia, Antarctica, Pacific, and Juan de Fuca, see Fig. 6. The struc-

ture includes 15 blocks, 186 vertices, and 199 faults. We use dip angles of faults to

consider flat gradient of subduction zones in comparison with other plate bound-

aries. Thus we specify a dip angle of 50◦ for faults corresponding to clearly observed

subduction zones (for example, at the boundary South America/Nazca; totally 26

faults) and of 90◦ for other faults. It is obvious that in the modification with-

out depth a dip angle is rather artificial characteristic of a fault. The motion of

the closed structure is caused only by the motion of the underlying medium. The

parameters of the latter are taken from the model HS2-NUVEL-1 (Gripp and Gor-
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don, 1990) with the Somalia plate added (Jestin et al., 1994). The values of the

coefficients in formulae (2), (3), (5), and (6) are specified using the experience of

the previous studies with the two-dimensional plane block models (e.g., Soloviev and

Ismail-Zadeh, 2003) and taking into account specificity of the spherical block model.

Figure 6: The global system of tectonic plates and results of simulation of the

character of plate boundaries and spatial distribution of the strongest earthquakes:

divergent plate boundaries (spreading, light shading), convergent plate boundaries

(subduction, dark shading), transform plate boundaries (sliding, toothed shading),

epicenters of model events occurred at boundaries (circles). Here and in the tables

below, the following notation for the plates is used: NA— North America, SA—

South America, N— Nazca, Af— Africa, Ca— Caribbean, Co— Cocos, P— Pacific,

S— Somalia, Ar— Arabia, E— Eurasia, I— India, An— Antarctica, Au— Australia,

Ph— Philippines, F— Juan de Fuca.

Values of the coefficients for the block bottoms are the same in all experiments

described below: Ku = 10, Kn
u = 20, Wu = 0.1. The step of space discretization

for block bottoms is equal to 0.5◦ and is not changed. In this case, the largest
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block bottom (Pacific) is divided into 90,000 cells. The step of time discretization

is also constant: ∆t = 0.01. And the coefficients for the faults are changed in the

experiments to reproduce in the model some features of observed seismicity.

Two series of experiments are carried out. The first series investigates the de-

pendence of model dynamics and seismicity on values of the model coefficients in

the equations for forces and inelastic displacements. The second series is designed to

study the influence of the space discretization step for fault segments; this parame-

ter determines the range of magnitude of model events. In all variants we examine

the parameters of the Gutenberg—Richter law for seismicity on the global scale, the

seismic flow intensity, the characteristics of the interactions between plates on the

most active seismic boundaries, and the spatial distribution of the strongest events.

Table 1: Modification without depth: variation of parameters

variant space step parameters of faults
for segments

1.1 10 km For all faults:
Kt = Kl = Kn = 0.03,
Wt = Wl = Wn = 0.01.

1.2 For faults that form boundaries Af/SA, N/P, Co/P,
south, east and north of S:
Kt = Kl = Kn = 0.001, Wt = Wl = Wn = 0.1.
For other faults:
Kt = Kl = Kn = 0.01, Wt = Wl = Wn = 0.01.

1.3 For faults that form boundaries Af/SA, N/P, Co/P,
south, east and north of S, E/NA, south of P:
Kt = Kl = Kn = 0.001, Wt = Wl = Wn = 5.
For other faults:
Kt = Kl = Kn = 0.01, Wt = Wl = Wn = 0.1.

1.4 For faults that form boundaries NA/SA, Af/SA, N/P, Co/P,
2.1 I/Au, E/NA, south of P:
2.2 4 km Kt = Kl = Kn = 0.001, Wt = Wl = Wn = 5.

For faults that form boundaries SA/An, Af/An, Af/S,
north-east of Af, south, east and north of S, south of Au:
Kt = Kl = Kn = 0.005, Wt = Wl = Wn = 1.

