

Workshop on "Technology and Applications of Accelerator Driven Systems (ADS)"

17 - 28 October 2005

1677/2

Design Acceleator for ADS

Alex C. Mueller CNRS, Orsay - Paris, France

DESIGN OF ACCELERATORS FOR ADS

Alex C. MUELLER

CNRS/IN2P3 Division Accélérateurs IPN Orsay mueller@ipno.in2p3.fr

and as Barrier Secol.

Alex C. MUELLER

INSTRUT NATROSAL DE PERSEQUE NUCLÉARE ET DE PHYSIQUE DES PARTICULES

1

DESIGN OF ACCELERATORS FOR ADS

Chapter 1 Introduction to the Accelerator World

Introductory Remarks & Literature
Acceleration of charged particles
Why we need particle accelerators
History and Livingston chart
Example of a charged particle source
Electrostatic Accelerators
From Electrostatic to RF Acelerators

Introductory Remark

My lecture series "DESIGN OF ACCELERATORS FOR ADS" aims at providing:

- 1) an introduction to the field of particle accelerators
- 2) some more insight into linear accelerators, chosen by PDS-XADS as reference solution for ADS applications
- 3) a discussion of the principles of "overdesign, redundancy and fault-tolerance required for "ADS-class" accelerators
- 4) an overview on the R&D presently under way in the context of technological validation (IPHI, warm and SCRF cavities) within 6FP project EUROTRANS
- 5) information on Radioprotection, Budget and Roadmap towards XT-ADS

My thanks for help go to many colleagues of the Accelerator Division at IPN Orsay, the colleagues of the European Projects PDS-XADS and EUROTRANS, and Prof. Carlo Pagani (INFN and U Milano), together with whom I gave a lecture a few years ago, and reused some material.

useful literature: some "older" textbooks.....

- M. Stanley Livingston
- J.J. Livingood
- M. Stanley Livingston and J. B. Blewett
- K.G. Steffen
- H. Bruck
- M. Stanley Livingston (editor)
- A.A. Kolomensky & A.W. Lebedev
- E. Persico, E. Ferrari, S.E. Segre
- P.M. Lapostolle & A.L. Septier

A.D. Vlasov

High Energy Accelerators (Interscience Publishers, 1954) Principles of Cyclic Particle Accelerators (D. Van Nostrand Co Ltd , 1961) Particle Accelerators (Mc Graw Hill Book Company, Inc 1962) High Energy Optics (Interscience Publishers, J. Wiley & sons, 1965) Accelerateurs Circulaires de Particules (PUF, Paris, 1966) The Development of High Energy Accelerators (Dover Publications, Inc. N. Y. 1966) Theory of Cyclic Accelerators (North Holland Publihers Company, Amst. 1966) **Principles of Particles Accelerators** (W.A. Benjamin, Inc., 1968) Linear Accelerators (North Holland Publihers Company, Amst. 1970) Theory of Linear Accelerators (Program for scientific translations, Jerusalem 1968)

..... and some "more recent" textbooks

M. Conte, W.W. Mac Kay	
P. J. Bryant and K. Johnsen	
D. A. Edwards, M. J. Syphers	
H. Wiedemann	(
M. Reiser	
A. Chao, M. Tigner	ł
K. Wille	٦

E.J.N. Wilson

An Introduction to the Physics of Particle Accelerators (World Scientific, 1991) The Principles of Circular Accelerators and Storage Rings (Cambridge University Press, 1993) An Introduction to the Physics of High Energy Accelerators (J. Wiley & sons, Inc, 1993) Particle Accelerator Physics (Springer-Verlag, Berlin, 1993) Theory and Design of Charged Particles Beams (J. Wiley & sons, 1994) Handbook of Accelerator Physics and Engineering (World Scientific, 1998) The Physics of Particle Accelerators: An Introduction (Oxford University Press, 2000) An introduction to Particle Accelerators (Oxford University Press, 2001)

... and of course also the lectures of the CERN accelerator schools CAS

IAEA ADS-workshop, Trieste, Italy, October 16-25 2005

The cathode ray tube: a "complete accelerator at home"

Alex C. MUELLER

Accelerating Particles (I)

ere Karawan ng Persung Neurolaw

IAEA ADS-workshop, Trieste, Italy, October 16-25 2005

7

Accelerating Particles (II)

schematic Accelerator User Source view An accelerator has the following principal components • a source of charged particles electrons, protons, heavy ions, special case: positrons & anti-protons accelerating elements electrostatic columns or radiofrequency cavities which provide the electric fields giving the energy to the particle (beam) beam guiding elements mainly magnetic, in order to maintain (focus) the beam on the wanted trajectory and to provide the orbit (closed for a synchrotron) in the case of a circular machine • as most important ancillary systems vacuum and beam diagnostics high vacuum is needed to avoid perturbation of the beam by collisions with residual gas, and beam diagnostics assure the monitoring of the beam trajectories the user installation (often complex) experimental set-ups including targets, spectrometers, detectors

(often complex) experimental set-ups including targets, spectrometers, detectors special case: secondary beams produced by a nuclear reaction (e.g.: neutrons) or an electromagnetic process (e.g.: photons by Bremsstrahlung / Synchrotron Radiation)

Accelerators & Fundamental Physics

Elementary Constituents of Matter

- <u>discovery</u> and measurement of their <u>properties</u> by the high-energy accelerators, allowing the establishment of the "Standard Model"
- prominent example from LEP, CERN: there are exactly 3 families of neutrinos, this has important cosmological consequences

matter constituents

r = 1/2, 3/2, 5/2,							
Leptons spin = 1/2				Quarks spin = 1/2			
Flavor	Mass GeV/c ²	Electric charge		Flavor	Approx. Mass GeV/c ²	Electri charge	
ve electron neutrino	<1×10 ⁻⁸	0		U up	0.003	2/3	
e electron	0.000511	-1		d down	0.006	-1/3	
ν_{μ} muon neutrino	<0.0002	0		C charm	1.3	2/3	
$oldsymbol{\mu}$ muon	0.106	-1		S strange	0.1	-1/3	
$ \nu_{\tau} {}^{\text{tau}}_{\text{neutrino}}$	<0.02	0		t top	175	2/3	
$oldsymbol{ au}$ tau	1.7771	-1		b bottom	4.3	-1/3	

EEDMIONS

Spin is the intrinsic angular momentum of particles. Spin is given in units of \hbar , which is the quantum unit of angular momentum, where $\hbar = h/2\pi = 6.58 \times 10^{-25} \text{ GeV s} = 1.05 \times 10^{-34} \text{ J s}.$

Electric charges are given in units of the proton's charge. In SI units the electric charge of the proton is 1.60×10^{-19} coulombs.

The **energy** unit of particle physics is the electronvolt (eV), the energy gained by one electron in crossing a potential difference of one volt. **Masses** are given in GeV/ c^2 (remember $E = mc^2$), where 1 GeV = 10⁹ eV = 1.60×10⁻¹⁰ joule. The mass of the proton is 0.938 GeV/ c^2 = 1.67×10⁻²⁷ kg.

Alex C. MUELLER

Bosons, the Carriers of Forces

- famous experiments with the CERN accelerators, for which Carlo Rubbia and Simon van der Meer received the Nobel prize, discovered in 1983 the W^{+/-}, Z⁰ Bosons, mediators of the weak force, which makes a nuclear reactor working
- note, part of the award was for <u>stochastic cooling</u> = accelerator physics!!

Figure from: http://www.particleadventure.org

Unified Electroweak spin = 1 Mass Electric Name GeV/c² charge Y 0 0 photon W-80.4 -1 W^+ 80.4 +1 70 91,187 0

BOSONS force carriers spin = 0, 1, 2, ...

Strong (color) spin = 1					
Name	Mass GeV/c ²	Electric charge			
g gluon	0	0			

Color Charge

Each quark carries one of three types of "strong charge," also called "color charge." These charges have nothing to do with the colors of visible light. There are eight possible types of color charge for gluons. Just as electr

cally-charged particles interact by exchanging photons, in strong interactions color-charged particles interact by exchanging gluons. Leptons, photons, and **W** and **Z** bosons have no strong interactions and hence no color charge.

Quarks Confined in Mesons and Baryons

One cannot isolate quarks and gluons; they are confined in color-neutral particles called **hadrons**. This confinement (binding) results from multiple exchanges of gluons among the color-charged constituents. As color-charged particles (quarks and gluons) move apart, the energy in the color-force field between them increases. This energy eventually is converted into add tional quark-antiquark pairs (see figure below). The quarks and antiquarks then combine into hadrons; these are the particles seen to emerge. Two types of hadrons have been observed in nature: **mesons** $q\bar{q}$ and **baryons** qqq.

Residual Strong Interaction

The strong binding of color-neutral protons and neutrons to form nuclei is due to residual strong interactions between their color-charged constituents. It is similar to the residual elec trical interaction that binds electrically neutral atoms to form molecules. It can also be viewed as the exchange of mesons between the hadrons.

Alex C. MUELLER

Towards Unification.....?

Interaction	Gravitational	Weak	Electromagnetic	Str	ong
rioperty	Gravitational	(Electroweak)		Fundamental	Residual
Acts on:	Mass – Energy	Flavor	Electric Charge	Color Charge	See Residual Strong Interaction Note
Particles experiencing:	All	Quarks, Leptons	Electrically charged	Quarks, Gluons	Hadrons
Particles mediating:	Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons	Mesons
Strength relative to electromag 10 ⁻¹⁸ m	10-41	0.8	1	25	Not applicable
for two u quarks at: 3×10 ⁻¹⁷ m	10-41	10-4	1	60	to quarks
for two protons in nucleus	10 ⁻³⁶	10 ⁻⁷	1	Not applicable to hadrons	20

Figure from: http://www.particleadventure.org

Note in passing,

- that accelerators have have been the prime instruments for providing the experimental proof for the Standard Model, containing the the weak, electromagnetic and strong force
- that among the next milestones might be the observation of supersymmetric particles at LHC, and the observation of proton decay in underground laboratories
- that experiments at nuclear reactors also play a very important rôle, a typical example has been the precise measurement of the neutron decay time at ILL
- that the mediator of Gravitation is not yet observed, and that e.g. INFN and CNRS have just buildt at Pisa the VIRGO experiment, a 3 km long high-precision interferometer for observing gravitational waves.

