

Workshop on "Technology and Applications of Accelerator Driven Systems (ADS)"

17 - 28 October 2005

1677/7

Examples of ADS Design II: The Energy Amplifier DEMO

Y. Kadi European Organization for Nuclear Research Geneva, Switzerland

LECTURES OUTLINE

- ✓ LECTURE 1: Physics of Spallation and Sub-critical Cores, Fundamentals (Monday 17/10/05, 16:00 – 17:30)
- ✓ LECTURE 2: Nuclear Data & Methods for ADS Design I (Tuesday 18/10/03, 08:30 - 10:00)
- ✓ LECTURE 3: Nuclear Data & Methods for ADS Design II (Tuesday 18/10/03, 10:30 - 12:00)
- ✓ LECTURE 4: ADS Design Exercises I & II (Tuesday 18/10/03, 14:00 - 17:30)
- ✓ LECTURE 5: Examples of ADS Design I (Thursday 20/10/03, 08:30 - 10:00)
- LECTURE 6:Examples of ADS Design II (Thursday 20/10/03, 10:30 – 12:00)
- ✓ LECTURE 7: ADS Design Exercises III & IV (Thursday 20/10/03, 14:00 - 17:30)

Examples of ADS Design II : The Energy Amplifier DEMO

Y. Kadi CERN, Switzerland

20 October 2005, ICTP, Trieste, Italy

LECTURE OUTLINE

SIMULATION OF THE ENERGY AMPLIFIER DEMONSTRATION FACILITY (EADF)

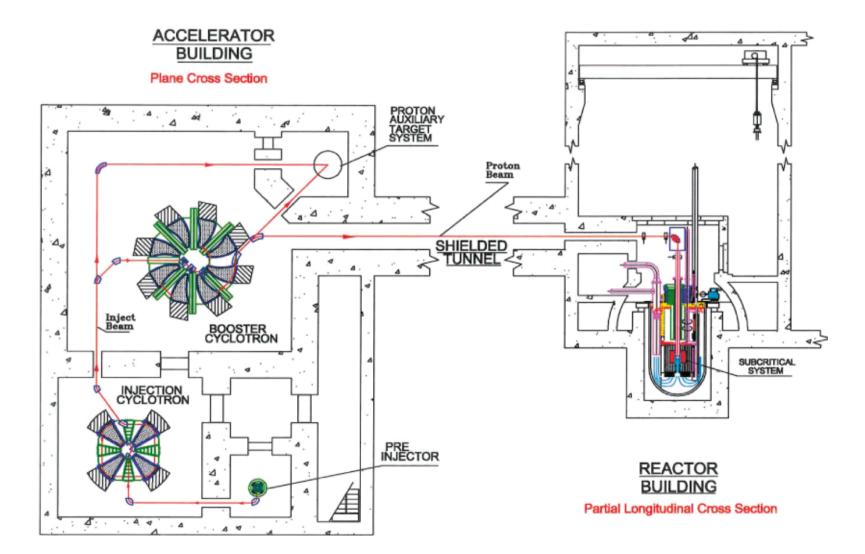
- Motivations
- Reference Configuration
- Global Neutronic Parameters
- Evolution of the Main Parameters with Burnup
- Minor Actinide Transmutation Studies

The Three Levels of ADS Validation

Three different levels of validation of an ADS can be specified:

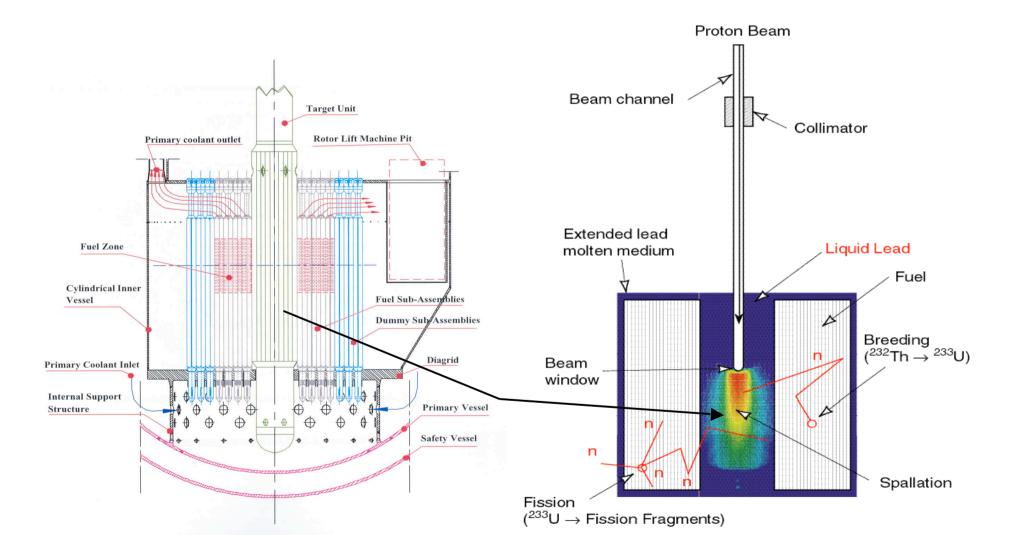
- First, validation of the different component concepts, taken separately (accelerator, target, subcritical core, dedicated fuels and fuel processing methods). In Europe: The FEAT, TARC, MUSE & YALINA experimental programs and the MEGAPIE project are significant examples.
- Second, validation of the coupling of the different components in a significant environment, e.g. in terms of power of the global installation, using as far as possible existing critical reactors, to be adapted to the objectives.
- Third, validation in an installation explicitly designed for demonstration (e.g. the ADS installation described in the European roadmap established by the Technical Working Group, chaired by prof. Rubbia). This third step should evolve to a demonstration of transmutation fuels, after a first phase in which the subcritical core could be loaded with "standard" fuel.

