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SUMMARY

Scaling analysis ofseismicity in the space-time-magnitude domain very often starts from the
relation A(m, L) = aj., 10-bm L' for the rate of seismic events ofmagnitude M>m in an area
of size L. There is some evidence in favour of multifractality being present in seismicity. In
this case, the optimal choice of the scale exponent c is not unique. It is shown how different
values of c are related to different types ofspatial averaging applied to A(m, L) andwhat are
the values ofc for which the distributions ofaL best agree for small L. Theoretical analysis is
tested using the California data.
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1 INTRODUCTION
Certain classical laws ofseismicity, namely, the Omori law for af-
tershocks and the Gutenberg-Richter (G-R) relation for earthquake
energy, are reflections of 1-D properties exhibited by self-similar

seismicity. Recent studies (see Bak et al. 2002; Corral 2003, 2004;
Abe & Suzuki 2004; Baiesi & Paczuski 2004b; Tosi et a!. 2004)
search for similar properties ofearthquakes in the multidimensional

phase spaceoflocation-time-magnitude. The resultsobtainedalong
this line of research introduce substantial changes in the conven-
tional notions ofseismicity; therefore, analysis and verification are
in order.
The pioneering work ofBak et al. (2002) is concerned with the

distribution ofintereventtime TL between successive events ofmag-
nitude M>m in an L x L cell. These authors averaged observed
distributions Of T over all L x Lcells ofthe gridcovering a seismic
zone G to find that

PITL < t} = F,(tXL),

	

(1)

where F, isa unified (i.e. independentofmandL) function, andAL
is a measure of M> m events per unit time in an L x L cell. The
contribution ofa cell into the averaging result is proportional to the
number of such events in the cell. The following representation is
used,

AL =al0_)mLc,

	

(2)

where the quantity b is the slope in theG-R law, while the exponent
c is associated with a fractal dimension ofearthquake epicentres,
i.e. 0< c <2.

Keilis-Borok et al. (1989) seem to have been the first to put for-
ward relation (2) as a generalization ofthe G-R law for a 'typical'
area of sizeLwhen seismic events are subject to fractal geometry.
Viewed as such, (2) gives rise to several queries:

(i) Why is it that the parameter c is independent ofm?
(ii) Ifc is a fractal dimension, exactly which one is it?

There is a whole one-parameter family of the so-called Renyi
dimensions or generalized dimensions in the terminology ofGrass-
berger & Procaccia (1983), dq, q 0. The most popular of these
are the correlation dimension d2 and the capacity/box dimension
d0. The procedure of estimating the exponent leads to the correla-
tion dimension both in the original work (Keilis-Borok et al. 1989)
and in a later follow-up study (Kossobokov & Nekrasova 2004),
although the reasons for introducing (2) are based on the box di-
mension. Some workers are using (2) for the same purposes in one
and the same area (California) with different exponents c: d2 = 1.2
and d0 = 1.6 (see Bak et al. 2002, and Corral 2003, or else Baiesi
& Paszuski 2004a,b).
The situation gets more complicated when the reasoning of Pis-

arenko & Golubeva (1996) is considered. These workers start from
the hypothesis of self-similarity for seismicity in space-time and

develop a model where M > m events form a Poisson process in
any subregion A of region G with a random rate A(A). To be more

specific,the setfunctionA(A) is a sample ofarandomLevy measure,
i.e. ameasure with independent increments and a stable distribution
ofthe index 0 <a < 1. The case a> 1 is impossible because A(A)
is positive. In this model, one has for every L x L cell:

x L) = aL1OL',	 (3)

0
0
E
to

'-I-I

where c=2/a > 2. (A formal averaging ofX(L x L) overthe cells
must leadto relation (2) withtheaverage parameter(a).Pisarenko&
Golubeva (1996) give a =0.57 for southernCalifornia, from which
one gets a most unusual value, c = 3.5. From the model, it follows
that the population of{aL} obeys a unified distribution, namely, the
stable Levy distribution with index a < 1.

Consequently, P(aL > x) cx forx>> 1. Inthat case, however,
aL does not have the ordinary mean value, and so the parameter a
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in (2) maybecome meaningless within the framework ofthe model
considered.
The above model is of interest in that it suggests a generalized

frequency-magnitude relation ofa more flexible form than (2). It is

specified by (3) with a unified distribution ofnormalized quantities
A(L x L)/AL, i.e. one has the exact equality

P{A(L x L) <x} = FA(x/AL)

	

(4)

with the unified function FA involved. That circumstance is not
trivial, since the analogousrelation (1) canhold approximately only.
If(1) holds exactly, the spatial rateofM>m events mustbe constant
in G (see Molchan 2005).

In an independent study, Corral (2003) derived (4) for Califor-
nia at a fixed exponent c = 1.6. He got F1(x) = 0(x'2),x >> 1,
which differs from the above model in which F),(x)= 0(x°57) and
c = 3.5.