Accelerators & the Universe (I)

- All the <u>particles</u> which make up every day matter had <u>yet to form</u>, but presently, the universe has expanded to billions of light years.
- The <u>Quarks and Gluons</u>, today locked up inside the protons and neutrons, were <u>then to hot</u> to stick together. Matter in this state is called the <u>Quark Gluon plasma</u>, <u>QGP</u>.
- To create the Quark Gluon Plasma in the laboratory, scientists must collide <u>ions</u>, atoms stripped of electrons, into each other at <u>very high energy</u>, squeezing the protons and neutrons together to make them melt.
- It is the aim of the future LHC experiment <u>ALICE</u> to create these conditions and study them.

Accelerators & the Universe (II)

- the <u>rapid proton (rp) and neutron (r)</u> cap ture generate very short-lived nuclei
- the nuclear structure properties of these nuclei are often unknown.
- yet their <u>masses</u>, <u>decay-properties</u>, <u>re-action cross sections</u> critically <u>determine</u> the isotopic abundance (in the figure, note the difference between normal and quenched shell structure)
- this is a very important physics goal for present & future accelerators like GANIL, GSI, SPIRAL-II, FAIR, EURISOL
- the <u>high-intensity</u> EURISOL accelerator has remarkably similar specifications to the one for the ADS!

- <u>nuclear astrophysics</u> studies the nuclear reactions which happen in stars
- the reactions give rise to the <u>energy production</u> and make the <u>chemical elements</u>, "isotopic abundance", our world is made of
- the left figure shows, e.g. the <u>abundance produced in</u> <u>the r-process</u>, believed to happen when <u>supernovae</u> <u>explode</u> (black = measured abundance)

Some Accelerator Applications

a <u>microscope</u> of supreme resolving power

- photons and neutrons for research in solid state and atomic physics, novel materials, chemistry, biologie, etc.
- ultra-sensitive trace analysis by accelerator mass-spectrometry, -> dating, environment surveillance

a radiation source for

ners Naroza de Porsene Nortéan

micro-lithography, sterilisation of food and other materials, inducing chemical reactions

IAEA ADS-workshop, Trieste, Italy, October 16-25 2005

Some Milestones for Accelerators

20th century, Prehistory: fundamental discoveries made with "beams" from radioactive first 25 years sources (Rutherford!) trigger the demand for higher energies • from 1928 Cockcroft&Walton develop a 700kV electrostatic accelerator based on a voltage multiplier, Van de Graaff uses a charge conveyor to reach 1.2MV. to 1932 1928 first Linac by Wideroe based on Ising's concept of resonant acceleration. 1929 Lawrence invents the cyclotron. MacMillan, Oliphant & Veksler develop the synchrotron 1944 1946 Alvarez builts a proton linac with Alvarez structures (2π mode) • 1950 Christofilos patents the concept of strong focusing 1951 Alvarez conceives the tandem 1954 Courant, Livingston and Snyder implant strong focusing at the Brookhaven Cosmotron Synchrotron (and learn with disappointment about Christrofilos's patent) Kerst stresses in a paper the concept of a collider, but physics with use-1956 ful event-rates was much later (e.g. in the 80's with the SppS) Kapchinski & Telyakov invent the radio-frequency quadrupole (RFQ). 1970 superconducting magnets for cylotrons and synchrotrons considerably boost the performance (energy for size), in particular for colliders early 80's Geller's ECR sources are implanted at many heavy ion accelerators and from mid 80's greatly improve reliability and energy range (they deliver high q) the last years the development of superconducting accelerating cavities provides very high power conversion efficiency, and CW operation for high luminosity

The Livingston Chart

- Around 1950, <u>Livingston</u> made a quite remarkable observation:
- Plotting the <u>energy</u> of an accelerator as a function of its <u>year of construction</u>, on a <u>semi-log</u> scale, the energy gain has a linear dependence.
 - 50 years later, that still holds true.
- In other words, so far, builders of accelerators have managed <u>exponential growth</u>, every ten years, roughly a factor of 33 is won.
- Note that for a given "<u>family</u>" of accelerators, generally, <u>saturation of maximum energy</u> sets in after some time.

Alex C. MUELLER

IN 2 P 3

ISSUER NATIONAL OF PRIME NEEDSAN

How to make charged particles (here ions)

Ions are produced in a ionized gas ('plasma')

In thermal equilibrium the Saha equation describes the amount of ionization in a gas

$$\frac{n_i}{n_n} \approx 3 \times 10^{27} \frac{\left(k_B T\right)^{3/2}}{n_i} e^{-\frac{I_j}{k_B T}}$$

Conization energy: I_i (j: charge state)

Highly stripped ions require high plasma temperatures and good plasma confinement.

High ion currents are achieved for lower charge states ions.

Transparency from a lecture by O. Boine-Frankenheim, GSI

Charged Particle Sources: Example of the ECR source

Electrostatic Accelerators (I)

Starting from the "elementary cell" of acceleration, (recalled left), an electrostatic accelerator is an insulating column

- At its entry side, an <u>ion source injects</u> the charged particles
- Between the entry and the exit, (here target B)
 a <u>continuous high voltage</u> is applied, mediated
 by <u>intermediate electrodes</u> for a smooth and
 regular increase of the electric field
- In a <u>Cockroft&Walton Accelerator</u>, a rectifiermultiplier produces the high-voltage applied to the column, see upper right figure.
- This allows to reach high beam currents, of interest for many applications, but the voltage is practically limited to somewhat above 1 MV, because of breakdown of insulation. Such high voltage is quite a matter of technology knowledge, see lower right figure

Electrostatic Accelerators (II)

- how to increase the voltage for electrostatic acceleration?
- the concept of <u>charge transport</u> (see left) has been introduced by R. J. van de Graaff
- a <u>comb-like electrode (1)</u> sprays charges on an <u>insulating conveyor belt</u> (the high-voltage generator typically being again a rectifier multiplier)
- The conveyor transports the charges inside the sphere-shaped terminal (3), which forms in fact a Faraday cage
- The charges are collected by a second, comb-like, electrode (2) which is connected to the sphere
- consequently, the charges accumulate on the outside of the sphere and the inside get charge free, ready to accept further charging
- In practice, one can reach up to <u>25 MV</u>, provided one uses (expensive) <u>SF₆ gas</u> for limiting breakdowns

Electrostatic Accelerators (III) : the Tandem

Analysing

magnet

Pressure

tank

- consecutive to the <u>HV ter-</u> <u>minal</u>, a second accelerator column is installed leading back to ground potential
- a <u>stripper</u> is installed at the terminal through which the beam particles have to pass
- this principle works only for the injection of negative ions because of the stripping process
- however, at typical terminal voltages, several electrons can be stripped off, considerably augmenting the energy gain of the second section
- Such a Tandem (see right the SF₆ pressure vessel of the machine at <u>IPN Orsay</u> containing conveyor and accelerating column), can continuously accelerate any <u>charge-to-mass ratio</u> with an <u>excellent beam energy spread</u>, but it is limited in intensity.

High-voltage

terminal

• The Orsay Tandem is presently much used for measuring <u>fission and capture cross</u> <u>sections of actinides</u> for Reactor Physics in the context of GEDEPEON activities.

Negative

source

ion

From Electrostatic to RF acceleration

- consider an element of an <u>accelerating co-</u> <u>lumn</u> of an electrostatic accelerator
- at any moment, the <u>electric field</u> is in the <u>same direction</u>, allowing <u>continuos</u> <u>acceleration</u>
- consider now such a column, but driven with an <u>alternating voltage</u>, in such way that consecutive electrodes are connected to opposite polarity of the RF generator
- suppose now, that the <u>RF frequency</u> is such that it accelerates the particle between electrodes 1&2 (and also 3&4), whereas the field is opposite, at that moment, between accelerating gaps, 2&3 and 4&5, respectively
- if this particle arrives now at the gap between 2&3, precisely, when the RF has changed to opposite phase, acceleration occurs again, and so on.
- note, that while the polarity change occurs, the particle is in the field-free space of the <u>drift tube</u> of such a Wideroe linac. Further, <u>to stay in phase</u> with the RF, as the speed of the particle increases, the lenght of the <u>drift tubes</u> has to increase

Linacs, towards the next Lecture

- on the preceeding slide, the <u>Wideroe</u> <u>linac</u> operating in the π mode was introduced, but it is also possible to run at <u>higher harmonic</u>, e.g. in the 2π mode
- in order to minimise the <u>RF power</u> deposited in the structures, the gaps and drift tubes form cavities resonant to the RF frequency

in the 2π mode, the currents circulating in the wall separating two subsequent cavities cancel, hence one can suppress this wall. This gives the Alvarez-structure of the classical DTL

Historical examples: a Wideroe type structure (ALICE heavy ion injector, IPN Orsay)

a drift tube linac (DTL) (Saturne, Saclay)

DESIGN OF ACCELERATORS FOR ADS

Chapter 2 RF Accelerators

- Basic Concepts
- RF Linacs: Protons and Electrons
- The Resonant Cavity
- Longitudinal and transverse focusing
- Generalities on Circular Accelerators
- Synchrotrons
- Cyclotrons
- Intrinsic Limits of Cyclotrons (for ADS)

Basic Concepts: Energy

Energy of a relativistic particle

 $E = m c^2$

E = total energy m = relativistic mass c = speed of light

$$m = \gamma m_0$$
 $E_0 = m_0 c^2$
 $\gamma = (1-\beta^2)^{-1/2}$ $\beta = v/c$

m₀ = rest mass v = particle speed

Kinetic energy, T, and momentum, p, of a relativistic particle

T = m c² (γ - 1) = E - E₀ **p** = m v = m₀ γ v

 $E^{2}/c^{2} = p^{2} + m_{0}^{2}c^{2}$ $p \approx mc \quad \text{if } v \approx c$

