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IntereVent Time Distribution in Seismicity: A Theoretical Approach

G. MOLCHAN1'2

Abstract-This paper presents an analysis of the distribution of the time t between two consecutive
events in a stationary point process. The study is motivated by the discovery of unified scaling laws for t

for the case of seismic events. We demonstrate that these laws cannot exist simultaneously in a seismogenic
area. Under very natural assumptionswe show that if, after resealing to ensure Er = 1, the interevent time
has a universal distribution F, then F must be exponential. In other words, Corral's unified scaling law
cannot exist in the whole range of time. In the framework of a general cluster model we discuss the
parameterization of an empirical unified law and the physical meaning of the parameters involved.
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1. Introduction

Recently BAK et at (2002) and CORRAL (2003a,b) suggested a new scaling law for
seismic events on the phase space location-time-magnitude. The Corral's version of
this law looks as follows: The distribution density for time t between two consecutive
events of magnitude m > inc has the form

(1)

where 2 is the rate of events with m > m in a given area G, while f is a universal
function that is independent of the choice of U and cutoff magnitude m. The relation
(1) is astonishing, being tested (as it has been by CORRAL, 2003b) for a very wide

range of m (between 2 and 7.5), for seismic regions U of very different linear size L

(between 20 km and the size of the Earth), as well as for different catalogs, both

regional and global ones, and different time periods.
The parameterization of f seems not yet to have settled down. According to

CORRAL (2003b):
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f(x) = cx1 exp(-x/a)

	

(2)

in the region x ˆ 0.05 with y = 0.74 10.05 and a = 1.23 ± 0.15. The pioneering work

(BAK et al., 2002) uses the parameterization (2) for the whole range of x with y = 0.1
(see refined estimates in CORRAL, 2003a). This allows the behavior off(x) about zero
to be interpreted in terms of the Omori law.

The subsequent discussion strives to answer the following questions.
What is the behavior of the distribution of r near 0 and 00 in stochastic models of

seismicity? These parts of the distribution of r usually dominate the log-log
representation and therefore are important for understanding the unified law in the
framework of the classical models. The next question is: what is the physical meaning
of the parameters y and a in (2)? Finally, assuming the form off to be universal for 'r,
what should it be?

The answers to these questions are contained in Sections 2-4. All proofs of the
main results are collected in the Appendix.

2. A Poisson ('luster Model: The Asymptotics ofp(t)

Earthquakes frequently form anomalous clusters in spacetime. The largest event
in a cluster is termed the main event. The events that occurred before and after the
main event in a cluster are called fore- and aftershocks, respectively. It is assumed in
a zero approximation that main events constitute a time-uniform Poisson process.
That assumption is widely employed in seismic risk studies.

Aftershocks dominate clusters both as regards their number and duration. Their
rate as a function of time is described by the Omori law:

n(t) = ct', t > to,

	

(3)

where to is small. Relation (3) holds fairly well during the first few tens of days (up to
a year) with the parameterp = 0.7 - 1.4 (UTSU et al., 1994) At large times the value
of p becomes greater, occasionally significantly so, making n(t) decay in an
exponential manner. Taken on the whole, background seismicity and spatial
interaction do not allow reliable conclusions to be drawn for the Ornori law at large
times. Cases in which (3) holds during decades are unique (UTSU et a!., 1994).

Following the above description, we consider the following model for seismic
events in time. The spatial and magnitude components of events are disregarded for
simplicity of reasoning. Let {x} be a homogeneous Poisson point process on a line
with rate ,. It is an analogue of main events. Let N0 (dt) be an inhomogeneous point
process with rate ö(t) + )10(t). Here, 5 is the delta function, while the presence of ö(t)
means that the event t = 0 belongs to N0. The notation No (A) defines the number of
events N0 in the interval A. We will assume that
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f 2o(t)dt=A<oo.

	

(4)

This requirement ensures that the total number of events in N0 is a.s. bounded.
Consider an infinite series (dt), I = 0, ±1, ±2,... of independent samples of

N0. The theoretical process N is the sum

N(dt) = ENO(') (dt -xi).

The process

	

that has been shifted by the amount x1 can be associated with the
cluster of the main event x1.