2.3 1 km For faults that form boundaries north of Af, north of Au,
California region:
Kt = Kl = Kn = 0.02, Wt = Wl = Wn = 0.05.
For other faults:
Kt = Kl = Kn = 0.01, Wt = Wl = Wn = 0.1.
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In the first series (Table 1, variants 1.1–1.4), we consider variants, in which co-

efficients are varied but the discretization step for fault segments is constant. All

the coefficients in the initial variant (variant 1.1) are the same for all faults. The

synthetic earthquake catalog obtained in variant 1.1 contains an exceptionally large

number of events, earthquakes occur on all segments, the spatial distribution of

epicenters does not correspond to that observed. Hence, the necessity to take into

account the characteristics of the faults and blocks (separated by them) by intro-

ducing different values of coefficients for different parts of the structure is obvious.

The changes of numerical parameters are based on observed seismicity: the coeffi-

cients Kt, Kl, Kn were decreased, and the coefficients Wt, Wl, Wn were increased for

faults with vastly low level of observed seismicity (as a rule, for faults that separate

large-scale structures); and vice versa for active faults. These changes reflect the

following considerations. First, if the same value of relative displacement of two

blocks separating by a fault zone is considered then it induces a lesser force at a

large-scale fault zone than at a small-scale one. This means that smaller values of

coefficients Kt, Kl, Kn should correspond to large-scale fault zones. Second, the rate

of growth of inelastic displacement for the same value of the force should be greater

for large-scale fault zones, which are more fragmented and, consequently, less elastic

and more viscous zones, than fault zones, separating small-scale structures. This

means that larger values of coefficients Wt, Wl, Wn should correspond to large-scale

fault zones.

Beginning from variant 1.2, the similarities between real and model data ap-

pear and improve in the following variants. Relative displacements of boundary

points (e.g., at such boundaries as South America/Nazca, Pacific/Nazca, South

America/Africa, India/Eurasia, surrounding Philippines, etc.) characterize qual-

itatively the interaction between plates along their boundaries. For variant 1.4,

this information is presented in Fig. 6, where the divergent (spreading), convergent

(subduction), and transform plate boundaries are marked. This figure shows also

the spatial distribution of the strongest model events. These locations agree in

principle with observation. A comparative analysis of the synthetic and observed
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seismicity is performed. We consider events with magnitude M ≥ 5.0 for time pe-

riod 01.01.1900–31.12.2004 without any restrictions by depth and area of location

selected from the global catalog NEIC (Global Hypocenters Data Base, 2004). Anal-

ysis of the spatial distribution of epicenters of the model events shows the most active

synthetic seismicity at such boundaries as Nazca/South America, Cocos/Caribbean,

India/Eurasia, California region, Arabia/Eurasia, south-east, east, north-east and,

especially, north of Australia, and the Philippine plate margin. The level of syn-

thetic seismicity is extremely small at such boundaries as south of Pacific plate,

Nazca/Pacific, east of Africa, India/Australia, South America/Africa.

Note that simplifications accepted in the spherical block model give no oppor-

tunity to draw conclusions on the correspondence between observed and synthetic

seismicity at any specific point or in relatively small regions. However, the cor-

respondence of seismically active and quiet zones obtained by the model and the

observed seismicity indicates a degree of adequacy of the model.

These compliances give us a possibility to pass to the analysis of parameters

of the Gutenberg—Richter law, in particular, of the slope of the FM plot, which

characterizes the ratio of the numbers of strong and weak events.

In the first series, the FM plots are constructed in steps of ∆M = 0.1 for the

same magnitude interval [6.9, 8.2] due to the coincidence of the ranges of the model

magnitude (see Table 2). Note that the slope of the FM plot for the global seismicity

observed during the period of the last 100 years is approximately equal to 1. Thus,

one can see that from variant 1.2 to 1.4 the value of this characteristic does not

approach to the observed value. However, the facts mentioned above induce us to

use the last variant of the first series (the best one in the sense of correspondence of

model interaction between blocks and spatial distribution of epicenters to real data)

as a basic one for the second series.
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Table 2: Modification without depth: numerical results

variant number of magnitude slope approximation
synthetic interval estimate error

earthquakes for approximation

1.1 191 067
1.2 93 875 [6.9,8.2] 0.425 0.029
1.3 93 124 [6.9,8.2] 0.408 0.043

1.4 = 2.1 90 052 [6.9,8.2] 0.363 0.043
2.2 137 454 [6.3,8.4] 0.517 0.200
2.3 181 788 [5.6,8.6] 0.647 0.217

Remarks.
1. All plots are approximated on specified magnitude intervals by the linear least-squares regression,

lg N = a−bM . A slope estimate for the plot is a “b-value” of corresponding regression. The average

distance between points of the plot and the line constructed is treated as an approximation error.