 $\frac{E \approx m_0 c^2 + \frac{1}{2} m_0 v^2}{\text{Usetul numbers:}}$

 $m_0 c^2$ = rest energy $\frac{1}{2} m_0 v^2$ = classical kinetic energy

Speed of light: c = $2.9979 \cdot 10^8 \text{ ms}^{-1}$ Energy unit: 1eV = $1.6021 \cdot 10^{-19}$ joule Electron rest energy: $E_0 = 0.511 \text{ MeV}$ Proton rest energy: $E_0 = 938 \text{ MeV}$

Basic Concepts: Fields

Equation of motion and Lorentz force

$$\vec{F}_{Lorentz} = rac{dp}{dt} = q \cdot (\vec{E} + \vec{v} \times \vec{B}) = \vec{F}_{el} + \vec{F}_{mag}$$

Electric field can transfer energy to the particles

$$\Delta \mathsf{E} = \Delta \mathsf{T} = \int \vec{\mathsf{F}}_{Lor} \bullet \mathsf{d}\vec{\mathsf{s}} = \mathsf{q} \cdot \int \vec{\mathsf{E}} \bullet \vec{\mathsf{v}} \cdot \mathsf{d}\mathsf{t}$$

Magnetic field can guide the beam in a stable path

All Particle Accelerators are based on these rules

- The beam moves inside a vacuum chamber
- Electromagnetic objects placed on the beam path perform the tasks
 - Magnets guide the beam on the chosen trajectory and produce focusing
 - Resonant RF cavities are used to apply the electric accelerating field
 - The few exceptions are: Betatron, RFQ and Electrostatic Accelerators

Block diagram of an RF Linac

IAEA ADS-workshop, Trieste, Italy, October 16-25 2005

28

The linac is a resonance accelerator

- An RF source is used to generate an electric field in a region of a resonant metallic structure
- The particles of the beam need to be localized in *bunches* and properly phased with respect to the field so that the beam is accelerated

$$\frac{d(\gamma m_{o}c^{2})}{ds} = qE_{z}(s,t)$$

In order to keep acceleration along the linac this synchronism condition needs to be maintained.

Alex C. MUELLER

Electrons and Protons

electron and proton masses

 $E_{0,proton}\approx 2000~E_{0,electron}$

- A proton varies its velocity on a much higher kinetic energy range
- "Synchronous" condition for a multicell cavity:

 $L = \frac{\Lambda_{RF}\beta}{2}$

- The cell length depends on the particle velocity.
- Synchronism is exact only for a given velocity value.

Cavities operated in a velocity range.

- For electrons all RF cavities are identical
- For protons, cavity geometries follow the particle velocity, that is the particle β.
- Below $\beta \approx 0.5$, special structures are required

Alex C. MUELLER

The resonant cavity

An ideal cavity is a vacuum region surrounded by infinitely conducting walls

 $\begin{cases} \nabla \cdot \mathbf{E} = \mathbf{0} \\ \nabla \cdot \mathbf{B} = \mathbf{0} \\ \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \times \mathbf{B} = \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \end{cases}$

$$\nabla^{2} \left\{ \begin{matrix} \mathbf{E} \\ \mathbf{B} \end{matrix} \right\} - \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \left\{ \begin{matrix} \mathbf{E} \\ \mathbf{B} \end{matrix} \right\} = \mathbf{0}$$

Maxwell equations can be solved only when the boundary conditions are given For a perfect conductor: $\begin{cases} \mathbf{n} \cdot \mathbf{B} = \mathbf{0} \\ \mathbf{n} \times \mathbf{E} = \mathbf{0} \end{cases}$

Assuming a field of the form (uniform section):

$$\begin{bmatrix} \mathbf{E} \\ \mathbf{B} \end{bmatrix} = \begin{cases} \mathbf{e}(\mathbf{x}, \mathbf{y}) \\ \mathbf{b}(\mathbf{x}, \mathbf{y}) \end{cases} \exp[i(\mathbf{\omega} \mathbf{t} - \beta \mathbf{z})]$$

The transverse components are functions of the derivatives of the longitudinal

 $\begin{cases} \mathbf{e}_{x} = -\mathbf{i}/\mathbf{k}_{c}^{2}(\beta\partial\mathbf{e}_{z}/\partial x + \omega\partial\mathbf{b}_{z}/\partial \mathbf{y}) \\ \mathbf{e}_{y} = \mathbf{i}/\mathbf{k}_{c}^{2}(-\beta\partial\mathbf{e}_{z}/\partial \mathbf{y} + \omega\partial\mathbf{b}_{z}/\partial \mathbf{x}) \\ \mathbf{b}_{x} = \mathbf{i}/\mathbf{k}_{c}^{2}(\omega/c^{2}\partial\mathbf{e}_{z}/\partial \mathbf{y} - \beta\partial\mathbf{b}_{z}/\partial \mathbf{x}) \\ \mathbf{b}_{y} = -\mathbf{i}/\mathbf{k}_{c}^{2}(\omega/c^{2}\partial\mathbf{e}_{z}/\partial \mathbf{y} + \beta\partial\mathbf{b}_{z}/\partial \mathbf{x}) \end{cases}$

$$\nabla_{\perp}^{2} \begin{cases} \boldsymbol{e}_{z} \\ \boldsymbol{b}_{z} \end{cases} + \boldsymbol{k}_{c}^{2} \begin{cases} \boldsymbol{e}_{z} \\ \boldsymbol{b}_{z} \end{cases} = 0$$
$$\boldsymbol{k}_{c}^{2} = \frac{\boldsymbol{\omega}^{2}}{c^{2}} - \boldsymbol{\beta}^{2}$$

boundary conditions Cavity Eigenmodes

A simple resonator: the pillbox

- Simplest geometry: Axysimmetrical cilindrical cavity
- Neglecting the beam holes for particle transmission the wave equations can be solved exactly

- Two families of solutions are possible (Zoology of cavity modes)
 - In fact, all the possible cylindrical circular waveguide modes propagating in the axial direction with an integer number of half guide wavelength between the plates
- B_z=0 (Transverse magnetic modes: TM_{mnl}) these are the accelerating modes
- $E_{7}=0$ (Transverse electric modes: TE_{mnl}) are the deflecting modes

Pattern of the E and B fields in the TM₀₁₀ mode

Alex C. MUELLER

Realistic multicell cavities

- In order to efficiently accelerate the beam, *multicell resonators are used*, by periodically repeating the resonant structure and providing coupling between the different cells. Any geometry can be computed with existing numerical codes
 - The simplest coupling is represented by the E field through the beam hole (capacitive coupling)
- The beam needs to keep the relative phase with the field

Transit Time Factor

8

Proton Case: $\Delta W_{kin} = qE_{acc}L_{cav}T_{N}(\beta_{c},\beta_{p})\cos\Phi_{s}$

$$T_{N}(\beta_{c},\beta_{p}) = \frac{4}{\pi N} \frac{\sin\left(N\frac{\pi}{2}\left(1-\frac{\beta_{c}}{\beta_{p}}\right)\right)}{1-\left(\frac{\beta_{c}}{\beta_{p}}\right)^{2}}$$

Alex C. MUELLER

- The energy gain of the particle depends on:
 - The accelerating field
 - The operating synchronous phase Φ_s
 - The velocity mismatch between the particle velocity and the synchronous velocity in the cavity
- For protons Φ_s must be 20÷30° for phase stability
- For high N values the Transit Time Factor is too narrow, i.e. The cavity works efficiently in a small velocity range: N = 5 or 6 is the good choice
- Filling Factor improves with N
 - Compromise between space efficiency and velocity acceptance
- E_{acc} is limited by peak fields!

Efficient use of the cavities

- In order to efficiently design a linac it is necessary divide it in sections, each using a different cavity geometry in an energy range
- If N is big, too many sections are needed (low velocity acceptance). Conversely if N is too small the filling factor is penalized

Example for a LINAC with order of magnitude energy of 1 GeV (i.e. ADS,...)

Transition energies at 190 MeV and 430 MeV: **S1:** 100 P 190 MeV (β =0.47, i.e. 145 MeV) **S2:** 190 P 430 MeV (β =0.65, i.e. 296 MeV) **S3:** 430 P 1600 MeV (β =0.85, i.e. 843 MeV)

Increasing β :

- Higher accelerating field
- Longer cavities

Greater energy gain!
Longitudinal stability

- Bunch passing cavity: centre of bunch called the "synchronous particle"
- Particles "see" a voltage of
 - For synchronous particle
 - Particles arriving early see
 - Particles arriving late see

$$\phi < 0$$

 $\phi_s = 0$ (no acceleration)

 $V_0 \sin 2\pi \omega_{rf} t = V_0 \sin \phi(t)$

- energy of those in advance is decreased and vice versa: "Bunching"
- To accelerate, make $0 < \phi_s < \pi$ $\Delta E = qV_0 \sin \varphi_s$
- For longitudinal (phase) stability, make $-\pi/2 < \phi_s < +\pi/2$

Alex C. MUELLER

Not all particles are stable. There is a limit to the stable region (the separatrix or "bucket") and, at high intensity, it is important to design the machine so that all particles are confined within this region and are "trapped".

Transverse "Strong Focusing"

- Alternating gradient (AG) principle (1950's)
- A sequence of focusing-defocusing fields provides a stronger net focusing force.
- Quadrupoles focus horizontally, defocus vertically or vice versa. Forces are proportional to displacement from axis.
- A succession of opposed elements enable particles to follow stable trajectories, making small oscillations about the design orbit.
- Technological limits on magnets are high: iron saturation and dissipated power for high current
- Superconducting magnets are required for high field
- Solenoids are preferred at low energy, with high space charge forces: continuous focusing

Thin lens analogy of AG focusing

A system of AG lenses can focus in both planes

LEP quadrupole (CERN)

Circular accelerators: useful Definitions & Formulas (I)

Useful Definitions & Formulas (II)

the preceding formulas allow to write

$$\mathbf{p} = \mathbf{q} \mathbf{B} \rho$$
 and $\mathbf{W}^2_{\text{total}} = (\mathbf{q} \mathbf{c} \mathbf{B} \rho)^2 + \mathbf{W}^2_0$

thus, the final energy obtainable in a circular machine is essentially depending on the $B\rho$, called the magnetic rigidity, one, in fact, often uses the average magnetic rigidity $B_m \rho$, integrated over the orbit and which takes into account that one may have, for technological (or other!) reasons locally a different (in particular no) magnetic field.