It thus appears that the choice ofa suitable exponentc forderiving
unified seismicity laws remains an open question. The phrase suit-
able exponent will be interpreted as follows: find a value ofc such
as to make observed distributions of normalized scale-dependent
quantities (TL AL or A(L x L)/XL, say) sufficiently close to one
another for small L. Considering (2) as a G-R law for typical area
of size L, then the notion of a suitable for c and typical for a cell
must be made consistent among themselves.

Below,the choice ofc will bediscussed forthe statistic A(L x L).
In that case theory can predict certain things if one assumes mul-
tifractality for the measure X(dglm) which gives the rate ofM>
m events per unit time in an area dg. For measures of this type,
the generalized dimensions dq are defined, and some of them are
not identical. It should be admitted at once that the hypothesis of

multifractality for seismicity has both adherents (Geilikman et a!.
1990; Hirata & Imoto 1991; Hirabayashi et al. 1992; Godano et al.
1999) and opponents (Eneva 1996; Gonzato et al. 1998). This is not

surprising. Multifractality isa sophisticated idealization ofphysical
objects demonstrating a diversity oflocal similarity, the full spec-
tram of a multifractal is difficult to measure; besides, multifractal

objects are not always easily distinguishable from pseudo-fractals
or their intermediate forms, even when extensive data are available
(see examples in Gorski 2001; Molchan& Turcotte 2002). In prac-
tical terms, the best that can be done is to observe a multifractal
behaviour ofthe measure in a range ofscales AL. In that case, the

quantity cin (2) becomesa parameterfor the unifiedlaw under study
in the range L. Below, ourtheoretical analysis of the populations
{A(L x L)} will be supplemented with an analysis of California

seismicity.

2 SCALING FOR MULTIFRACTAL
SEISMICITY

2.1 Themeasure .\(dgm) as a multifractal

Apply a rectangular grid of step L to region G to partition it into
L x L cells. Denote the rate ofM> m events in G as A(G), and
that in the L x L cell as A(L x L). The number of cells with A(L
x L) positive is denotedby n(L). Ifthe following relation holds:

logn(L)=-dologL(l+o(l)),L-.0,0<do<2,

	

(5)

then the support of A(dglm) is said to be fractal and to have a box
dimension d0. When A(dglm) is multifractal, the support stratifies
as it were into a sum of fractal subsets S having the Hausdorif
dimensions f(or). Taking any point in Sa, there exists a sequence of

areas L x L, L -* 0 such that

log ).(L x L) = a logL (1 + 0(1)).

	

(6)

Relation (6) describes a type of spatial concentration of events or
a type of singularity for A(dglm); the parameter a itself is termed
Hoelder's exponent or a local dimension ofthe measure. Accord-

ingly, f(a) describes the 1-lausdorif dimension ofpoints havingthe

singularity type a . The pairs (a, f(a)) form the multifractal spec-
tram of X(dglm). The information on the multifractal behaviour of

A(dglm) is derived from the Renyi function:

RL(q) = >[A(L x L)/),(G)]4, jqj < no.

	

(7)
Here and below, the summation is over all L x L squares with

A(L x L) > 0.
Whenmultifractals are considered, the function is asymptotically

log RL(q) = r(q) logL (1 +o(l)), L -* 0,

	

(8)

where the scaling index r(q)is related to f(a) through the Legendre
transformation:

r(q) = rnin(qa - f(a)).

	

(9)

When q = 0, relation (8) becomes (5), hence r(0) = -d0. In the
case ofa monofractal, where the spectrum (a, f(a)) degenerates to
the point (d0, d0), the function t(q) is linear, r(q) = d0 (q - 1).
In the general case, -r(q) is a convex function with v(l) = 0 (see
the example in Fig. 2). If -r(q) is strictly convex and smooth, the

region ofvalues ofr(q) defines the interval ofpossible singularities
ofa in (6), while the Legendre transformation OfT(q):

f(a) = min(qa - v(q))

describes the Hausdorff dimensions of these singularities. These
statements constitute the content of multifractal formalism (see,
e.g. Feder 1988), which wasfound to hold for many mathematical

examples. There are pathologic cases in which the function -r(q)
exists, but is not convex. Practically important examples of such
pseudomultifractals can be found in Gorski (2001).
The quantitiesdq =r (q)/(q - 1)are knownas Renyi dimensions

or as the generalized Grassberger-Procaccia dimensions. Because

(-r (q)) is convex, the numbers dq do not increase with increasing
q. From the relation t( 1) =0 and the mean value theorem one has

d = r(q) - t(l) = *(q*),		 (10)
q-1

where q* is a point between 1 and q. For this reason, dq (in the
case of smooth and strictly convex -r(q)) describes a type of sin-

gularities or a local dimension of A(dglm). One has d1 = *(l)
when q 1. That quantity is known as the information dimension,

being remarkable because it is the root ofa = f(a). Correspond-
ing to solutions of that equation are usually sets S,. of a positive
A - measure, hence these are the most interesting from the physics
point of view. The strict convexity and smoothness of -r(q) in a
vicinity of 1 ensure that a = f(a) has a single root. In that case
the closure ofthe set 5a, a = d1 defines the topologic support of
X(dglm).We will assume a regular situationto be the case when the
Hausdorifandbox dimensions ofthe support are identical.