Our task is to describe the distribution of r between two consecutive events in N.
The distribution is uniquely specified, because the process N is stationary. It is also
easy to see that the rate of N is

2*(1+A)

According to (DALEY and VERE-JONES, 2003),

P(r> t) = --P{N(0,t) = 0}	 (5)Adt
and

P(N(A) =0) = exp f - f P(No(A - x) > 0)dxj.

The first relation is a version of the Palm-Khinchin equation (3.4.9) in DALEY and
VERE-JONES (2003) appropriate to general stationary point processes, while the
second is based on the fact that the main events are Poissonian (see (6.3.15), p.181
ibid). Since the aftershocks make the bulk of a cluster, we shall assume in what
follows that i (t) = 0 for t < 0. Consequently,

P(No(A) > 0) = fl,

	

0 E A
if	 Ac (-oc,0).

Combining the above relations, we get
00

P(t> t) = exp{_A* f P(No(u,t+ u) > 0)du -

[1+ fP(NO(t+du)>O,N,(u,u+t)=0)11(1+A).	 (6)

We now describe the behavior of the distribution of x near 0 and x.

Statement 1. (a) If cluster duration has afinite mean, t1, then

P(t> t) = exp(_*(t + i))/(l + A) . (1 + o(1)), t -* oc.
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(b) Let )i0(t) ct, t - 00 where 0 < 0 < 1. Then

P(t> t) = exp(_*t - O(t1°))/(1 + A), t -* oc.	 (7)

In other words, one has
urn lnP(T> t)/(2t)t-oo

for a Poisson sequence of main events in a broad class of cluster models. In terms of
the parameterization (2), that means that

a

	

= 1 +A.

With a = 1.23 (as in CORRAL, 2003b) the main events constitute a1 81% of the
total number of events.

The following regularity conditions should be imposed on N0 in order to be able
to describe how the distribution density for 'r behaves for small t:

P(No(u,u+t) > 0No{u+t}	 1) =o(1),t-O

	

(8)

P(No(u,u+t) >0No{u}= l,No{u+t}=1)=o(l),t-*0,

	

(9)
where the notation denotes conditional probability, and No Is} 1 means that there
is an event at the point s. We assume in addition that (8), (9) hold uniformly in u > 0.

That last requirement is no limitation for the case of seismic events, considering
that the rate of cluster events and time relations between them seem to be rapidly
decaying over time. The requirements (8), (9) themselves ensure that two very closely
lying cluster events are not likely to contain another cluster event between them.
However, the requirements (8), (9) are different from the following orderliness
condition in DALEY and VERE-JONES 2003: P{No(u,u + t) > 1} o(l), t - 0
uniformly in u.

Statement 2. If (8), (9) hold, the probability density for z (provided it exists) has the
following form as t- 0:

00

p(t) = [2o(t) + f
Ao(u)(t)du + A(1 + A)] /(1 + A) . (1 + o(1)),

	

(10)

where ...1(t) = P(N0(t + u, t + u + ) > 0No{u} = 1)/& << 1, is the conditional rate
of N0 after time u given a cluster event has occurred at that time. In particular, if

o as t - 0 and, for some finite k >0,

(t) < k)Lo(t), 0< t < ,

	

(ll

then
1 <p(t)/Ao(t) <c, t-0.

In otherwords, when (8), (9) hold, the distribution density ofifor small t is proportional
to the rate of cluster events immediately after the main event. The statement is not
obvious, since any interevent interval is not necessarily started by a main event.
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3. Examples

Examples will now be discussed so as to understand to what extent the above
assumptions are restrictive.

The trigger model. Historically, this was the first seismicity model to appear (see
VERE-JONES, 1970). It assumes the cluster process N0 to be Poissonian. The model has
not found acceptance in seismicity statistics, because the likelihood of an observed

sample in that model is technically difficult to use. This does not rule out that the
model may be helpful, however.

Because increments in N0 are independent, the requirements (8), (9) have the form
u+t

P(No(u,u+t) >0)= 1
_ex(_f

Ao(x)) =o(l), t0.

If Aj (x) is a decreasing function, one has

j o(x)dx < j
Ao(v)dv = o(1).

Consequently, the decrease of )LØ (x) ensures that (8), (9) hold uniformly in u. The
same property of )LO(X) also ensures (11):

(t) =2o(u+t) < AO (t).