Energy Gain in Circular Accelerators

• from the formula for the total energy one obtains, by differentiation, an expression a change in energy $\delta W = \delta W_{total} = \delta W_{kin}$

$$2 \delta W W = 2 q c (q c B_m \rho) (\rho \delta B_m + B_m \delta \rho)$$

which, after some "simple" operations gives

Alex C. MUELLER

ere National de Pressure Northau

$$\delta W = (2\pi \rho / \delta t) q (\rho \delta B_m + B_m \delta \rho)$$

= 2π ρ q (ρ B_m + B_m ρ)

• a <u>synchrotron</u> is a machine with $B_m \rho = 0$ • a <u>cyclotron</u> is a machine with $\rho B_m = 0$

Properties of Synchrotrons (I)

Properties of Synchrotrons (II)

- synchrotrons accelerate up to the highest energies, determined by the bending fields (today, superconducting magnets approach B = 10T) and radius of the machine, recall W [MeV] = 300 Q B ρ [Tm], and it can be used as a collider
- a synchrotron is a <u>pulsed machine</u>, typical repetition rates are about 1 Hz
- the implantation of the principle of <u>strong focusing</u> (see preceding lecture) in synchrotrons allows the acceleration of <u>quite strong beams</u>, in fact, up to about 10¹⁴ charges can be extracted, corresponding to internal beams circulating in the Ampère-regime.
- The low-duty factor, however, makes that the time averaged intensities are in the μA range, and therefore, a synchrotron is not considered for ADS
- the <u>major components</u> of a <u>synchrotron</u> (photo: MIMAS, SATURNE)
- the <u>bending</u> elements, magnetic dipoles
- the <u>focusing</u> elements, magnetic quadrupoles
- the <u>accelerating</u> elements, RF cavities

IAEA ADS-workshop, Trieste, Italy, October 16-25 2005

The CERN Synchrotrons, until recently...

Aerial view of the CERN site with an indication of the circular LEP tunnel

- starting with the "historic" PS, operating since the sixties, CERN constitutes the world's largest complex of interconnected synchrotrons
- CERN's synchrotrons accelerate very different type of particles: electrons, positrons, protons, antiprotons and heavy ions
- LEP "was" a 2 x 100 GeV electron-positron collider

LHC, CERN's future Accelerator

ATI AS ALICE PS SPS From LEP to LHC Superconducting magnets LHC-B CMS Compact Muon Solenoid Energy Luminosity Beams LEP 200 GeV 1032 cm-2s-1 e+ e-TeV 1034 14 р р LHC Pb Pb 1312 TeV 1027

The Large Hadron Collider (LHC)

Proton-Proton (2835 x 2835 bunches) Protons/bunch 1011 7 TeV (7x1012 eV) Beam energy Luminosity 1034 cm-2 s-1 Bunch Crossing rate 40 MHz Proton Collisions ≈ 107 - 10º Hz Parton (quark, gluon) Higgs Particle iet SUSY jet Selection of 1 in 10,000,000,000,000

Collisions at LHC

Construction of Main LHC Components

- Presently, LHC is in the phase of mounting all the components in the tunnel
- First beam is expected in 2007
- Shown photos are related to the French "exceptional contribution" (contracts CEA-CERN-CNRS)
 - many other countries, including non-member states make also very important contributions

String 2", prototype section containing the superconducting dipole magnets

"SSS 3" the Straigt Short Sections contain the superconducting focusing quadrupoles

Prototype Cryo- > genic plant (compressors and pumps) for the superfluid helium

LHC: some recent photos

Descente de la première SSS le 19 avril 2005

Installation du toroïde d'ATLAS

Transport dans le tunnel par véhicule à guidage optique Arrivée sur la position d'installation

Properties of Cyclotrons (I)

Properties of Cyclotrons (II)

Properties of Cyclotrons (III)

IAEA ADS-workshop, Trieste, Italy, October 16-25 2005

A Recent Cyclotron: SPIRAL @ GANIL

Alex C. MUELLER

IN 2 P 3

lesante National de Prengie Nociélies ny de Fussique dus Panadeure

- the <u>SPIRAL facility</u> (collaboration: IN2P3 CEN-Bordeaux, CEA Bruyères, IN2P3 LPC-Caen, GANIL, IN2P3 IPN Orsay, CEA Saclay, LNS SATURNE), uses the <u>GANIL facility</u>, (coupled cyclotrons, K=380, 100 MeV/A) as "driver"
- from a <u>target-ion source</u> system radioactive ions are produced and extracted by the ISOL method (see left)
- the ions are the <u>post-accelerated</u> by the most recently built large (K=265) research cyclotron CIME (collaboration GANIL, IPN Orsay), see

below right, its operational range is shown left

transmission optimised (up to 50%), secondary beam intensities can reach up to 10⁹ pps in a mass range up to A=100

the <u>SPIRAL facility</u> has come into operation for physics since 2001

The PSI cyclotron facility

accelerating cavity

sector magnet

- The <u>K=590 cyclotron</u> of the <u>PSI</u> <u>facility</u> is a 8 separated sector machine with 4 accelerating cavities
- The <u>injection energy</u> of 70 MeV is provided by another cyclotron
 - The accelerator is in operation <u>since the 1970's</u>, and has been very carefully optimised for this long period
 - The <u>exceptional experience</u> gained at PSI allows now to approach an intensity of almost 2 mA
- These high current 590 MeV proton beams feed the <u>SINQ</u> <u>spallation neutron source</u>
- The SINQ <u>solid metal</u> target will be temporarily replaced by the protoypical (e.g. for an ADS) molten metal target MEGAPIE (see left)

IAEA ADS-workshop, Trieste, Italy, October 16-25 2005

Cyclotrons for ADS ?

lower half of the six sector magnets of the 350 MeV cyclotron proposed for the MYRRHA project by the accelerator building firm IBA

- cyclotrons more compact and "cheaper"
- cyclotrons are limited in max. energy
- cyclotrons, because of weak focusing are intrinsically limited to much lower beam intensities than linacs
- cyclotrons have much less potential for "ADS-class" operation than linacs, it is difficult to build a machine according to the principles of <u>overdesign</u>, redundancy, "spare-on-line" and maintainability

PSI is today accelerating 1MW and makes important efforts to log, analyse and cure its beam trips

- Based on a PSI extrapolation feasibility of 4-5 MW (Calabretta), even 10 MW (Stammbach) at 1 GeV are claimed, the so-called "dream-machine", however critics have expressed concern that this is pushing beyond the limit, in particular since (for ADS) contradictory requirements need to be fulfilled (e.g. the large increase of energy gain per turn is opposite to increased reliability, the extraction losses pose a problem of maintainability, the compactness makes protoyping difficult...)
- Certain experts feel, that for reliability, electrostatic elements are to be avoided, but the solution of <u>H⁻ extraction by stripping</u> has to high losses according to experience from TRIUMF
- H_2^+ acceleration (followed by "stripping" = break-up into two protons) can be a solution (it doubles the external intensity) but, according to $W_{kin}/A = K (Q/A)^2$ the prize to pay is a 4 times larger accelerator
- <u>Funneling</u> of several cyclotrons poses the problem of the funnel, and is costly

DESIGN OF ACCELERATORS FOR ADS

Chapter 3 Acceleration of High Intensities: SCRF Cavities

- Energy gain and dissipated power
- Superconducting Cavities, Basics
- "Colds" vs. "Warm"
- SC Cavities, Technology, Fabrication & Tests
- ADS: the TWG
- From TWG to the 5PCRD PDS-XADS

Energy gain and dissipated power

To accelerate particles efficiently, very high electric field is required

$$\Delta \mathsf{E} = \Delta \mathsf{T} = \int \vec{\mathsf{F}}_{Lor} \bullet d\vec{s} = q \cdot \int \vec{\mathsf{E}} \bullet \vec{\mathsf{v}} \cdot d\mathsf{t}$$

In any structure (cavity) holding an electromagnetic field, both dissipated power and stored energy scale quadratically with the fields

• The efficiency of a cavity depends from:

Its quality factor, Q

driven by the surface resistance, R_s

• Its shunt impedance, r function of the cavity geometry and of the surface resistance, R_s

$$\mathbf{Q} = \frac{\mathbf{\omega}\mathbf{U}}{\mathbf{P}_{\mathsf{diss}}}$$

$$=\frac{(\Delta V)^2}{P}$$

rdiss

- U is the energy stored in the cavity
- P_{diss} is the power dissipated on its surface
 - ΔV is the voltage seen by the beam

 $\frac{\mathbf{r}}{\mathbf{Q}} = \frac{(\Delta \mathbf{V})^2}{\omega \mathbf{U}}$ "r over Q" is purely a geometrical factor

• For efficient acceleration Q, r and r/Q must all be as high as possible

- Good material for maximum Q and r (that is minimum P_{diss})
- Good design for maximum r/Q

Cavity lumped circuit model and $R_{\rm S}$

• A cavity at the fundamental mode has an equivalent resonant lumped circuit

$$L = R = C \qquad w_0 = \frac{1}{\sqrt{LC}} \quad Q = w_0 RC \qquad w_0 = 2\pi f_0$$

$$P_{diss} = \frac{V^2}{2R}$$
• Q determines the frequency band Δf

$$\Delta f = \frac{f_0}{Q}$$
• R proportional to Q determines P_{diss}
• R depends inversely from the cavity R_s through a geometrical factor
$$R \propto \frac{1}{R_s}$$

 In practice, for a given geometry and a given accelerating field the surface resistance R_s plays the crucial role of determining the dissipated power, that is the power required to sustain the field

Superconducting cavities

Why superconducting cavities ?

Intrinsic advantage of cold cavities

Almost no losses on the cavity wall (thanks to superconductivity)

 \Rightarrow ~100% of the injected RF power goes to the beam : very high efficiency !!!