To sumup,it is onlyd0 andd1 ofallgeneralizeddimensions which
are related to the fractality of a measure support, the others d
d0, d1 providing information on local types ofmeasure singularity.
Examples oftheoretical analyses ofmultifractals, both deterministic
and stochastic ones, can be found, e.g. in Pesin & Weiss (1997),
Mandelbrot (1989) and Molchan (1996).
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2.2 Scaling the averages of A(L x L)
In order to characterize the rate of M> m events in region G in an
L x L cell, we average the A(L x L) over all cells where ;&(L x
L) > 0 using some weights. The choice ofweights is governed by
the goals for which we are going to use the average. The following
one-parameter family ofweights is sufficiently flexible and natural:

m>(L x L) = kAW(L x L), II <, )(L x L) > 0,

where /c,, is a normalizing constant such that m "(L x L) = 1,
i.e. recalling (7),

1/k,. = RL(p)A"(G).

When p = 0, we have the ordinary averaging of the ).(L X L) for
x L) > 0, while when p>> 1, the average will characterize the

most active cells because

)(L x L)m(L x L) - maxl(L x L), p - 00.

Denote the average with the weights -(LX L).<. PI Then

x L)) =

X(L x L)m(L x L)=A(G) RL(p+ 1)/RL(p).

If (8) holds, then

log(A(L x L)),. = [r(p + 1) - v(p)] log L (1 + o(1)) + log X(G)

or

(A(L x L)),. X(G)LP,	 (11)

where c,. has the non-trivial form

c = r(p + 1) - r(p) = pd1 - (p - 1)d.

	

(12)

The rate ?(G) in a large region can be fairly well described by the
Gutenberg-Richter magnitude-frequency relation A(G) = a 10-1";
consequently, (11, 12) constitute an updated variant of (2) for the
case ofa multifractal measure A(dglm).
The averaging cases ofmost interest are p = 0 and 1. Then

(2003) also asserts that the distribution of j is weakly dependent
on the choiceofthe time interval ATinthe rangeof 1 day to 9 yr. The
assertion about AT needs to be made more specific in order to be
reproducible. Nevertheless, one maypose the following question for
multifractal measures A(dglm): for what valuesofc the distribution
oft,. hasa limit as L - 0? Similarly to Section 2.2, we will extend
the problem using the weights (L x L) = k A(L x L) as a
probability measure 2' for L. Taking the case p = 0, we then
arrive at the distribution Of L treated by Corral (2003).

The class ofmultifractal measures is very broad, andthe measures
themselves may have rather complicated structure. For this reason,
we quote standard heuristic arguments in order to find a suitable
c = c" for any p, so as to be able to expect a non-trivial limiting
distribution for ( L, p1))).

Denote the multifractal spectrum of ?(dgIm) by j'(a). Then the
number of L x L cells oftype a, i.e. such that A(L x L)
is increasing like For this reason, X(L x L)/L' is bounded
away from 0 and _ as L - 0, if the L x L cell belongs to the type
a = c. The probability or weight ofa cell of type a is oforder

L1mt-"(L x L) = L_f(a)XP(L x L)/RL(p) - L_f()+PaILr(P)

where RL(p) is given by (7), and r(p) is by (9) equal to r(p) =
mina( pa - f(a)). The resulting probability is bounded away from
0, when L 0, provided r(p) = pa - f(a). It follows that the
desired c = c(P) is such that the function p a - f(a) reaches its
minimum at a = c; in short, c(P) = arg mina(p a - f(a)).

In particular, when p = 0, the desiredc is the pointofmaximum
for f(a), while when p = 1, it is identical with the information
dimension d1 for which d1 = f(d1). Consequently, if f(a) = d0
and f(a) = a have unique solutions, then

=
a: f(a) = d0, p - 0

p=l.

Ifthe spectrum, f(a)isa strictly convex function, it canbe described
parametrically in terms of r(q) : a = t(q), f(a) = qa -
Hence (since -r(q) is convex)

- J do box dimension,

	

p= 0-
d correlation dimension, p = 1.

Ordinary averaging (X(L x L))0 thus corresponds to the scaling
index c = d0, i.e. to the box dimension ofthe support of A(dglm),
while the averaging that is proportional to the rate ofevents in L x
L corresponds to the correlation dimension c = d2.

The weights {m(P)(L x L)} can be interpreted as the probability
distribution p governing the sampling of L x L cells. In that
case, (11) describes the rate of M > m events in a - random
L x L cell in G. Similarly to (10), we conclude that

c, =t(p+I)_r(p)=*(p+8*),0_<9* <1,

i.e. c,. can correspond to some type ofsingularity for X(dglm).