2. The interval of simulation is equal to 100 units of dimensionless time for all variants.

The second series (Table 1, variants 2.1–2.3) includes variants with different

discretization steps for the fault segments. Since the range of the model magnitude

is varied depending on the discretization step for the fault segments, the following

criterion is applied to specify a magnitude interval under investigation: it should

be an interval of maximal length, on which the FM plot constructed in steps of

∆M = 0.1 is “sufficiently well” approximated by the linear least-squares regression,

lg N = a − bM . Accordingly to formula (12), the low threshold for magnitudes of

earthquakes obtained in the model is determined by the minimal length of one cell

of the fault segments, which decreases when the step of discretization is decreased.

Decreasing the step of spatial discretization for the fault segments enlarges the

range of magnitudes of model events from [6.2, 8.9] for 10 km step to [5.0, 8.9] for

1 km step and, in addition, simultaneously the total number of events increases

because events of smaller magnitudes appear. However, the number of events in

the magnitude range [6.9, 8.2], which presents in all model catalogs obtained in

variants 2.1–2.3, does not change essentially. It is important that a reduced step of

discretization results in a wider magnitude interval where a more nearly linear FM

plot is constructed and in better correspondence of its slope with the observed value
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(the slope of the plots in variants 2.1–2.3 increases).

From two series of numerical experiments we conclude that the best variant with

respect to all aspects of our analysis is variant 2.3.

4 Numerical simulation:
modification with depth

In this section, we describe results of applying the modification with depth to model-

ing dynamics and seismicity of the global system of tectonic plates. Since this block

structure is in detail described in the previous section, recall only that it includes

15 blocks, 186 vertices, and 199 faults. Existing version of the model operates with

the same depth for all blocks.

As a basic variant, we choose variant 2.3 from Table 1, since it is the best one

with respect to all aspects of our analysis. The parameters that are not changed in

experiments described below (except angles) are presented in Table 3.

Table 3: Modification with depth: basic parameters

discretization parameters of faults
and depth

time step For faults that form boundaries
— 0.01; NA/SA, Af/SA, N/P, Co/P, I/Au, E/NA, south of P:
space step: Kt = Kl = Kn = 0.001, Wt = Wl = Wn = 5.
for segments For faults that form boundaries
— 1 km, SA/An, Af/An, Af/S, north-east of Af,
for block bottoms south, east and north of S, south of Au:
— 0.5◦; Kt = Kl = Kn = 0.005, Wt = Wl = Wn = 1.
layer’s depth For faults that form boundaries
— 40 km. north of Af, north of Au, California region:

Kt = Kl = Kn = 0.02, Wt = Wl = Wn = 0.05.
For other faults:
Kt = Kl = Kn = 0.01, Wt = Wl = Wn = 0.1.
For faults corresponding to subduction zones (26 faults)
dip angles are equal to 50◦.
For other faults
dip angles are equal to 90◦.
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Let us pass to the description of simulation results. Three series of experiments

are carried out. The first series (Table 4, variants 3.1–3.4) investigates the depen-

dence of model dynamics and seismicity on the value of the step of discretization

of segments by depth (all other parameters including dip angles (their influence

on simulation results essentially increases for the modification with depth) are the

same). The second series (Table 4, variants 4.1–4.3) is designed to study the impact

of faults’ dip angles. Third one (Table 4, variants 5.1–5.4) repeats the first series but

the best variant of the second series is chosen as a base. Again, as in the previous

section, we examine the parameters of the Gutenberg—Richter law for seismicity on

the global scale, the seismic flow intensity, etc.