We now refine the asymptotic form ofp,(t) for small t.	
Let 0(x) be a smooth decreasing function and )L0(t) =	 t < 1. Then

p(t)	 cf + c1t + c2, t -p 0,

where = 2p- lforp> 1/2 and c* = Oforp 1/2.
This can be seen as follows. When p> 1/2, one has

it =
/

2o(u)A(t) = c2
/

u(u + t) du+f Ao(u)Ao(u + t)du

=

00

c2t1-2pf u(l - u)du + const + o(1), t 0.

When p < 1/2, one has

it = f
00




0(u)du +o(1).

The self-exciting model. A cluster in this model is generated by the following cascade
process. The first event t = 0 is defined as the event of rank 0. It generates a Poisson
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process with rate no(t); its events {t'} are ascribed rank 1. The procedure then
becomes recursive: each event {t } of rank r 1, 2, ... generates a Poisson process of
its own which is independent of the previous ones and which has the rate no (t - t).
The offspring of a rank r event are events of rank r + 1, the events of all ranks
constituting the desired cluster N0.

The process N with clusters as described above is known as the self-exciting
model (HAWKES and ADAMOPOULOS, 1973) or the epidemic type model (OGATA et al.,
1986) The model is rather popular in statistical studies and forecasting of seismicity
thanks to the fact that the predictable component of N has simple structure:

E(N(t + 6) - N(t) > 0!d)	 mo(t - t,)	 + i,

	

5 << 1,
tI<t

where the t1 are events of N(dt) andd {N(ds),s < t} is the past of the process.
It is easy to see that the rate . of the process N is bounded, if

A
=j

o(t)dt< 1;





also,

A)L/(l-1) and ,=)*/(1_2).

Statement 3. (a) The cluster rate function for the self-exciting model is

)LO(t)=itO(t)+ltO*itO(t)+I1O*IEO*7EO(t)+..., t>O,

	

(12)

where * denotes the convolution.
Let no(t) be monotone near 0, where no(t) At-P, 0 <p < 1. Then

'' l t 0.

Let lro(t) be monotone at 00, where to(t) r'./ Bt-1-0, 0 < 0 < 1. Then

(1 -		t- 00.

(b) The distribution density for z as t -40 has the form
00

p(t) = [(1 -)0(t) +f Ao(x)1o(x+t)+] . (1 +o(1)),t0. (13)

Let no(t) be monotone near zero, where 7c(t) ' At-P, 0 <p < 1; let ito(t) < p(t), where
00

is a smooth function, f(t)dt < 1, (t) cr'°, t . oc, 0< 0< 1. Then

Pr(t) = OZ0(t)) as t 0.

The time-magnitude self-exciting model. The self-exciting model is frequently
considered on the time-magnitude space as follows (see, e.g., SAICHEV and SORNETTE,
2004): each event t1 (both when a main or a cluster one) is ascribed a random
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magnitude m,. The m1 are independent for different t1 and have identical distributions
with density p(ni). The generation of clusters is that described above, the only
difference being that an event (s, in) generates a cluster with rate q(m)ic(t - s). It can
be assumed without loss of generality that fq(m)p(m)dm 1. This normalization

preserves statements 1, 3 for the self-exciting process (t, m) as well, independent ofthe
choice ofp(m) and q(m). The function 20(t) as given by (12) then corresponds to the
cluster rate when averaged over magnitude m. For purposes of seismology, p(m)
corresponds to the normalized Gutenberg- Richter law, p(m) = f3e_Il(mm0), rn > m0
while q(in) = e(mb0) (1 - c/fJ) is proportional to the size of the cluster that has been
triggered by an event of magnitude m.

4. General Point Processes and the Unified Scaling Laws

The universal scaling law according to Corral. Let us consider waiting time t
between two consecutive seismic events of magnitude m > in in area G. According to
Corral's hypothesis (see CORRAL, 2003a,b), the distribution of the normalized
variable 'r: t2 with Kr " 2= 1 is independent of the choice of the area and cutoff
magnitude m. The probability density function oft in this case has the form (1), i.e.,
Af(Ax), with a universal/unified function f. The term "unified" will be used if the
hypothesis holds for any subarea of a fixed region G. Experiments which test (1) in
CORRAL (2003b) concern both the Earth as a whole and smaller or larger areas of it.
One can always select such areas in which seismicity is weakly interdependent, e.g.,
the regions of Spain and California which are tested by CORRAL (2003b) probably
belong to this category. Our next statement is valid for general stochastic point
processes for which t has a probability density. We show that the class of the
universal function f is very narrow if there are at least two seismogenic areas with
independent seismicity (in stochastic sense).