2.3 Scaling the distribution of A(L x L)
Consider the population ofnormalized quantities A(L x L)/AIL, i.e.

= X(L x L)/[A(G)(L/Lo)'],

	

(13)

related to the partitioning ofregion G into_L x L cells Here L, is
the external scale ofregion G, say, L0 = Jarea of G and the . are
different from 0L in (3) by a constant factor. Corral (2003) found
that the distribution of . for California with c = 1.6 is practically
independent of L in the range 10-120 km and m = 2-3. Corral

up -f(a)=(p-q)*(q)+r(q) r(.p).

The left-hand side reaches the minimum at q = p. Consequently,

= t(p).

	

(14)

Consider some examples. Let the measure X(dglm) havethe density
£(glm); the spectrum f(a)then consists ofthe single point (a, f(a))
= (2,2), so that c' = d0 = 2. Indeed, we can make the following
statement:the distributions (EL. PL()) havelimits as L - 0. Namely,
when p = 0,

#{0 <L <X} - rnes{g 0 L5.(gm)/X(G <x}
lim

	

-
L-O #{L > 0)	 mes{g: £(glm)> o}

= F°(x).		(15)

Here we use the notation mes{g: (g) <x} for the area of points
{g} for which (g) <x. The limit is independent ofthe choice of
the partition of G. When p > 0, the limit OfW, PI(P)) is

F(x) = f uPdF0)(u)/f udF°(u).

	

(16)

We now take up a more complicated example. Consider a measure
X(dgm) that has densities in the square [0, 112 and on the interval
[1, 2]. This is a bifractal mixture with two points in the spectrum

0 2005 RAS, GJ1, 162, 899-909






902	 G. Moichan and T Kronrod

(,f()):(2, 2)and(1, 1). Forthis wehave r(q)= min (do(q - 1),
d2(q - 1)) where d0 = 2 andd2 = 1. We get = i(p), i.e. d0
when 0 <p < 1 and d2 when p> 1. In both ofthese cases, there
exist limiting measures that canbe written down analogouslyto (15)
and (16). Theydepend on the component ofA(dglm) in [0, 1]2 when
c = 2 andonthat in [1, 2] when c= 1. When p = 1, the situation is
similarto phase transitions in thermodynamics.Two normalizations
are possible, withc= d2 and with c =d0. When c = d2 (c = d0),
the limiting distribution has both a density that is determined by
A(dglm) on [1, 2] ([0, 112) and the 8-function concentrated at 0

(no), respectively.
Relations (12) and (14) point to an interesting fact, namely, the

exponents c that are suitable for scaling {k(L x L), P} and its
meanare generally not identical. We are going to show that

c

	

(17)

This can be seen as follows. The function -r(q) is a convex one,
hence it lies above the chord that connects the points (p. r (p)) and
(p+ 1, r(p+l)) in the interval (p,p+l), i.e.

t(q)>_ r(p) +(r(p+l)-r(p))(q -p), p <q <p+l.
In that case, however,

c" = lim r(g)-r(p >r(p + 1) - x(p) = C,,.q-p qp

45

40

35

30	

-125	 -120	 -115			 -110

Because -r(q)is aconvex function, the relation c =c is possible
if r (q) in (p,p+ 1) is a linear function.

2.4 Estimation of r(q)

The test area for the analysis ofunified seismicity laws is the Cal-
ifornia catalogue of M 2 events. For this region, we know the
estimates d0 = 1.6 (Corral 2003) and d2 = 1.1 - 1.2 (Kagan 1991;
Kossobokov & Nekrasova 2004), which favour a non-linear v(q),
r (q) 51-do (q - 1), hence indicate that the choice ofc in (2) is not

unique. The same fact is corroborated by strictly decreasing dimen-
sions d = r(q)/(q - 1) in the interval 2 q < 5 as found by
Godano et a!. (1999) from the M 1.5 seismicity for the period
1975-95. The numerical value d2 = 0.85 in the last paper referred
to is widely divergent from d2 = 1.2 forM ? 2. At the same time,
the above publications do not contain any information required for

comparing the estimates ofdq. For this reason, the non-linearity of
r(q) calls for independent verification.

In formal terms, r(q) is defined through the Renyi function RL
(q) (see 17) as the slope oflogRL (q) plotted against lg L for small
L. The main difficulty consists in finding the range of scale (L ,L*)
where the slope estimate is stable.
The necessity ofthe lower threshold L,. is due to the fact that

the set ofseismic events is finite. Thenumber of cells flL covering

"

4"110"

"çfPY

-.: 4 . . :,.

\

I

-

45

40

35

30

-125	 -120	 -115	 -110

Figure 1. California: seismic events with M> 3(.); centre () and principal directions (t, -) ofthe rectangular grid; the main (G) andthe alternative (GI)
seismic regions for dimension computations.
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the support of ?(dgIm) is of the order (Lo/L)"O. If L varies as a
geometric progression, then L is rapidly increasing as L - 0.
For this reason, any non-empty L x L cell will contain one event
beginningfrom some smallL. This leadsto the formally correct (but
erroneous) estimate dq = 0,q 0. Goltz (1997) demands that the
mean number ofevents per cell be k (k = 5) or greater, i.e. N/nj.
> k whereN is the total number of events. In that case, one arrives
at the restriction L > (k/N)11°L0. This will hold for all d0 2,
provided

L/77L0.