Operating cost gain as compared to warm structures (which dissipate ~10⁵ times higher)

Possibility to accelerate CW beams or beams with a high duty cycle (> 1 %) with high accelerating gradients (impossible with warm structures)

Possibility to relax the constraints on the cavity RF design: choosing larger beam port aperture is possible => reduction of the activation hazard = security gain

High potential for reliability and flexibility

Main drawback : need to be operated at cryogenic temperature

SC Cavity : basics and recall of lecture 2 (I)

(1) <u>An electric field is created on the beam axis</u>, and is available to accelerate charged particles

Alex C. MUELLER

SC Cavity : basics and recall of lecture 2 (II)

(2) <u>The charged particle enter the</u>: for an efficient acceleration, the particle should be synchronized with the RF wave

SC Cavity : basics and recall of lecture 2 (III)

SC Cavity : basics and recall of lecture 2 (IV)

(3) <u>Beam acceleration</u>: particles should be bunched and synchronized with the electromagnetic wave

"Cold" vs. "Warm": the winner takes it all (1)

Alex C. MUELLER

"Cold" vs. "Warm": the winner takes it all (II)

a "warm" and "cold	Comparison between " solution for a high intensity	y proton linac
Cavin 5 cellu	té 700 MHz β=0,65 Iles (protons 10mA) Cavité niobium (2K)	Cavité Cuivre (300K)
Surface resistance R _s (ideal)	20 nΩ (3,2 nΩ)	7 mΩ
Quality factor Q ₀ (ideal)	10 ¹⁰ <i>(6.10¹⁰)</i>	3.104
E _{acc} (theoretical)	10 MV/m (44 MV/m)	2 MV/m
Beam power P _{beam}	60 kW	12 kW
Dissipated power / cavity P _{cav}	16 W @ 2K	218 kW @ 300K
RF power / cavity P _{RF} = P _{beam} + P _{cav}	60 kW	230 kW
Power taken to the grid P _{AC}	125 kW	400 kW
Accelerator efficiency P _{beam} / P _{AC}	48 %	3 %
Number of cavity to agin 100 MeV	17 (about 30m)	85 (about 80m)

SC Cavities: Technological Considerations

SC Cavities: Limits

Various SC cavities for different particle velocity

SC cavity : fabrication

<u>Spoke cavity</u> β = 0.35 f = 352.2 MHz

SC cavity technology: preparation and test

SC Cavity : cold tuning system

ur Narska av Presser Northa

IAEA ADS-workshop, Trieste, Italy, October 16-25 2005

Power couplers (I)

Power couplers (II)

Power couplers (III)

One example : Performances of a spoke cavity

ere Kanasaa ne Persune Neurian

2nd example : Performances of TESLA cavity

ADS: Accelerator Driven (subcritical) System for transmutation of nuclear waste

Both critical reactors and sub-critical Accelerator Driven Systems (ADS) are potential candidates as dedicated transmutation systems.

Critical reactors, however, loaded with fuel containing large amounts of MA pose safety problems caused by unfavourable reactivity coefficients and small delayed neutron fraction.

ADS operates flexible and safe at high transmutation rate (sub-criticality not virtue but necessity!)

Burning (Breeding) Efficiency of different reactor types

Alex C. MUELLER

TWG: a European ADS Roadmap

A European Roadmap for Developing Accelerator Driven Systems (ADS) for Nuclear Waste Incineration

April 2001

The European Technical Working Group on ADS

The European Technical Working Group (members see below) issued in 2001 a Roadmap for Developing ADS (see left), with the propasal for a 100 MWth demonstrator.

Carlo Rubbia ENEA, Italy, Chair

Hamid Ait Abderrahim SCK-CEN, Belgium

Mikael Börnberg VTT, Finland

Bernard Carluec Framatome ANP, France

Guiseppe Gherardi, ENEA, Italy

Enrique Gonzalez Romero CIEMAT, Spain Waclaw Gudowski Royal Institute, Sweden

Gerhard Heusener FZK, Germany

Helmut Leeb Atominstitut, Austria

Werner von Lensa FZJ, Germany

Joseph Magill JRC, European Union

José Martinez-Val Madrid Polytech, Spain

Stefano Monti, ENEA, Italy Alex C. Mueller CNRS-IN2P3, France

Marco Napolitano INFN, Italy

Angel Pérez-Navarro LAESA, Spain

Massimo Salvatores CEA, France

José Carvalho Soares ITN Lisboa, Portugal

Jean-Baptiste Thomas CEA, France

IAEA ADS-workshop, Trieste, Italy, October 16-25 2005

TWG Report: Roadmap & Cost estimate

Table 2. Estimated costs (M€) for the development of a 100 MW_{th} accelerator driven system

A TWG subgroup elaborated the project PDS-XADS (see next slide) which was funded by the EU.

Year 2000+	1	2	3	4	5	6	7	8	9	10	11	12	Total
	5 th FP			6 th FP		7 th FP							
Basic & Support R&D	30			9	0		70			10		200	
Engineering Design	5		75		60		10		150				
Construction	0		80		300		7	0	450				
Fuel	0		10		120		5	0	180				
Total		35		21	55			5	50		1	10	980
R&D for Dedicated Fuel		5		7	0			7	<u>'0</u>		3	5	180*

* Estimated cost to 2012 for development of dedicated fuel & fuel processing

2001-2004: PDS-XADS as central P&T project

FP5 PDS-XADS*: Working Packages

*Contract N° FIKW-CT-2001-00179 (2001-2004) A collaboration between Industrial Partners and Research Organisations F: Framatome-F CNRS CEA I: Ansaldo INFN ENEA CRS4 **RFA:** Framatome-D FZK FZJ UFra Esp: CIEMAT Empresarios UPM B: SCK IBA Tractebel UK: NNC BNFL Pt: ITN S: KTH Sui: PSI PI: UMM NL: NRJ Eur: JRC coordinateur général : Framatome (B.Carluec, B.Giraud)

coordinateur accélérateurs: CNRS-IN2P3 (A.C. Mueller)

DESIGN OF ACCELERATORS FOR ADS

4th Lecture The ADS Accelerator

- Specifications for the XADS, a HPPA
- High-power proton accel. presently under construction
- The reference linac developed within PDS-XADS
 - R&D efforts
 - Maintenance & radioprotection
 - Costing & roadmap
- The reliability issue
- EUROTRANS
- The accelerator WP within EUROTRANS

The PDS-XADS Accelerator Group (WP3)

• WP3 partners

▲ Coordinator: CNRS-IN2P3 (F)

Participants: Ansaldo (I), CEA (F), ENEA (I), FANP (F), F GmbH (D), IBA (B), INFN (D), ITN (Pt), U. Frankfurt (D)

Main WP3 objectives

- Investigation of linac and cyclotron types with the main emphasis on the XADS requirements
- Examination of the XADS accelerator characteristics: reliability, availability, stability, power control & maintainability
- Definition of the R&D needs
- Choice of the reference accelerator type for XADS and for a long-term extrapolated industrial transmuter
- Definition of the road mapping of the ADS-class accelerators

6 Deliverables

♪ D9 - D47 - D48 - D57 - D63 - D80

XADS Accelerator Requirements

Proton Beam Specifications

- Defined by WP1
- ▲ 600 MeV, 6 mA max. for operation
- 10 mA for the demonstration of concept
- 350 MeV for the smaller scale
 XADS MYRRHA
- High reliability requirement: less than 5 beam trips > 1 sec per year

Accelerator requirements						
Max. Beam Intensity	6 mA					
Proton Energy	600 MeV					
Beam entry	To be defined					
Beam trip number	Less than 5 per year for the accelerator design Less than 50 per year for the reactor					
	design					
Beam type	CW, best solution Pulsed, back-up solution					
Beam power stability	±2%;					
Beam energy stability	± 1 %;					
Beam intensity stability	± 2 %;					
Beam footprint dimensions	± 10 %.					

 200 μs beam « holes » for online sub-criticality measurements

Alex C. MUELLER

Safety grade shutdown

ana Kanana ny Parsany Kordan

Specifications for different HPPA

HPPA: Machines en Construction (J-PARC)

HPPA: Machines en Construction (J-PARC)

ere Karana ar Persun Kordan

HPPA: Machines en Construction (SNS)

SNS à Oak-Ridge, prévu opérationel en 2006

HPPA: Machines en Construction (2: SNS)

The SNS Example

- Multicell structures have been built for the SNS project, for both the β =0.61 and the β =0.81 cavities
 - All tests reached the design goals with good margins
 - Industrial fabrication for all the SNS cavities is in progess
 - The actual RIA linac proposed design uses the SNS cavities adding a β=0.47 6-cell cavity section, as in the European scheme

Alex C. MUELLER

ur Narska af Presine Northa

Choice of the Generic Accelerator Type

Main technical answers

- Superconducting linac
 - No limitation in energy & in intensity
 - Highly modular and upgradeable (industrial transmuter)
 - Excellent potential for reliability (fault-tolerance)
 - High efficiency (optimized operation cost)
- ✤ Cyclotron
 - Attractive (construction) cost (?)
 - Required parameters at limits of feasibility ("dream machine")
 - Compact, but therefore not modular

• In complete agreement with findings of the NEA report:

- Cyclotrons of the PSI type should be considered as the natural and costeffective choice for preliminary low power experiments, where availability and reliability requirements are less stringent.
- CW linear accelerators must be chosen for demonstrators and full scale plants, because of their potentiality, once properly designed, in term of availability, reliability and power upgrading capability.