Table 4: Modification with depth: numerical results

variant step of number of slope approximation
discretization synthetic estimate error

by depth earthquakes

3.1 40 km 97 148 0.692 0.115
3.2 20 km 116 596 0.620 0.096
3.3 8 km 150 202 0.677 0.233
3.4 4 km 177 321 0.742 0.149

4.1 = 3.3 8 km 150 202 0.677 0.233
4.2 8 km 208 235 0.737 0.273
4.3 8 km 376 425 0.903 0.163
5.1 40 km 258 507 0.879 0.166
5.2 20 km 306 271 0.900 0.219

5.3 = 4.3 8 km 376 425 0.903 0.163
5.4 4 km 431 818 0.905 0.152

Remarks.
1. All plots are approximated on specified magnitude intervals by the linear least-squares regression,

lg N = a−bM . A slope estimate for the plot is a “b-value” of corresponding regression. The average

distance between points of the plot and the line constructed is treated as an approximation error.

2. In variants 4.2, 4.3 dip angles being equal to 90◦ in the first series are substituted for 75◦ and

105◦ (depending on fault’s direction) in such a way: for 26 faults adjacent to subduction zones in

variant 4.2, and for almost all faults in variant 4.3 (angles being equal to 50◦ are not changed).

3. The interval of simulation is equal to 100 units of dimensionless time for all variants.

4. The magnitude interval for the plot is equal to [6.0, 8.0] for all variants.

As one would expect, the characteristics of the interactions between plates on
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seismic boundaries, and the spatial distribution of the strongest events correspond

to the real data and do not have principal distinctions in all variants. Parameters

inspiring interest are presented in Table 4.

Analyzing the data from Table 4, we may point out the following facts. Simula-

tion results obtained in variants 3.1–3.4 do not allow us to assert that there exists

a definite dependence of the slope of the FM plot on the value of the step of dis-

cretization of segments by depth in the case when the majority of faults have got

dip angles of 90◦. In addition, the slopes of the model FM plots in these variants

are rather far from 1. It is likely that the matter is in the fact that failures occur

simultaneously in cells belonging to faults with dip angles of 90◦. Therefore, strong

events prevail over others, the FM plot is more gently sloping, and the influence of

the step of discretization by depth is vague.

The situation in variants 4.1–4.3 is quite different: we observe the essential

expansion of range of changing model magnitude and the “improvement” of the

slope estimate for the model FM plot. This happens chiefly because of cells of a

fault with dip angle different from 90◦ come to “critical” state at different time

instants (see Fig. 7); and, as a consequence, we have got a greater number of weak

events.

The best correspondence of the slope estimate for the model FM plot to the

real b-value for the global seismicity in the second series is obtained for variant 4.3.

Namely for this variant the value of the step of discretization of segments by depth

is varied in the third series (variants 5.1–5.4). It is easily seen that in this series the

slope estimate for the model FM plot tends to 1 (although very slowly). This fact

points out an essential distinction in the properties of model seismicity in the cases

when dip angles are equal to 90◦ and are not.
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Figure 7: State of cells belonging to a fault with dip angle different from 90◦ (bound-

ary South America/Nazca).

The analysis of results obtained in three series leads to the conclusion that the

shape of the model FM plot is to a greater degree determined by dip angles of

faults in comparison with the value of the step of discretization of segments by

depth. Indeed, decreasing of this value influences the intensity of the flow of model

earthquakes but does not result in changes of the number of events in a magnitude

interval common for all model catalogs. The total number of earthquakes increases

due to appearance of weak events of lesser magnitudes defined by minimal area of

a cell; at that the slope is slightly varied. Figs. 8 and 9 confirm these conclusions.

One can see from Fig. 8 that plot (5) constructed for the best variant obtained

by the modification without depth has got two rather clear (in comparison with

other plots) linear parts with different slopes; the intermediate zone between these

parts is observed nearby magnitude point M = 7.0. Such bend of shape of the FM

plot may be explained as follows: it reflects transition from earthquakes involving

whole “short” segments to earthquakes involving whole “long” segments. When

taking into account layer’s depth, such clear bend is not observed since new cells

afford more uniform filling of the magnitude range of model events. In addition, the
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change of the slope of plot (5) in the vicinity of maximal magnitude is sharper; it is

a consequence of abnormally large number of strong events.