Statement 4. Assume that there are two regions G1 and G2 with independent stationary
sequences of events N1(dt) and the normalized variable t t2 with 2 1 /ET, has the
same probability density function f(x) for N1 (dt), N2(dt) and N1 + N2. Iff(x) <
0 < 0 < 1 for small x, then f(x) = exp(-x).

Note that the process N1 +N2 corresponds to seismic events in the area G1 U G2.
The exponential distribution of t2 is realized in the case of the Poisson model of

seismicity. This model is very crude because of the time-space clustering of events.
Therefore Corral's universal scalinglaw cannot exist in the whole range of time. Note
that outside of the aftershock's time zone 'r 2> 0.05, the empirical universal
function f (see (2)) looks as cx1 exp(-x/a) with y 1. Thus the clustering can not
be the only obstacle for Corral's universal scaling law.

The unified law according to BAK et a!. (2002). In contrast to Corral, the original
version of the unified law (see BAK et al., 2002) has to deal with t variable, L, for a
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random box area BL of size L. The box population {B } forms a square lattice
covering of the seismogenic area G. If 'rj = -c(B$) is the value of 'r appropriate to the
box then one has

TL = {'r with probability Aj/)., }

where A = )L(B) is the rate of events of m > m in BAK et al.'s scaling law
means that the distribution of TL). for a suitable constant = ).(m, L) is independent
of the choice of the lattice covering, L and m. The scaling factor 2 can be found from
the equation )LEtL = 1. Hence




A =

where NL is the number of boxes with ) 0. The value of 2 is proportional to the
original scaling factor ,l l0_LmcL by BAK et al. (2002) where dis the box dimension
of events of m > m in G. This fact arises from the Gutenberg-Richter law and the
definition of d resulting in log). = c - bm and logNL = -dlogL(1 + o(1)) as L 0.
We will use the factor A because the relation for NL is inaccurate and the parameter d
is debatable.

Usually, actual seismicity is non-homogeneous in space. If that is the case, we
must consider the following.

Statement 5. The unified laws by BAK et al. and by CORRAL in area G cannot exist
simultaneously if the number of distinct values, kL, among {).(B)} depends on L, e.g.
kL1 ˆ k for two L only.

However, a Poisson model with homogeneous rate in space and time is an example
where the two laws exist simultaneously. The next statement shows that space
homogeneity of seismicity is essential for the existence of unified BAK et al.'s law.

Statement 6. Assume that y = {B} is the covering of G= G1 U G2, where G1 and G2
are non-intersecting subareas of G composed of elements of y.

If the random variables L2, related to G1, G2 and G, have the same distribution,
then the scaling factors Afor G1 and G2 are equal, A(GI) =

The simplest conclusion from this is the following

Corollary. Suppose that the unified law by BAK et a!. holdsfor area Gand the rate of
events ,%(G) continuously depends on subarea G. Then 2 is homogeneous, i.e.

2(G) =		where G is the area of G.
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5. Conclusion

We have presented a theoretical analysis of the probability density function
(PDF) of interevent time, t, in a stationary point process. We show that if there are at
least two seismogenic areas with independent seismicity, then a universal PDF. of 'rA,
so that E = 1, must necessarily be exponential. The condition seems to be very
natural in practice. Therefore Corral's unified scaling law (1) cannot exist in the
entire range of time. In fact, the empirical data by CORRAL (2003b, 2004) supports
the conclusion showing a universal behavior of PDF of 'r, only outside of the
aftershock's time zone, i.e., for the time range rA > 0.05. We show also that the
original unified scaling law by BAK et a!. (2002) can exist under nonrealistic
conditions of homogeneity of seismicity rate (see Corollary for details).

Another aspect of this work is related to the asymptotic behavior of PDF of t
near 0 and 00 in the general Poisson cluster model. The small-scale behavior of 'c
mimics the rate of cluster events, i. e., the Omori law for the case of seismicity. The
asymptotics near oc are exponential due to the Poisson model of main seismic events.
It is these asymptotics which essentially make the empirical PDF of 'r, universal
when plotted on a log-log scale. In contrast to Corral, the unified empirical law by
BAK et al. has a power asymptotics near cc. According to CORRAL (2003a), it is a
result of power-law tails in the distribution of space-time rate of seismicity.