	

(18)

The threshold (18) with k = 1 wasproposed by Nerenberg& Essex
(1990). It is rather coarse, being adapted to any measure A(dglm).
To overcome that drawback we note the following. Theoretically,
isolated points in support of A(dglm) do not affect its multifractal

spectrum orthe generalized dimensions dq > 0. For this reason, we
will also computeRL(q 1k) along with the Renyi functionRL(q). The
empirical analogue of RL(q) sums up the non-zero values [n(L x
L, T)/n(G, T)] over L x L cells; here n(A, T) is the number of
events inA forthe period T. Accordingly, RL(qIk) takes account of

only those cells where n(L x L, T) > k. The scale L starting from
which the functionsRL(q) andRL(q Ii) beginto divergesubstantially
can naturally be taken as L . In other words, that scale is taken as
L * below which the discrete (on the scale L.) component of the

support plays a significant part in the estimation ofthe multifractal

spectrum. The estimate of L* proposed above is efficient for small

q, because the contribution ofterms like [l/n(G, T)] in RL(q) is
rapidly decreasing with q increasing (q > 1). The formal rule for

choosing L,,, when q ? 0, can be expressed inthe form

IRL*(0RL,(OIl)I		 < C,
RL(0)

where s is a small parameter (below e = 10 per cent).
Consider theupperboundL*. Theconventional estimation ofr(q)

is based, not on the Renyi function, but on an integral modification
of it:

IL(q) =	 [n (BL	 T)/n(G, T)]-1, q	 0, 1.

	

(19)

Here, BL(g) is a circle of radius L centred at g, and {g,} are the

epicentres of events in the catalogue. To keep most of the circles

BL(g1) within region G, Nerenberg&Essex (1990) suggested using
L* = pLo; one hasp = 1/6, if region G is nearly a circle and the
measure A(dgjm) is nearly uniform. It thus appears that the moti-
vation of the estimate ofL* is related to the choice ofthe tool for

estimating r(q) rather than to the nature ofthe problem. The treat-
mentofillustrative examples basedon self-similar objects available
in the literature uses L* = L0. However, the simplest possible frac-
tal object (Cantor's staircase) disintegrates into similar parts only
when one has a special choice of the scale, L = (1/3)", and of
the observation interval. In practice, therefore, it is natural to deal
with scales for which the set {n(L x L, T)} with non-zero n(L
x L, T) is not small, i.e. when the above set can be treated as a
statistical population. If liL (Lo/L)''0, L > 100andd0 2, then
L* Lo/l0.
The estimate of L* proposed is also effective for small p. As

p increases, the main contribution into RL(q) is due to the points
of high concentration; these are few in a limited data set, hence
it is more difficult to make a representative statistical selection of

n(L x L, T). This constitutes the chiefobstacle for reliable estima-
tion oft(q) at large q. In turbulence (see Frisch 1996) that supplies

probably the best data for multifractal analysis, r(q) was found to
be non-linear for 0 q 5 in the energy dissipation field at large
Reynolds numbers.

If(, L) is a straight segment in the plots of(log Rj.(q), log L),
0 q qo, then we will say that seismicity exhibits multifractal
behaviour in the range ofscales (j., L). Gonzato et a!. (1998) de-
mand L/L > 1W, s 3 to make the above statement convincing.
This is a stringent requirement from the standpoint ofapplications;
in the case under consideration, it implies both multifractality and

self-similarity of seismicity in a wide range ofscales. IfL0 = lO
km,then L* 100 km, whilewhen the epicentre location accuracy is
A = I kin	 L, then L/L	 100. The scale range AL =
(10-120km) is encountered in Corral's (2000) analysis of unified
seismicity laws. It follows that the statement asserting a multi-
fractal behaviour of seismicity in this range AL is of interest for
applications.

3 CALIFORNIA SEISMICITY

3.1 Thedata

Following Corral (2003), we are going to examine observed 2-D
seismicity for the rectangular subarea in California: G = (30°N,
40°N) x (1 13°W, l23°W) (see Fig. 1). The seismicity we use in-
cludes m 2 events with depth of focus down to 100 km for the
period 1984-2003. TheANSS catalogue (2004) thatweusecontains
116700 such events.