Figure 8: The model FM plots constructed for variants 3.1–3.4 from Table 4 ((1)–(4),

respectively) and variant 2.3 from Table 1; N is accumulated number of earthquakes,

M is magnitude.

To compare the model and real data, the FM plots for synthetic seismicity in

variants 3.3, 4.3, and that for observed seismicity are given in Fig. 9. The observed

FM plot is constructed for earthquakes selected from the global catalog NEIC (events

with magnitude not less than 5.0 for time period 01.01.1900–31.12.2004 without any

restrictions by depth and area of location).

For the model plots in Fig. 9, there exist magnitude intervals where these plots

are nearly linear. But they essentially differ from the real one, especially in the do-

main of small magnitudes; it is therefore necessary to increase the number of weak

events in the model. Toward this end, we plan to carry out a number of simulations

with different parameters of the underlying medium, and the dependence of proper-

ties of a synthetic catalog on these parameters determining coupling between blocks

and the underlying medium will be investigated.
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Figure 9: The FM plots constructed for the real (1) and synthetic ((2)— variant 3.3,

(3)— variant 4.3, Table 4) catalogs; N is accumulated number of earthquakes, M is

magnitude.

Studying the shape and slope of the model FM plots shows that the results

obtained by the modification with depth look more adequate than those in the

case of the modification without depth. Additional comparative analysis of two

modifications are carried out for the purpose of establishing the relation between

model (dimensionless) and real time intervals. Relative velocities of displacements

of characteristic points at plate boundaries obtained in the spherical block model

are analyzed and compared with those given by the model HS2-Nuvel-1 (Gripp and

Gordon, 1990). The results are presented in Table 5.

Taking into account the quantitative behavior of displacements of points, we

conclude that the unit of dimensionless model time corresponds to about 1 year

for both modifications. It is clear that this conjecture requires careful verification,

first, by further comparative analysis of real and model catalogs, and second, by

study of the impact of model parameters on the period between strong events in

different regions. Another obvious conclusion that can be derived from Table 5 is
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that the velocities of relative displacements of boundary points in the modification

with depth is much more close to HS2-Nuvel-1 velocities than in the modification

without depth.

Table 5: Velocities of relative displacement of boundary points: (1)— in the model

of plate motion HS2-Nuvel-1 (cm/year); (2)— in the modification without depth

(variant 1.4, Table 1, cm/100 units of dimensionless time); (3)— in the modification

with depth (variant 4.3, Table 4, cm/100 units of dimensionless time)

point coordinates block variant (1) variant (2) variant (3)

latitude longitude I II ∆x1 ∆y1 ∆x2 ∆y2 ∆x3 ∆y3
∆x1

∆y1

∆x2

∆y2

∆x3

∆y3

|~v2|
|~v1|

|~v3|
|~v1|

-21.71 -71.44 SA N 7.8 1.8 775 210 813 182 4.33 3.69 4.47 100.4 104.1
-9.63 -13.25 SA Af 3.2 0.7 327 63 340 72 4.57 5.19 4.72 100.9 105.3
11.19 -89.11 Ca Co 3.75 7.01 319 504 374 700 0.53 0.63 0.53 75.0 99.8
-18.58 -112.63 P N 14.3 -3.3 1490 -269 1507 -344 -4.33 -5.54 -4.38 103.0 105.2
14.18 52.60 S Ar 0.56 1.8 59 120 56 180 0.31 0.49 0.31 71.1 100.3
28.11 84.84 E I 1.2 4.9 107 458 121 490 0.24 0.23 0.25 94.1 100.9
-49.85 130.44 An Au 0.86 7.26 80 692 87 726 0.12 0.12 0.12 95.4 100.2
-7.00 149.62 P Au 10.14 3.26 991 303 1014 326 3.10 3.27 3.11 97.8 100.0
29.15 130.59 E Ph -4.0 3.2 -410 311 -406 328 -1.25 -1.32 -1.24 100.9 102.3
36.89 -119.87 NA P -2.68 3.84 -268 368 -268 383 -0.70 -0.73 -0.70 96.9 99.4

Remark. The coordinate system, in which relative displacements of a boundary point is considered,

is connected with this point (the center is in the point, the axis x is directed along the parallel to

the east, the axis y is directed along the meridian to the north). The fault segment that the point

belongs to separates the blocks I and II, at that the block I is considered as motionless, whereas the

block II moves relative to the block I. The vector of relative velocity ~vi has coordinates (∆xi, ∆yi),

i = 1, 2, 3. Its direction is characterized by the value ∆xi

∆yi
.