Qualitatively the power and the exponential asymptotics are expected (see BAK
et al., 2002). A new element here is the explicit form of these asymptotics in
connection with the general Poisson cluster model. This result can be used for
analysis and parameterization of the universal part of PDF of t2. According to
CORRAL (2003b), the r)L distribution is well represented by f(x) = cx1 exp(-x/a)
for x ut 0.05. In the cluster model the parameter 1/a can be treated as the
fraction of main events among all seismic events, )/). The estimate a = 1.23 derived
by CORRAL (2003b) yields a = 80%. At the same time the estimates of l/ are not
so stable. The main events in Italy are 60% among the m ˆ 3.5 events (MOLCHAN et
a!., 1996). KAGAN (1991) found )/)L

= 40% form ˆ 1.5 using the CALNET catalog
for the period 1971-1977. Variability of )'/). versus stability of 1/a in CORRAL
(2003a) is an interesting point for further analysis of universality of the tail
probability of tA.

In terms ofthe cluster model the factor x' is missing in the formula forf. The factor
may be replaced (see (7)) by a factor ofthe type exp(-cx'), ifthe aftershock rate decays
as a power function t1°, 0 < 0 1; the factor degenerates to a constant for 6> 1.
Consequently, it remains an open question as to what is the physical meaning ofy.
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Appendix

ProofofStatement 1

We are going to find the asymptotic of P(r> t) as t -3 c using (6). Obviously that

00		W 	 -0

B:= f P(N0(t+du)>0,N0(u,u+t)=0)ˆ f P(N0(t+du)>O)= fA,(u)du=o(l).

The limit for the expression under the exp sing in (6) is
00

:= JP(NO (u, t + u) > 0)du -+ fP(N,,(u,
oo) > 0)du =





=
co

	

rd

E f 1NO(U,)>odu_EJdu_Ei-C,.

Here, rd is the cluster duration in N0 and 1A is indicator function of an eventA, i.e.

'A
= 1, ifA is true and 'A =0 otherwise.

It remains to substitute the resulting limits into the formula
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P(r> t)=exp{_2*(t+C)}[1+B]/(1+A).	 (14)
We now are going to prove the second part of Statement 1. Let Ez1 = cc. The

asymptotic ofCthen calls for refinement. One has
t+u

P(N0(u,t+u)>0)ˆEN0(u,t+u)= fZ(,(v)dv.

If A (v) = cO(1-

	

forv>> 1, then

< fdufi,,(v)dv=ct'-"(I+o(1)), t - cc,

as follows from L'Hospital's rule. Relation (7) stands proven.

ProofofStatement 2

The distribution density for z-can be found by differentiating (14):

f. (t) = P{N(0, t) =0} [(1 + B(t))'X -B(t)] (i + A)
One has P(N(0,t)=0)1-At, t-0.

Due to condition (8),
00

B(t)= f[l-P(NO(u,u+t)>OINOfu+tl=l)]P(IVO(t+du)>O)

= fA0(t+u)(l+o(l))du=A(l+o(l)), t ->O

and

	

(1+B(t))2A(1A)' =A(1+o(1)).

At last

[B(t) -B(t+ö]Iö=[ fP(N,(t+du)>0,N0(u,t+u)=O)+







00

fP(N0(t+du)>o,N0(u,u+t)>0,N0(u-o,u)>0)]/o

=11+12.

Due to (8) the first summand is

11

	

fP(N,,(t+du)>o)(1-P(No(u,u+t)>0INo{u+t}>0)=Ao(t)(1+o(1)),oo .
00

The second summand is '2 = fg-'P(No (t + du) >0, N0 (u - ö, u) >0) x

[1- P(N0 (u, u + t) > 0 N0 {u + t} =1, N0 (u = 1)].

By (9) '2
= fg-'P(N,,(t+du)>O,No(u-gu)>O)(I+o(l)).

,15






Therefore E(t) = [ JAO (u),1 (t)du + 2 (t)] (1+ o(1)) , where (t) is the rate of N0 (") at

moment t+u given N0 (du) >0.