3.2 The tau function (Fig. 2)

Stable values of q) were obtained for 0 q < 3 andforthe range
ofscales AL =(10-20, 100) km. The box-counting method we used
to estimate r(q) is described in Section 2.4 and illustrated in Figs 3
and 4(a, b). The axis ofthe grid which covers G was made to lie

1.5





1.0





0.5





0.0





-0.5





-1.0





-1.5

3q

Figure 2. Tau-function for M 2 events in region G (see Fig. 1); it is
based on the interval of scales AL = (10, 100) km. The straight line is r(q)
for a monofractalwith the observed dimension d0 =-r(0). The numerical
values of r are shown in Figs 3 and 4.
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Figure 3. Data for estimating the box dimension d0 =-r(0) based on M
> 2 events (a) and M> 3 events (b). The vertical axis shows the number
ofL x L cells, n(L 1k), that have numberofevents greater thank, k = 0, 1,
2, 3,4. The dashed line shows both the slope r(0) and the interval of scales
AL for estimation of r(0) by least squares using n(L 10).

along the San Andreas fault. An L x L cell was incorporated in the
computation, if its centre and at least three corners belonged to G.
The estimation results are explained below.

The linear size of G is L0 = /areaofG = 1004 kin, hence
= Lo/10 = 100 km is a prior estimate for the upper bound of

the scale. This choice is corroborated by the numbers of nonempty
L x L cells. One has

L km	 10	 20	 40	 80

	

100

L	 4366	 1544 468	 128

	

80.

When L= 160 km, onehas L = 29,which isnotenough toconsider
{),(L x L)} as a statistical population.

Thebox dimension d0 = -r(0) presents the greatest difficulty for
estimation. The statistic RL(0)k) in Fig. 3 determines the numberof
L x L cells with numberofevents greaterthank, k = 0, 1,2,3 and
4. The curves of logRL(0I0) and logRL(0I 1) significantly diverge
when L < 10 km. This accounts for the choice ofthe lower bound
= 10 - 20 km for the m 2 events. The slope in the plot of

(log RL(0I0), log L) in the interval (L , L*) was estimated by least
squares; the estimates of the box dimension are as follows: d0 =
1.82,ifAL =20-lOOand 1.74, if AL = 10-100 km.

Fig. 3(b) contains similar data for estimating d0 based on the
in 3 events. Theinterval (L., L*) = (20-40, 100) kmistoo narrow
there for reliable estimation ofd5.

0.5

-41- 0
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(a)

Figure 4. Data for estimating r(q): (a) q = 0.25, 0.5, 0.75; (b) q = 1.5,
2.0,2.5,3.0. The dashed linesmean the same things as in Fig. 3. The vertical
axis shows values of the modified Renyi function RL(q 1k) (see Section 2.4)
based on L x L cells with the number of events greater than k = 0, 1, 2, 3,
4.

The estimation ofr(q) q > 0 calls for no additional explanation.
Figs 4(a) and (b) show that the estimation of r(q) is stable for q =
0.25-2.5 in the interval ofscales AL = 10-100 km. The stability is
disturbed fromthe value q = 3 upwards (see Fig. 4b). The causes of
this were discussed in Section 2.4. Computation of r(q) at negative
q requires high accuracy in the estimates of ..(L x L) in cells with
low number ofevents. The requirement is not realistic for statistical
reasons. Consequently, our estimates of r(q) are for the interval
0 q 3. The fact that -r(q) is a convex function (Fig. 2) andthat
the plots in Figs 3 and 4 are linear in the interval AL = (10, 100)
km entitles one to say that the measure A(dgl,n = 2) looks like a
multifractal in the above range of scales.
Ofspecial interest for the presentstudyare estimates ofthe deriva-

tives *(q) at q= 0 andq= I (see (14)). These were found fromthe
relations

n7	 logp1(L) = t(0) log L(1 +o(1))

	

(20)

0 2005 RAS, GJI, 162, 899-909






-0.5

-1.0

-1.5

-2.0

-2.5

0
-J

-3.0

-3.5

-4.0

-4.5

-5.0

L, km 5

-2	
	IgU-area		 -1

10	 20		40	 80	 100

	

160

(b)

Figure 4. (Continued.)

p(L) logp1(L)=*(1) log L(1+o(1)),

	

(21)

where pi(L) = n(L x L, T)/n(G, T), n(A, T) is the number of
events in A during time T. Relations (20, 21) are derived from (8)
by formal differentiation with respect to q. The method used to
estimate t(q) exactly follows the estimation of v(q). It is illustrated
in Fig. 5(b) for M 2 and M> 3. The effectdue tothe useofn(L x
L, T) > k with k> 0 is not unilateral with respect to the case k = 0
(Fig. 5 should becomparedwithFigs3 and4for smallL). This allows
estimation of r(1) in the range ofscales AL =(5, 100) km for M
2and(10, 100)kmforM 3 : (l) = 1.33(M 2); 1.22(M 3).
Somewhat unexpectedly, the evaluation oft(1) is shownmore stable
compared with r(.p).