The comparative analysis of two modifications of the spherical block model pre-

sented above leads us to the following conclusion: the modification with depth de-

scribes more accurately the dynamics and seismicity of the global system of tectonic

plates in comparison with the modification without depth. It happens despite the

fact that the dimensions of plates are much larger than the depth of spherical layer;

and one might expect light differences in simulation results.
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Another piece of analysis is performed only for the simulation results obtained

by the modification with depth. Summary seismic moment release rate of active

boundaries obtained in the modification with depth is compared with that of ob-

served seismicity. Generalized characteristics of observed seismicity are obtained

by using the catalog CMT (CMT, 2002), which is more homogeneous than NEIC.

We consider earthquakes from 1976 to 2000, with the depth of the tensor moment

centroid less than or equal to 70 km and the density of seismic moment greater

than 1017 N×m; these properties approximately correspond to events of Ms > 5

(the CMT catalog contains 9,121 such earthquakes). The FM relation for seismic

moment is close to a linear one, the annual number of events grows slightly during

the 25-year interval. The distribution of summary seismic moment release rate is

given in Fig. 10.

Figure 10: The distribution of summary seismic moment release rate for the catalog

CMT (1976–2000).

The seismic moment is summarized on a grid of 2 × 2 degrees, the logarithm is

taken, and the result is smoothed using a sliding window of 6×6 degrees with values

weighted inversely proportional to the distance from the center of the window. The
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Circum-Pacific belt is distinct particularly the west and east equatorial parts. The

Alpine-Himalayan folded belt is characterized by a wide zone of scattered seismicity.

Other boundaries (especially divergent boundaries) are often outlined by discontin-

uous zones of increased rate of seismic moment release. To compare these data

with the results of simulation, values of seismic moment are computed for the syn-

thetic catalog (variant 4.3, Table 4) by recalculating the magnitude by the formula

lg M0 = 1.5Ms + 9.14 (Ekstrom and Dziewonski, 1980), where M0 is earthquake

seismic moment, Ms is earthquake magnitude. The distribution of the summary

seismic moment release rate is subsequently calculated as described above for the

case of the real catalog. This distribution is shown in Fig. 11.

Figure 11: The distribution of summary seismic moment release rate for the syn-

thetic catalog (modification with depth).

The absence of earthquakes in oceanic rift zones in the model is related to param-

eter fitting. A quantitative comparison of the distributions of model and observed

seismicity is possible, but not productive at the present stage because first, the ob-

served seismicity is rather weak on many parts of plate boundaries, and second, the

range of model magnitudes M ∈ [4.5, 8.5] is too narrow, and the magnitude takes

on higher values than the real one (specifically because the areas of synthetic earth-
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quakes are larger than the observed ones since synthetic earthquakes often cover

the full depth of a fault zone). Thus, the value of summary seismic moment for the

synthetic catalog is considerably larger than for the catalog CMT, and the differ-

ence may reach several exponents. To find adequate correspondence between model

and real magnitudes is the subject of a separate investigation, because this corre-

spondence may be different in different seismic regions. Nevertheless, the model

reflects the most important patterns of the global seismicity distribution: (i) two

large seismic belts, where most of the strong earthquakes related to subduction zones

occur, (ii) extensive, but less pronounced seismicity at mid-oceanic ridges, and (iii)

increased seismic activity associated with triple junctions of plate boundaries.

5 Parallel Algorithm for Numerical Simulation

Computational experiments show that the spherical block model of lithosphere dy-

namics and seismicity (especially the modification with depth) during performing

on sequential computers requires considerable expenditures of memory and time of

a processor. However, the approach applied to modeling admits effective paralleliza-

tion of calculations on a multiprocessor machine, and it makes possible the use of

real geophysical and seismic data in the process of simulation of dynamics of com-

plicated block structures, including the global system of tectonic plates (Soloviev et

al, 2001; Melnikova and Rozenberg, 2003).