PDS-XADS Reference Accelerator Layout

Injector: LEDA at LANL

Source & RFQ were operat	tional in 1999!		LEC	DA RFQ:
			Beam current	100 mA (95 %)
LEDA Sou	rce:		Deem emittenee	0.22 π mm mrad
Proton Beam current	110 mA		beam emittance	0.17 π deg MeV
Total Beam current	130 mA	а та к	Final Energy	6.7 MeV
Reem emittenee		RFQ Concept	Length	8 m (4 sections)
beam emittance	U.2 x mm mrad			670 kW (beam)
Operating voltage	75 kV	$\vec{F}_{Lorentz} = \frac{dp}{dt} = q \cdot (\vec{E} + \vec{v} \times \vec{B}) = \vec{F}_{el} + \vec{F}_{mag}$	RF Power	1.2 MW (structure)
		and the second	Peak Field	1.8 Kilpatrick

Beam halo tests have been performed on the LEDA HEBT to compare simulation codes with experimental results

IAEA ADS-workshop, Trieste, Italy, October 16-25 2005

40

Linac Injector: TRASCO at INFN

۲

er Karawa er Presiner Northa

Injector: SILHI at Saclay

- The SILHI source is fully operationl
- ECR type: 110 mA, 95 keV

- Several reliability tests were performed on the source
 - 3 before extraction system changes: 99.96% availability (1 stop in 104 hours of operation)
 - 2 with new extraction system:
 99.8% availability (8 stops in 162 hours, automatic restarting in 2.5 min, MTBF=23.1 hours)

Injector: IPHI RFQ at Saclay

- IPHI RFQ under fabrication
- Two 1.3 Mw klystrons required
- First RFQ beam expected in 2007

View of the vanes from the low energy side

Picture of the first IPHI RFQ section ready for brasing

IPHI RFQ parameters:					
Beam current	100 mA (99.2%)				
Beem emittenes	0.2 π mm mrad T				
beam emittance	0.2 π deg MeV L				
Final Energ	5 MeV				
Length	8 m (3 sections)				
DE Power	500 kW (beam)				
kr fower	1.2 MW (structure)				
Peak field	1.7 Kilpatrick				

IPHI (collaboration CEA-CNRS-CERN)

Alex C. MUELLER

Reference Accelerator: Low Energy Section

		4	Tener.			5 reliability tests have been performed			
Parameters	Déc. 97	Mai 99	Oct. 99	March 01	June 01	3 with a limited extracted beam			
Energy (keV)	80	95	95	95	95	(old extraction system)			
htensity (mA)	100	75	75	118	114	and the 2 last ones with the new system			
Duration (h)	103	106	104	336	1.62	which limits beam losses on the			
Beam off number	53	24	1	53	7	electrodes.			
MTBF (h)	1.75	4	n. appl.	r# 6	23.1				
MTTR (mn)	6	5.3	2.5	** 18	2.5	Future test within EUROTRANS			
Uninterrupted bearn (h)	17	27.5	103	25	36	within the complete IPHI system			
Availability (%)	94.5	97.9	99.96	95.2	99.8	(SII HI + PEO) at 10 & 10 mA			
the second se	in the second second				20				
20 70 30 50 40 20 20	ailability : s 104,05 h	99,96%				Availability : 99.8 % For a 162 hour run			

Reference Accelerator: Low Energy Section

Superconducting CH-DTL
 Structure (U. Frankfurt)

ner Karaza ne Porsane Neerfan

Alex C. MUELLER

The O-order Design for PDS-XADS

SC Linac Section Parameters

	Section number						
	1	2	3	4	5		
Input Energy [MeV]	5	17	95	200	490		
Output Energy [MeV]	17	95	200	490	600		
Cavity Technology	Spo	oke	Elliptical				
Structure β_g	0.135	0.314	0.47	0.65	0.85		
Number of cavity cells	2	2	5	5	6		
Number of cavities	34	64	28	48	12		
Focusing type	SC quad	doublet	NC quad doublet				
Cavities/Lattice	1	2	2	3	4		
Synch Phase [deg]	-65 to -30	-30					
Lattice length [m]	1.3	1.9	4.2	5.8	8.5		
Number of lattices	34	31	14	16	3		
Section Length [m]	44.2	59.9	60.8	92.8	25.5		
<gradient> [MV/m]</gradient>	0.3	1.3	1.8	3.1	4.3		

Real Estate $\Delta E/m$ along the linac

rms emittances in the whole linac

Output beam with 30% mismatch

IAEA ADS-workshop, Trieste, Italy, October 16-25 2005

Reference Accelerator: High Energy Section

R&D on SC prototypical cavities by the WP3 partners

A Spoke cavities $\beta = 0.15$ & $\beta = 0.35$ (CNRS)

4 Elliptical cavities β = 0.5 & β = 0.65 (CEA-CNRS-INFN)

Reference Accelerator: Beam Line Transport

ere National de President Neurofan

IAEA ADS-workshop, Trieste, Italy, October 16-25 2005

Reliability Example - CEBAF

Lost Time Totals June'97-May'01

- Reliability must be improved for ADS applications
- The SC linac is modular and allows: overdesign, redundancy and "spare-on-line"
- Fast dedicated control electronics is crucial
- Beam can stay "on" when the linac is resetting itself to use spere-on line
- SC cavity technology proved to be the minor concern

Reliability Analysis

Main Conclusions on Reliability

- The cyclotron option for PDS-XADS does not seem to offer a sufficient perspective of reaching the requested reliability level
- No showstopper to reach high availability & high reliability with the XADS reference linac if over-design & redundancy are used
- Fault tolerance has been identified as key element in order to guarantee reliability by design and operation
 - Identification of the main component faults & estimate of their effect on the beam (not always straightforward)
 - Identification of strategies (and proper hardware systems) to deal with faults
 - Plans for the accelerator commissioning and maintenance
 - Reliability/availability allocation need to be examined with the constraints of legislation (safety aspects) & radioprotection

Fault Tolerance, a new concept uniquely applicable in a modular super conducting Linac

Fault tolerance in the independently phased SC sections is a crucial point because a few tens of RF systems failures are foreseen per year.

 \rightarrow An RF system failure induces phase slip (non relativistic beam)

 \rightarrow If nothing is done, the beam is always LOST

2. Linac retuning after the failure of a RF cavity or of a quadrupole

 \rightarrow Local compensation philosophy is used

Alex C. MUELLER

ightarrow In every case, the beam can be transported up to the high energy end without beam loss

Reliability, Feedback Systems & Maintenance

- The feedback systems has to provide the necessary energy stability, dealing with faults in order to reach the project goals (less than 5 beam trips per year)
 - Fast digital RF system can implement fault tolerance with respect to cavity fault by dealing fault set tables
 - Beam diagnostics is also an area of prime importance

- The maintenance strategy has to guarantee the reliability of the machine for more than 20 years
 - A It should guarantee the long-term validity of the linac prime criteria:
 - Over-Design / Redundancy / Fault Tolerance
 - A Need for an expert system :
 - Detecting faulty or out-of-order equipment
 - Planning of subsequent maintenance & management of the intervention time according to radioprotection

The next slides will present the conclusions of PDS-XADS related to maintenance and radioprotection of the accelerator, as well costing aspects and a proposed roadmap which contains a 4 year on experimental reliability qualification of key components.

Then we come back to the discussion reliability/fault tolerance in some more detail.

In the hope that this is a wise decision as far as pedagogic is concerned......

Reliability & Maintenance

• The maintenance strategy is presently under investigation, assuming 3 months of operation / 1 month of maintenance

PDS-XADS-WP3				Seve	rity Ranking Table	es					
Deliverable 48		Local effect		Effect on beam							
Chapter 4		0: No effect			0: Beam with nom	inal parame [.]	ters on targ				
4.3.1 H+ source		1: Functionning	with	reduc	1: Beam with wror	ng paramete	ers on target				
		2: Loss of fun	ction		2: No beam on tai	•get					
Main Items	Function	Failure Mode	verity	y rank	Prevei	ntive action	1	Curative action		Rem	
			local	beam	action	freq.	time of int.	action	time of int.		
Boron nitride discs		Wear	1	1	Replace	6 months	24 H	Replace	24H		
Vacuum pumps		Wear	1	2	Regenerate	24 months					
·		Out of order	2	2	-			Replace	8H		
Power supply filters		Get dirty	0	0	Clean	3 months	few min				
Power supply		Aging	0	0	Overhaul	24 months	few weeks			Use spare while overhauling	
Cooling (water): filters, pumps		Wear / dirty	0	0	Clean						
Plasma electrode		Aging	1	1	Replace	12 months	24H				
Magnetron		Out of order	2	2	Replace	24 months	2H	Replace	2H	Replace "before MTBF"	
HV power supply		Out of order	2	2	Oil changing	24 months	8H	Replace	8H		
Extraction electrodes		Aging	1	1	Replace	24 months	48H				
Security devices :											
Water flow controller		get dirty			cleaning	12 months	30 min	Replace	2H		
Temperature controller		Out of order			Systematic tests	12 months	few min	Replace	8H	could be doubled	
Emergency stop		Out of order			Systematic tests	12 months	1 H	Replace	1 H		
DGPT		Out of order			Systematic tests	12 months	1 H	Replace	8 H		

XADS: Safety Aspects & Radioprotection*

• Legal framework

- A Recommendations: ICRP publication 60
- ✤ European Directive 96/29/Euratom
- European Union: analysis of national legislations
 - Belgium
 - France
 - Germany
- Very similar requirements from national legislations for an XADS facility, in particular:
 - Public enquiry
 - Decommissioning plan
- Belgium: more restrictive definition of « radiation worker »
- Accelerator shielding philosophy based on the ALARA principle
 <u>As Low As Reasonably Achievable</u>

*study performed within "Deliverable D48" by Paul Berkvens and S.Palanque relying on Moyer's model

XADS-Accelerator Shielding Design

600 MeV XADS: Shielding for Normal Operation and for Commissioning

Figure 6.1 – Minimum earth profile above a 60 cm concrete tunnel (blue curve) corresponding to a beam loss rate of 1 nA.m⁻¹ at 600 MeV for a residual dose rate of 0.5 Sv.h⁻¹. Red curve: corresponding realistic earth profile. Dose rates are calculated for a beam loss rate of 100 nA.m⁻¹ at 600 MeV.

600 MeV Beam Stop and Accelerator Activation

Iron shielding for a 600 MeV beam dump as a function of the beam power, required to reduce the dose rate outside a 60 cm concrete building, covered with 550cm of earth, below $0.5 \ \mu Sv.h^{-1}$.

Radioactivity produced per meter along the highenergy part of the accelerator for a 1 $nA.m^{-1}$ beam loss, as a function of the decay time, for 4 different values of the irradiation time.

Dose rates at 50 cm from the beam axis, along the high-energy part of the accelerator for a 1 nA.m⁻¹ beam loss, as a function of the decay time, for 4 different values of the irradiation time.