To prove (10) it remains to substitute the resulting asymptotic expressions in f (t).
Proof of Statement 3

It follows from the description of the cascade generation of N0 that its rate ) (t)
satisfies the integral equation

Ao (t) =

/
go (x)o(t - x) + 0(t),

	

(15)

where no(t) is the rate of rank 1 events. Iteration of (15) then yields

Ao (t) = go (t) + t0 * go(t) + no * go * go (t) +

If one passes to the Laplace transform,		then both relations for 20(t) are
reduced to the form	

O (s)	 -

Let it(t) be monotone near 0 and oc. Assume also that n(t) behaves like a power law:
go (t) r- c0r, t << 1 or go (t) c1rt>> 1, where 0 <p, 0 < 1. In that case the use
of the Tauberian theorems (see FELLER, 1996), Ch. 13 and Ch. 17, 12) yields
conclusions of the form 20(t)/it(t) -+ const as t -* 0 or t -* 00, respectively.

We now prove (13). Consider the rate of a pair of events in an N0 cluster:
20(u, v) P(No(du) = 1,No(dv) 1)/(dudv), u < v. Recalling that this is a cascade

generation of N0, the states u and v in N0 can be derived in two ways. One is when u
and v have no common parent except t = 0; the second is when u and v have a
common parent z in the first generation (a state of rank 1). If the common parent z
for u and v has rank r> 1, then the probability of that event will be of order
O((dz)2dudv), which is negligibly small compared with O(dzdudv). This consider-
ation leads to the following equation for Ao(u, v):

Ao(u, v) = o(u)A(v) +
/

go (z)0(u - z, v - zrn, u < v. (16)

Put at (U) = Ao(u, u + t), b1(u) = )o(u)Ao(u + t), then (16) gives

at (u) = b(u) + go * at (u),

whence

at(u)=bt(u)+bt(u)*(iro+iro*iro+iro*ito*iro+ ...)
= b(u) + bt(u) * 0(u).	 (17)
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We are interested in the conditional rate in a N0 cluster:

..Z(t) =Ao(u,u+t)/)Lo(u).

Substituting a1 and b1 in (17) one has

20(u + t) +
I

o(x)2o(x + t)o(u - x)dx/Ao(u).

It remains to substitute that expression in (10). One has

00

p(t) = [A0(t) +f
Ao(u)Ao(u + t)du. (1 +A)+

+A(l+A)]/(1+A)(1+o(l)), t-0.

However, (1 + A)-' 1 - ,l, so (13) is proved.
In order to have p(t) = O(20(t)) as t -+ 0 , one has to show that

)L0 (u + t) <k,o(t) for small t. To do this, we demand no (t) = c1r°,0 < t < and

ito(t) < q(t). Here, p is a smooth function, f p(t) < 1 and p(t) -' cr1°, t>> 1 with
0<O<1;also, p=m0fort<6.Then 0

is a smooth function. One has 20(t) <A,,(t) in virtue of (12), since < p. One has
A(t)/p(t) -* c as t -* oc from the power-law behavior of p at 00 (see Statement
3(a)). One also has Ao(t)/7t0(t) --> 1 as t -* 0, hence 10(t) 00 as t -f 0. Consequently,
max )Lo (t) will coincide with ) (t0) = )LØ (t0) (1 + o(l)) starting from some small to.
t>to

Hence

Ao(u + t) <max )Lo (v) <max )(v) 2o(t0)(1 + o(1)).
v>t0

	

v>t0

Proof of Statement 4

Using (5) one has

02
pT(t)

= -P{N(0, t)
=

0},	 (18)

where A is the rate of N(dt) in the region. In virtue of (1),

p(t) = Af(At).

Equation (18) and the initial conditions for P{N(0, t) = 0} = u(t) having the form
u(0) = 1 and u'(O) = -2 specify u(t) uniquely and yield u(t) p(2t), where

(t) = 1
_t+f(t_s)f(s)ds.

	

(19)
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Since N1 (dt) and N2 (dt) are independent,

P(N(0, t) = 0) = P(N1 (0, t) = 0)P(N2(0, t) = 0),

where N = N1 +N2 is the sequence of events for G1 U G2. It follows that for any t> 0
one has

p(L' + )L2)t) = p(Ait)Q(A2t).

or

VI(t) = /i(pt) + VI(qt)	 (20)

where i/i(t) In p(t), p = All(Al + )L2) and p + q 1. Iteration of (20) yields for

pq=1/2

Ji(t) =		,= 2

or	

-	 21
(1)

-

By (p(0) = 1, q/(O) - we have /i(0) = 0 and i/i'(O) = -1. Using L'Hospital's rule
we will have

urn	 = urn //(8t)t
n-too Ií()		n-oo OV')

By (21) one has ,1i (t) = -t or p(t) = exp(-ct). However, in that case f(x) = 062e-OLX
and ff(x)dx = 1, whence ci 1. Statement 4 is proven for p q = 1/2.