The variant of parallel program was realized on Supercomputer MVS-1000M (768

Alpha-21264A, 667 MHz CPU; peak performance is about 1 TFlops) at Joint Su-

percomputer Center (Moscow, Russia) by the scheme “master-worker” (“processor

farm”). For compatibility with different platforms (in the sense of fast transition),

the special library MPI (“Message Passing Interface”) was used, and the parallel

algorithm was designed in such a way that the unique loading module was formed

for all processors.

The block-scheme of the main calculative procedure is presented in Fig. 12.
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Figure 12: Scheme of the main calculative procedure

Let us give necessary explanations. In the beginning of the work, the number

of processor, which the program has loaded to, is detected (zero processor becomes

the master). Then the information on a block structure is read, and auxiliary

calculations (space discretization, calculation of the matrix A) are performed. At

every time step the most time-consumable procedure is calculation of values of forces

and inelastic displacements in all cells of space discretization of the block bottoms

and fault segments. Since these calculations may be performed independently from

each other, they are uniformly shared between all processors. The exchange of

information at every time step is realized according to the following scheme (see

Fig. 12, where operations carried out only by the master are marked by “M”, only by

the workers— by “W”). The master calculates new values of block, boundary block

and underlying medium displacements, then necessary parameters are transferred to

the workers. Recalculated values of the vector b are returned to the master, then the
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next time step is carried out. For processing the situation treated as an earthquake,

the scheme is slightly complicated, since in this case the master should ask all the

workers until cells of segments in the critical state exist. The time of calculations

on each processor is much more than the time of exchange. Therefore, rather high

useful loading of each processor is achieved.

For testing the dependence of time necessary for solving the problem on the

number of processors and comparing with sequential algorithm, the following values

were analyzed: acceleration coefficient Sr = T1/Tr and effectiveness coefficient Er =

Sr/r, where Tr is the time of program performance on multiprocessor computer

with r processors, T1 is the corresponding time for sequential algorithm. Both T1

and Tr essentially depend on parameters of the structure under consideration but

for all variants we obtained the similar qualitative results. In Table 6, we present

the results of testing program performance on multiprocessor computer with the

use of r processors (we chose variant 4.3 from Table 4, 100 time steps (or 1 unit of

dimensionless time) with a considerable number of earthquakes occurred).

Table 6: Calculation time (in seconds), acceleration and effectiveness coefficients for

different number of processors

r Tr Sr Er

1 10598.88 — —
2 5378.79 1.97 0.99
4 2697.72 3.93 0.98
8 1358.48 7.80 0.98
10 1088.34 9.74 0.97
16 684.78 15.48 0.97
32 346.72 30.57 0.96
48 233.87 45.32 0.94
64 175.66 60.34 0.94
100 144.40 73.40 0.73
200 75.70 140.01 0.70
300 56.54 187.46 0.62
400 44.15 240.06 0.60

It is appeared that at least for r ≤ 64 acceleration coefficient Sr is slightly less than

r, consequently, the effectiveness is rather high (Er is close to 1, namely, not less than

0.94). Then the effectiveness decreases with increasing the number of processors in

action but does not fall below a reasonable level even for 400 processors.
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Conclusion

Some results of modeling the dynamics and seismicity of the global system of tectonic

plates on the Earth’s surface are given. They include qualitative information on

displacements of plates, and on the nature of their interaction along boundaries.

Synthetic earthquake catalogs, which reveal some patterns of observed seismicity,

are created. Model FM plots are nearly linear on some magnitude intervals. Analysis

of numerical simulations shows dependence of synthetic seismic properties on model

parameters and directions for further investigation to match ranges of model and real

magnitudes. The dynamics of the global system of tectonic plates is more accurately

modeled by means of the modification, which takes the depth of the spherical layer

into account, than of the modification neglecting discretization of fault segments

by depth. Preliminary conclusions on the correspondence of dimensionless model

time and real time are made on the basis of relative velocities of displacements

of characteristic points at plate boundaries for the synthetic dynamics and for the

model HS2-NUVEL-1, but will require additional analysis.
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