Extrapolation to a 1 GeV industrial transmuter

Figure 10.1 - Required earth thickness between 600 MeV and 1 GeV for four different values of the concrete shield wall thickness (30 cm, 60 cm, 90 cm and 120 cm respectively), for a linear beam power loss of 1 nA.m⁻¹.

ISSUER NATIONAL DE PRESENTE NEUERAL OR PRESSORT DES PARADE

61

Safety Aspects: Application to MYRRHA @ Mol

Alex C. MUELLER

ur National de Presider Neuréau

Roadmap for the XADS-Accelerator (D63)

Cost Estimates for the Accelerator

Major sub-syster	Costs (M€)	• Inclue	des internal a	nd				
Low Energy *	46	exter	external man-power					
Intermediate Energy		18						
High Energy		57	• does	• does not include				
RF Power System		45	purch	purchase of land				
HEBT + Beam dump (500 kW	')	21	basic	infnactnuctur	-			
Diagnostics + Vacuum + Cont	trol System	54	Dusic	Dasic intrastructures				
Cryogenic plant		20	(roda	s, ottice dulla	ings,			
Production assembly Hall of c	avities	12	cantir	cantine, water and				
Total Estimated Costs (M€)		273 electricity to t boundary of th						
* including 2 Injector lines Remarks:	Buildings		Civil Engineering	Electricity & HVAC distrib.	Total			
1) 350 MeV cheaper	Front - End		7 000	3 000	10 000			
1) JJO Mer cheuper	Linac tunnel	-	4 500	1 500	6 000			
2) does an XT-ADS	Klystron Hal		3 000	7 000	10 000			
need double injector?	Central Liqui	ifier	600	900	1 500			
	Production a	issembly Hall	1 250	1 250	2 500			
 3) Possible savings from a well suited site Total (k€) 			16 350	<mark>13 650</mark>	30 000			

RF systems have been identified as one of the critical areas*:

- Uncertainties on MTBF (most by engineering judgement)
- Not enough operation of 700 MHz CW RF sources
- Several subcomponents with low MTBF
- High "parts count"

```
1 RF system each cavity.
Redundancy (at expenses of operational cost and complexity)
If all are in series MTBF<sub>series</sub> = MTBF<sub>comp</sub>/N
```

Need to achieve fault tolerance to RF faults

*nb: this is true for <u>all</u> RF accelerators

Critical area: the RF system

Group	Components	Typical MTBF	Component	Num	MTBF, khr	Failures year	MTTR, hr	Down Time/
Tubes (power amplifier)	Klystrons, IOT, Solid State	~ 50 000 h	SNS	lber				year, hr
		Klystron Wave	Klystron	81	50	9.72	4.5	43.7
			Wave	81	150	3.24	3.0	9.72
DE nowan componente	Windows, waveguides,	50,000, 150,000 h	Guide					
Ri power components	circulators, loads	50 000150 000 M	Load	81	75	6.48	3.0	19.4
			Circulator	81	50	9.72	3.0	29.2
			Converter/	7	22.6	1.86	4.0	7.43
Low Level RF	Pre-amps, VCO, mixers, phase shifters	100 000 h	Modulator					
			Transmitter	14	5.6	15	3.0	45.0
			Window	81	100	4.68	24.0	116.6
Transmitters	Auxiliary PS, interlocks, monitoring	5 000 10 000 h	LLRF	81	100	4.68	2.0	9.73
			Totals			55.7		280.8
HVPS	Oil tanks, HV passive components	20 00050 000 h	Table 4. D Conducting (own t SRF)	ime alloca RF System	tion for the	e 805 MHz	z, Super

Consequences of cavity failure

We have a non-relativistic proton beam

Any energy loss will imply a phase slip along the linac increasing with the distance, beam can get out of stability region

$$\delta \varphi = 2\pi \left(\frac{\delta z}{\lambda} \right) \left(\frac{\delta \beta}{\beta^2} \right)$$

 β is the beam velocity λ the RF wavelength $\delta\beta$ the velocity loss at δz

most critical sections

If the synchronous phase or/and the accelerating field is too high, the beam is TOO LATE & leaves the stability region: the beam is lost

Beam dynamics simulation with TraceWin

Need to have linac design that can handle the loss of one or several cavities

The modularity of our LINAC makes this possible because we have <u>INDEPENDENTLY PHASED structures</u>

We need to find procedure that use the neighbouring cavities to compensate phase/energy beam offset

These procedures should then be integrated in RF control system

Fault-tolerance: Cavity retuning (Biarrotte & thesis Lukovac)

Study has been applied to most representative cavities in all in all sections (beginning, half and end of each section)

In every case, the beam can be transported up to high energy with 100% transmission, small emittance growths, nominal parameters

Only for E < 10 MeV increase above 30% is necessary

	#		Final	Emittance g	rowth (%)	the forest and a state of	Mars Allana	Max	Max	tt unterned and the
1	faulty cavity	section	energy	Transv.	Long.	(bef + aft)	Max AEacc (%)	or B _{pk} (EL)	∆Power (%)	# retuned quads (bef + aft)
	0	-	Nominal	+ 5 %	0 %	-	-	-	-	-
	1	SP 0.15	Nominal	+7%	+ 4 %	0+4	+ 67 %	19 MV/m	+ 67 %	0 + 4
	2	SP 0.15	Nominal	+9%	+ 12%	1+3	+ 90 %	19 MV/m	+ 68 %	0 + 4
in all	3	SP 0.15	Nominal	+ 10%	+ 12%	2 + 3	+ 94 %	21 MV/m	+ 56 %	4 + 2
	4	SP 0.15	Nominal	+9%	+ 4 %	3 + 3	+ 46 %	15 MV/m	+ 35 %	2 + 4
ning,	19	SP 0.15	Nominal	+ 6 %	+ 6 %	2 + 3	+ 38 %	24 MV/m	+ 48 %	2 + 2
aach	20	SP 0.15	Nominal	+9%	+ 4 %	3 + 2	+ 37 %	26 MV/m	+ 58 %	2 + 2
euch	35	SP 0.15	Nominal	+ 6 %	0 %	2 + 3	+ 20 %	32 MV/m	+ 27 %	2 + 2
	36	SP 0.15	Nominal	+ 7 %	+ 4 %	3+3	+ 22 %	34 MV/m*	+ 32 %	2 + 2
	37	SP 0.35	Nominal	+ 6 %	0 %	3+2	+ 22 %	35 MV/m*	+ 34 %	2 + 2
	38	SP 0.35	Nominal	+7%	+ 6 %	3+4	+ 29 %	31 MV/m	+ 26 %	2 + 2
0	39	SP 0.35	Nominal	+ 5 %	+ 5 %	4 + 2	+ 24 %	36 MV/m*	+ 35 %	4 + 2
•	61	SP 0.35	Nominal	+ 6 %	+ 2 %	2 + 3	+ 25 %	31 MV/m	+ 26 %	2 + 2
n he	62	SP 0.35	Nominal	+ 6 %	0 %	2 + 2	+ 26 %	31 MV/m	+ 28 %	2 + 2
	63	SP 0.35	Nominal	+ 5 %	+ 1 %	3+2	+ 25 %	31 MV/m	+ 27 %	2 + 2
un to	94	SP 0.35	Nominal	+ 6 %	+ 2 %	3+3	+ 16 %	29 MV/m	+ 18 %	4 + 2
ap io	95	SP 0.35	Nominal	+ 7 %	- 1 %	3 + 3	+ 22 %	31 MV/m	+ 29 %	4 + 2
with	96	SP 0.35	Nominal	+ 5 %	+ 1 %	4 + 2	+ 21 %	30 MV/m	+ 25 %	4 + 2
	97	EL 0.47	Nominal	+ 6 %	0 %	3 + 3	+ 18 %	59 mT	+27 %	4 + 2
	98	EL 0.47	Nominal	+ 6 %	0 %	3 + 2	+ 23 %	62 mT	+ 31 %	4 + 2
	109	EL 0.47	Nominal	+ 6 %	0 %	3 + 3	+ 20 %	60 mT	+ 28 %	4 + 2
	110	EL 0.47	Nominal	+ 6 %	0 %	3 + 2	+ 20 %	60 mT	+ 29 %	2 + 2
	123	EL 0.47	Nominal	+ 6 %	0 %	2 + 4	+ 20 %	60 mT	+ 26 %	4 + 2
nco	124	EL 0.47	Nominal	+ 6 %	0 %	3 + 3	+ 19 %	60 mT	+ 28 %	4 + 2
ILE	125	EL 0.65	Nominal	+ 5 %	0 %	2 + 3	+ 18 %	59 mT	+ 27 %	4 + 2
ninal	126	EL 0.65	Nominal	+ 5 %	0 %	3+4	+ 21 %	61 mT	+ 20 %	4 + 2
innui	127	EL 0.65	Nominal	+ 5 %	0 %	3+3	+ 21 %	61 mT	+ 25 %	4 + 2
	146	EL 0.65	Nominal	+ 5 %	0 %	3+3	+ 18 %	59 mT	+ 22 %	4 + 2
	147	EL 0.65	Nominal	+ 6 %	- 1 %	3+4	+ 19 %	60 mT	+ 22 %	4 + 2
	148	EL 0.65	Nominal	+ 6 %	- 1 %	3+3	+ 20 %	60 mT	+ 22 %	4 + 2
	173	EL 0.65	Nominal	+ 5 %	0 %	3+4	+ 17 %	59 mT	+ 19 %	4 + 2
	174	EL 0.65	Nominal	+ 5 %	0 %	3+3	+ 18 %	59 mT	+ 22 %	4 + 2
	175	EL 0.65	Nominal	+ 5 %	0 %	4+4	+ 17 %	59 mT	+ 18 %	4 + 2
	176	EL 0.85	Nominal	+ 5 %	0%	3+5	+ 18 %	59 mT	+ 22 %	4 + 2
	177	EL 0.85	Nominal	+ 5 %	0 %	4+4	+ 18 %	59 mT	+ 20 %	4 + 2
	178	EL 0.85	Nominal	+ 5 %	0 %	5+4	+ 18 %	59 mT	+ 19 %	4 + 2
1e	179	EL 0.85	Nominal	+ 5 %	0 %	6+4	+ 17 %	59 mT	+ 16 %	4 + 2
	184	EL 0.85	Nominal	+ 5 %	0 %	4+3	+ 17 %	59 mT	+ 29 %	2 + 2
sarv	185	EL 0.85	Nominal	+ 6 %	0 %	5+2	+ 19 %	60 mT	+ 30 %	2 + 2
	186	EL 0.85	Nominal	+ 7 %	0 %	6+1	+ 21 %	61 mT	+ 33 %	2 + 2
	187	EL 0.85	Nominal	+ 6 %	0 %	7+0	+ 25 %	63 mT	+ 37 %	2 + 2