3.3 Variation of the estimates

The following quantities are ofgreatest interest for subsequentanal-
ysis: the box dimension d0 = -.-r(0), the correlation dimension
d2 = r(2), i(0), and the information dimension d1 = t(1). The
respective estimates can be affected by the choice of (L,L*), grid
location, the boundary ofG, epicenter location uncertainty. The fol-
lowing optionswere considered for (L., L*): (10, 100)km,(20, 100)
kmand (20, 80) km. The grid location is specified by the centre (see
Fig. 1) and by the direction of the principal axis. The centre was
moved within ±7 km because L * = 10 1cm; the axis direction was
varied within the limits ± 100. Along with the above region G we
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Figure 5. Data for estimating the information dimension d1 = t(l) from
M> 2 (a) andM 3 (b) events. The dashed lines mean the same things as
in Fig. 3. Thevertical axis showsthe derivatives d/dqRL (q = Ilk) fork =
0, 1, 2, 3,4 whereRL is the modified Renyi function (see also the left-hand
side of 21).

also used an alternative one G1 whose boundaries were parallel to
the grid axis (see Fig. 1).

The ANSS catalogue contains some poorly located events, as
indicated by the number of stations used in the location procedure
for an event, The estimates were varied by using two options:
the events withn> 1 (the main option) and those with n 7.

The following table sums upthe variationofthe estimates for the
above dimensions:

±(0)	 d0	 dt	 d2

	

(22)2±0.1	 1.8±0.1	 1.35±0.05

	

1:1±0.05

Equation (22) corroborates that the dimensions d0 and d2 that one
uses to scale ?(L x L) are significantly different.

3.4 The distributions of L

Starting from the multifractality concept, we have arrived at the
conclusion that the suitable parameter c for scaling the distribution
of A(L x L) given that A(L x L) > 0 may be c = i(0) 2 and
c = d1 1.35. The former value is for the situation where a non-
empty L x L cell is used with a constant weight '/L, while the
latter is relevant to a weight proportional to the seismicity rate in

02005 RAS, GJ1, 162, 899-909






906	 G. Moichan andT Kronrod


	

-4	 -3	 -2












0.5 -

x
V
0)

a-

00

0.0 .......................

0.0...........










0.0 ...............
0.5

I.	 I				I 		 00
-4		 -3	 -2	 -1	 0	 1	 2	 x

Figure 6. Distribution functions for log L corresponding to the scales L = 10, 20, 40, 80 and 100 km and to the scaling index c = 1.1, 1.2, 1.35, 1.6, 1.8
and 2.0. The segment (ce, ) has the slope (-1), its length provides information on the scatter of the distributions of logj. at a fixed c. (a) The case p = 0:
each L x Lcell enters in the distribution withthe same weight; (b) the case p= 1: each L x L cell enters in the distribution with a weight proportional to the

seismicity rate in the cell.

the cell in question. Parametrically speaking, the former case cor-

responds to the value p=0 andthe latter top= 1. When choosing
theoretical estimates ofc, we expect the lowest scatter in the dis-

tributions of . (see 13) in that range of scales where the measure

A(dglm = 2) behaves in a multifractal manner, i.e. when AL =

(10, 100) km.
The distribution functions for log are shown in Figs 6(a) (the

case p=0) and 6(b)(the casep= 1) fordifferent c from the list (22).
The list hasbeensupplementedwiththevaluec=1.6 corresponding
to the estimate ofd0 by Corral (2003). The curves in Fig. 6 can also
be treated as plots of the distributions of I. with a horizontal log
axis. The choice ofa log scale for is quite natural owing to two
reasons: it is consistent with the meaning ofthe asymptotic form (6)

10

and with large (up to five orders ofmagnitude) range of . values

(see Fig. 6).
A comparison between distributions gives rise to the issue of

the appropriate metric. The Levy metric (Feller, 1966, Ch. 8 sec-
tion 10) is quite sufficient for the case under consideration; the
metric is actively employed in probability theory when examining
the convergence of distributions. This metric concentrates on diver-

gences between distributions in the region where the bulk of the
distribution lies, being less sensitiveto the behaviour of tails. In our
case, small values of are related to small numbers ofn(L x L,
T), hence are very inaccurate. On the other hand, large values of

1. involve small relative errors. However, the frequencies ofoccur-
rence for very large L are low. They are supplied by aftershock

-
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sequences with high concentrations in L x L cells. Such sequences
are few for a period of T =20 yr. hence the estimation of proba-
bilities of large values Of L maybe extremely unstable. The Levy
metric can be informally defined as follows.

Consider theplots ofthe distribution functions F1(x) and F2(X)-
In the case under consideration, they correspond with the distribu-
tions of log . for different L. Let us connect the plots with the

help of any manner of straight segments having a common direc-
tion (-1). The upper bound to the lengths of these segments is
assumed to be the Levy distance between F1 and F2. We are con-

sidering the family ofdistributions oflog i. withL = 10, 20,40, 80
and 100.