In the general case p 1/2, the iteration of (16) yields

(t) = Cfr(k,t)

where 8k,n
Similarly to the above, one has

1J(ck,t) - /J(k,)(t+

with ö=o(1)asn-oo.
Using (19) and the a priori bound

f(x)<cx°, 0<0<1, 0<x<

it is easy to show that

k5k,n < k [max(p,q)]''°.
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Therefore we have /i(t) = at again, because the 5k,, are small uniformly in k. The
proof of Statement 4 is complete.

Proofof Statement 5

Let us prove Statement 5 by contradiction. We assume that the BAK et al. and the
CORRAL laws hold for area G. Consider a box covering {BL(')} of G. Using the
notation given in section 4, we have p(t) for the distribution of i = t(B) and p(t)

for that of L" By the definition of L one has

1p(t)p(t),	 2>O, 2=>1,		(22)

where )1 ET. By Corral's hypothesis one has

p(t) = )LfLt)			 (23)

and

p(t) = 27(2t), 2 = 2/n.			 (24)

The moments of order 0 < < 1 for pi (t) are finite because ET =	 < oc. By (23)
and (24) one has

= 1Trm, E =

where m = fxf(x)dx and in-, = ftf(x)dc.
Using (22) we come to the following relation:

n

A(2n) =

The same relation holds for the other box covering of G with parameters
{2j,j= 1,. ..,m}; note that XJ 2.

As a result one has
n			 m	

=		1(A1m),	 0< o < 1,	 2 >0,		2>0,

or
r

	

S

2jk(2n)	 =
1

			

1

where A, <...<2randi <...<5,k=randk1=m.
We have here the equality of two analytical functions of the argument , when

member of E (0, 1). Therefore they are equal for all complex numbers cc. But in
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that case r = s and Ajn = )L1m, i = 1, . . . , r. Therefore the number of distinct values
among {j} cannot depend on L. This is a contradiction.

Proofof Statement 6

Let (22, 24) correspond to the covering {B } of the area G = G1 U G2. The left-
hand part of (22) contains terms related to the areas G1 and G2. Therefore (22, 24)
lead to the following relation:

2(G1)p1(t) + A(G2)p2(t) = Ap(t),

	

(25)

where p1(t) corresponds to G, and ) = ,%(G1) + )(G2). By assumption relation (24)
holds for ji and for p1 with A = )(G1). Going over from (25) to the moments of order
0 < oc < 1, we will come (see proof of Statements 5) to the equation:

2(G1)Aj 11 + 2(G2))L = ...U, 0 <oc < 1,

	

(26)
where A = )(G1). By repeating the arguments with analytical extension of (26), we
conclude that

2! =

Let us prove the Corollary. We will consider two box coverings of G, i.e. {B} and
with L1 = L/2, where L is small. One has )L(B) = )L(B)/N/, where N1 is the

number of boxes covering

	

and heaving )L(B) > 0. By Statement 6,
= c(L). Therefore )(B) c(L)N1 where N1 4, i.e., (B) > 0 admits only

four non-zero values: c, 2c, 3c and 4c. Suppose 2(B) const., then we can find two
adjacent boxes, say B1 and B2, so that R = )L(Bl)/A(B2) < 1, R > 0. Let us consider a
continuous shift cp(t) of {B} such that p(l)Bi = B2 and (1)B2 B3 e {B}. Then
the ratio R(t) = t(co(t)Bi)/)(co(t)B2) is a continuous function with possible values i/j
where i,j=0,l...,4. Therefore R(t)=R(0) for 0t 1, i.e. R(1)=R(0). But
R(0) = i/f, i <f and R(l) = f/rn, i.e. j2= i m. This equation has the unique
solution: j = 2, i = 1 and m 4. We can repeat our arguments for B2 and B3 again.
However now we know that i = 2 and f = 4. Therefore one has m = 8, that is
impossible because m 4. Hence 2(B) = const.
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