Fault tolerance: Low Level RF Fast Feedback System

one selected example:

Tests of all components for a cryomodule : LLRF digital system + RF power coupler + SPOKE cavity in horizontal cryostat foreseen for beginning 2007

From FP5 PDS-XADS to FP6 EUROTRANS

IN2P3

From FP5 PDS-XADS to FP6 EUROTRANS

EUROTRANS-PCC: Tasks & Members

- J.U. Knebel (FZK), coordinator H.A. Abderrahim (SCK), DM1 Design S. Monti (ENEA), DM2 ECATS
- S. Pillon (CEA), DM3 AFTRA
- C. Fazio (FZK), DM4 DEMETTRA
- E. Gonzalez (CIEMAT), DM5 NUDATRA
- B. Giraud (FANP), Industry
- L. Cinotti (ANSALDO), Industry
- A.C. Mueller (CNRS), Accelerator
- M. Giot (ENEN), Universities

- Technical co-ordination of the project work programme,
- Preparation, where necessary, of revisions to the detailed work programmes,
- Approval of the IP Instruction Book and the QA Guidelines,
- Preparation of the updated Implementation Plan and associated financial plan for the EC,
- > Identification of technical and scientific problems and/or issues,
- Identification of technical developments, which are related to patents and the development of design, component or process issues,
- Review and approve the contractually required interim and progress reports,
- Proposing technical workshops, technical meetings, etc.

The accelerator within EUROTRANS-DM1

WP1.3: ACCELERATOR

GOAL:

HPPA development, and in particular, qualification of the reliability of the prototypical components

CO-ORDINATING CONTRACTOR:

CNRS (F) – Alex C. Mueller

DM1 DESIGN WP1.3 - Accelerator	TOTAL WP1.3					
	Cons. k€	PM	Total k€	EU request $k \epsilon$		
P5-CEA (F)	170	67	840	420.0		
P8-CNRS (F)	180	138	1560	780.0		
P13.4-IAP-FU (D)	75	27	345	172.5		
P13.12-UPM (SP)	3	4	43	21.5		
P18-IBA (B)	182	20	382	191.0		
P19-INFN (I)	480	65	1130	565.0		
P21-ITN (P)	10	10	110	55.0		
P31-FANP GmbH (D)	3	2	23	11.5		
Total WP1.3	1103	333	4433	2216.5		

1 PM = 10k€

RED: Leading Organization in this Work Package

Injector Reliability

GOAL:

The injector IPHI, developed by CEA and CNRS, will be used for a long run test to demonstrate on a real scale the reliability of the injector part.

CO-ORDINATING CONTRACTOR:

CEA (F) – Raphaël Gobin

MILESTONES:

M1.3.1: Specifications for the long test run (+9)

- M1.3.2: Injector operational for test (+18)
- M1.3.3: Experimental tests accomplished (+36)
- M1.3.4: Final report: results and analysis (+39)

	Task 1.3.1 Experimental evaluation of the proton injector reliability				
DM1 DESIGN WP1.3 - Accelerator					
	Cons. k€	PM	Total k€		
P5-CEA (F)	140	38	520		
P8-CNRS (F)	0	15	150		
P13.4-IAP-FU (D)	0	0	0		
P13.12-UPM (SP)	0	0	0		
P18-IBA (B)	0	0	0		
P19-INFN (I)	0	0	0		
P21-ITN (P)	0	0	0		
P31-FANP GmbH (D)	0	0	0		
Total WP1.3	140	53	670		

DELIVERABLES:

D1.3.1: Preliminary short report. Specifications of the long test runs (CEA, +9)

D1.3.2: Intermediate progress report on injector status and proposed test schedule (CEA, +18)

D1.3.3: Final report on results and analysis (CEA, +39)

Intermediate-energy Section

TASK 1.3.2	DM1 DESIGN WP1.3 - Accelerator	Task 1.3.2 Assessment of the reliability performances of the intermediate energy accelerating components				
COAL		Cons. k€	PM	Total k€		
GUAL.	P5-CEA (F)	0	1	10		
Evaluation of room-temperature cavities and	P8-CNRS (F)	50	24	290		
superconducting equities performances, reliability and cost	P13.4-IAP-FU (D)	70	24	310		
superconducting cavilies performances, reliability and cost.	P13.12-UPM (SP)	0	0	0		
Determination of the energy transition from where on	P18-IBA (B)	170	15	320		
doubling of the injector is no longer required for reliability.	P19-INFN (I)	0	0	0		
	P21-ITN (P)	0	0	0		
CO-ORDINATING CONTRACTOR:	P31-FANP GmbH (D)	0	0	0		
CNRS (F) – Tomas Junquera	Total WP1.3	290	64	930		

DELIVERABLES:

D1.3.4: Preliminary report. Specifications of the prototypes (IAP_FU, +6)

D1.3.5: Intermediate report on prototype test schedules (IBA, +18)

D1.3.6: Final report: tests results, synthesis and design proposals (CNRS, +42)

MILESTONES:

M1.3.7: Experimental results of prototypes performances (+39)

M1.3.8: Final report: synthesis and design proposals (+42)

M1.3.5: Specifications for prototypes (+6)

M1.3.6: Prototypes ready for test (+27)

High-energy Section

GOAL:

Design, construction and test of a full prototypical cryomodule of the high energy section of the proton linac.

CO-ORDINATING CONTRACTOR:

INFN (I) – Paolo Pierini

MILESTONES:

M1.3.9: Preliminary cryomodule specifications (+9)

M1.3.10: Cryomodule design finalized (+15)

- M1.3.11: Cryomodule is ready for test (+30)
- M1.3.12: Exptl. results of cryomodule performances (+39)

M1.3.13: Final report: synthesis and design proposals (+42)

	DM1 DESIGN WP1.3 - Accelerator	Task 1.3.3 Qualification of the reliability performances of a high energy cryomodule at full power and nominal temperature						
6		Cons. k€	PM	Total k€				
	P5-CEA (F)	0	1	10				
	P8-CNRS (F)	100	80	900				
	P13.4-IAP-FU (D)	0	0	0				
-	P13.12-UPM (SP)	0	0	0				
	P18-IBA (B)	0	0	0				
	P19-INFN (I)	440	60	1040				
	P21-ITN (P)	0	5	50				
	P31-FANP GmbH (D)	0	0	0				
	Total WP1.3	540	146	2000				

DELIVERABLES:

D1.3.7: Preliminary report: specifications for the cryomodule (INFN, +9)

D1.3.8: Report on cryomodule design and schedule (CNRS, +15)

D1.3.9: Final report: test results, synthesis and design proposals (INFN, +42)

Digital RF Control

TASK 1.3.4	DM1 DESIGN WP1.3 - Accelerator	Task 1.3.4Conceptual design of an RFcontrol system for fault tolerantoperation of the linearaccelerator			
		Cons. k€	PM	Total k€	
GOAL:	P5-CEA (F)	10	15	160	
	P8-CNRS (F)	0	5	50	
Modelling and VHDL analysis of a digital RF control system	P13.4-IAP-FU (D)	0	0	0	
fault tolerant operation of the linear accelerator. (Prototyping	P13.12-UPM (SP)	0	0	0	
an RF control unit is strongly recommended)	P18-IBA (B)	0	1	10	
	P19-INFN (I)	10	0	10	
CO-ORDINATING CONTRACTOR:	P21-ITN (P)	0	0	0	
CEA (E) – Michel Luong	P31-FANP GmbH (D)	0	0	0	
	Total WP1.3	20	21	230	
MILESTONES:	DELIVERABLES:				
M1.3.14: Preliminary RF control system specifications (+6)	D1.3.10: Preliminary specifications of the RF con system (CEA, +6)				
M1.3.15: RF control system modelling (+24)	D1.3.11: Report on RF control system modelling (CEA, +24)				
M1.3.16: Final report: VHDL architecture and synthesis (+42)	D1.3.12: Final report: VHDL architectures and synthesis (CEA, +42)				

Beam Dynamics and Overall Coherence

GOAL:

Overall coherence of the accelerator design, including beam dynamics simulations, integrated reliability analysis, and cost estimation.

CO-ORDINATING CONTRACTOR:

CNRS (F) – Jean-Luc Biarrotte

MILESTONES:

M1.3.17:General specifications (+6)M1.3.18:WP1.3 overall task review (+18)M1.3.19:Results of beam dynamic simulations (+30)M1.3.20:Reliability study experimental results (+39)M1.3.21:Integrated reliability analysis (+45)M1.3.22:Cost Analysis (+45)M1.3.23:Final report (+48)

DM1 DESIGN WP1.3 - Accelerator	Task 1.3.5 Overall coherence of the accelerator design, final reliability analysis, cost estimation of XT-ADS and EFIT				
	Cons. k€	PM	Total k€		
P5-CEA (F)	20	12	140		
P8-CNRS (F)	30	14	170		
P13.4-IAP-FU (D)	5	3	35		
P13.12-UPM (SP)	3	4	43		
P18-IBA (B)	12	4	52		
P19-INFN (I)	30	5	80		
P21-ITN (P)	10	5	60		
P31-FANP GmbH (D)	3	2	23		
Total WP1.3	113	49	603		

DELIVERABLES:

D1.3.13: General specifications for all the tasks (CNRS, +6)

D1.3.14: Beam dynamics simulations for fault tolerance (CNRS, +30)

D1.3.15: Report on integrated reliability analysis of the accelerator (INFN, +48)

D1.3.16: Final report: accelerator design, performances, costs for XT-ADS and EFIT and associated road map (CNRS, +48)