0.5

- 0.0

x

The largest ofthe pairsofdistances is taken to representthe scatter
8, for the distributions of log . that are related to the exponent c

(see segments (a, ) in Fig. 6).
In Fig. 6(a) (the case p = 0), the quantity 8 is monotone de-

creasing with c increasing, reaching the minimumatc=2, which is
identical with thepredictedvaluec = f(0). The case p= 1 involves
a fine point (Fig. 6b), since the expected valuec = *(1) = 1.3 -1.4
lies within theinterval (1, 2). As c increases, the greatest discrepancy
betweenthe distributions is gradually getting from small . towards

larger L" The position of equilibrium is reached in the interval 1.1
c 1.35, formally at the point c= 1.2 where the minimum of8

is poorly pronounced. Even though the latter estimate ofc is rather
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diffuse, it can still be asserted that the two estimates based on dif-
ferent weights ofL x L cells are significantly different. We have to
remind that they ought to be identical for monofractal seismicity.

Fig. 6(a, b) thus fairly well corroborates our theoretical analy-
sis, and for this reason provides independent evidence in favour
of a multifractal behaviour of A(dglm = 2) in the range of scales
AL = (10-100) km. From Fig. 6(a) it also followsthat c=2 is a bet-
ter candidate for the suitable value ofc needed to scale distributions
ofA(L x L) than is c= 1.6 proposed by Corral (2003).

4 CONCLUSION

We startedby discussing the questionofthe bestscaling to beapplied
to the rate ofM> in events in an L x L cell, namely, the question
ofa suitable exponent c in the relation A(L x L) o L. We assumed
the hypothesis ofmultifractality for the measure ofrate X(dglm) to
show that the problem has no unique solution and requires that the
ultimate goal we are pursuing should be made more specific. For

example, the averaged value of?(L x L) over all non-empty cells
is scaled by using c = d0 where d0 is the box dimension of the

support of X(dglm), while the average value ofX(L x L) weighted
proportionally to seismicityrates in theL x L cells requires c=
whered2 isthe correlation dimension. Ifwe want the distributions of
the normalized .)(L x L)IL' to be close to one anotherfordifferentL
(theymayobey theunified law as the ideal case), then c = *(0) (see
Section 2.3). That same distribution can be constructed by taking
the weight of the L x L cell to be proportional to the rate in L
x L, i.e. in the same way as we did when finding the alternative
mean ofthe ?(L x L). Then c = d1 where d1 is the information
dimension.
The multifractalityhypothesis is a controversial subject. The dis-

cussion focuses on the reliability of estimates ofthe scaling indices

v(q) for the measure X(dglm). For this reason we have paid spe-
cial attention to the method to be used for estimating r(q) (see
Section 2.4). We used California seismicity (the ANSS catalogue,
2004) to show that A(dgm = 2) demonstrates multifractal be-
haviour in the range of scales AL = (10-100) km. To be more
exact, r(q) admits of a stable estimation for 0 q 3 in the
above range of AL, all the dimensions listed above being different:

(0) 2, d5 1.8, d1 1.35 and d2 1.1. Independent anal-

ysis of the distributions of X(L x L)/LC (with equal and unequal
weights) provides a fair corroboration ofthe theoretically predicted
value ofc at which the distribution is weakly dependent on L. The
prediction is exact for the case of equal weights (c = t(0) 2)
and is approximate otherwise, namely, 1.1 c 1.35 with the
theoretical value c = *(l) 1.3 - 1.4. That result makes the
multifractal hypothesis more plausible in the range ofscales AL =
(10-100) km.

For opponents of multifractality, one can express oneself in a
different manner: the result shows that the multifractal formalism
is effective in solving the problem of the spatial scaling of seis-

micity rate. An important place is occupied by the box counting
approach, which was used to estimate fractal dimensions. The ap-
proach well matches the problem we are considering, because both
ofthese cases are concerned with the values of .k(dglm) in squares
ofsize L belonging to a rectangular grid. Quite independent of any
interpretation tobe put on the final result, one can draw the follow-

ing practical inference: in situations where seismicity is scaled over

space, the exponent c must be treated as a parameter. At present,
the scaling is used in the analysis ofunified laws (Bak et al. 2002;
Corral 2003), in certain prediction techniques (Baiesi 2004), and
for aftershock identification (Baiesi & Paczuski 2004a,b).

	Wedidnottryto address the question ofhowtheparametercor, in
particular, the box dimension d0, depends on the cut-offmagnitude
m.Arigorous solution encounters great difficulties. As mincreases,
the straightforward analysis of scaling indices becomes difficult for
statistical reasons (see the example in Fig. 3). \Vhen large events are
concerned, source dimension should be taken into account. Forthis
reason, similarity considerations will call for greater sampling area,
and this will leadtoproblems with catalogues. The theory developed
in Gorshkov et al. (2003) as to the occurrence oflarge earthquakes
on high-rank lineaments and their intersections provides an indi-
rect indication that the dimension d0 must decrease with increasing
magnitude. On an earthwide scale great earthquakes occur at plate
boundaries, and the plate dimension in the same scale is naturally
associated with 1, when one deals with intersections ofplates with

the Earth's surface. On the whole the above hypothesis calls for
serious statistical testing.
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