The Energy Amplifier Demonstration Facility

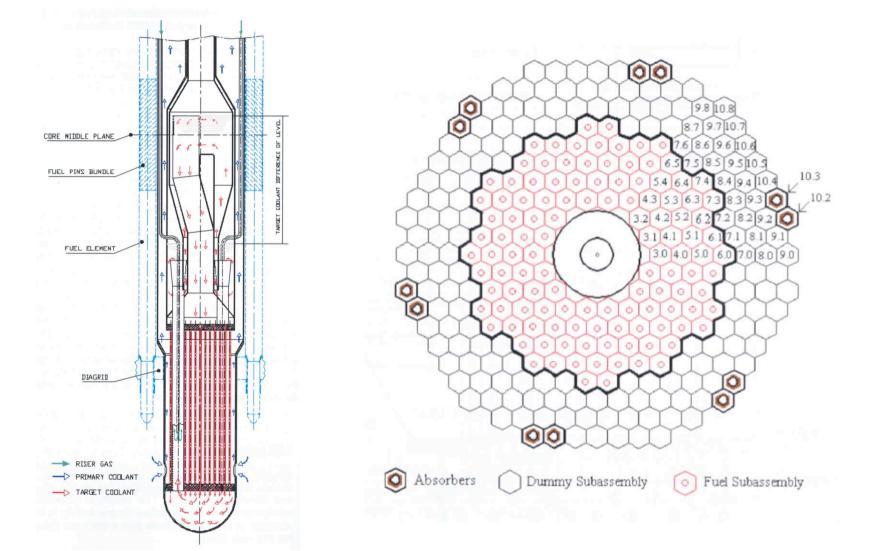

The key objective of the Energy Amplifier Demonstration Facility (EADF) is threefold:

- Demonstrating the technical feasibility of a fast neutron operated Accelerator Driven System (ADS);
- Lead-Bismuth Eutectic coolant;
- □ Incineration of TRUs and LLFF while producing energy.

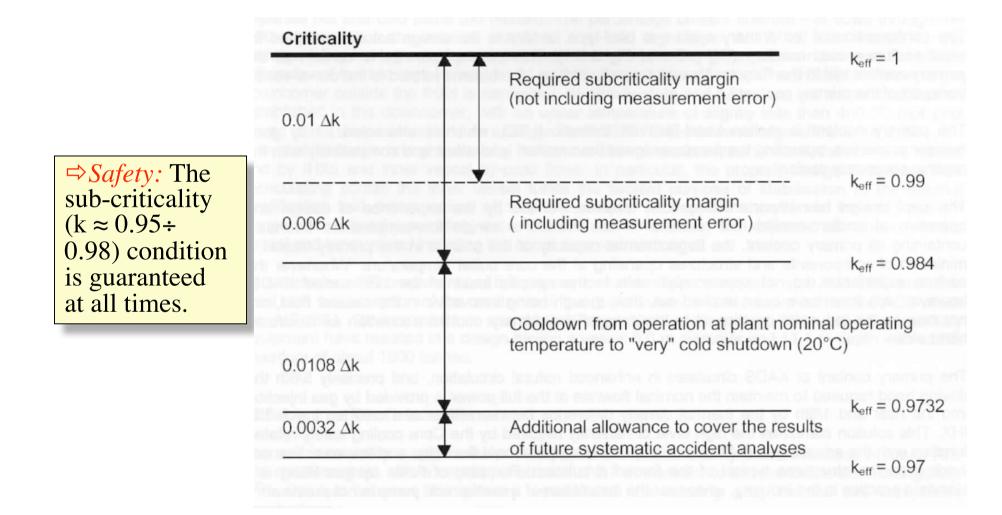
Ref.: ANSALDO Nucleare, EA-B0.00-1-200 – Rev. 0, January 1999.



The EADF : Plant Layout



The EADF: General Features

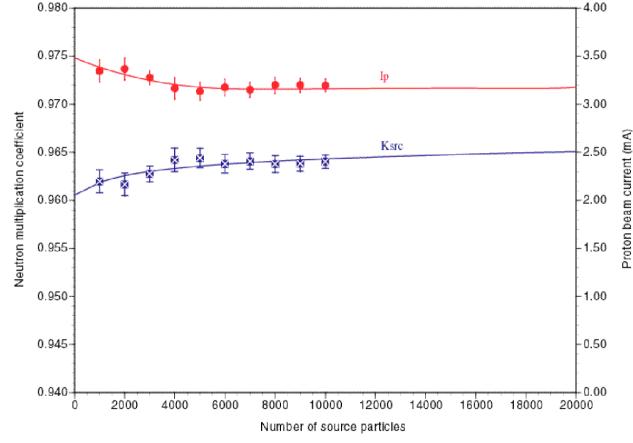

The EADF: Sub-Critical Core

Determination of the subcriticality level

The EADF : Global Parameters

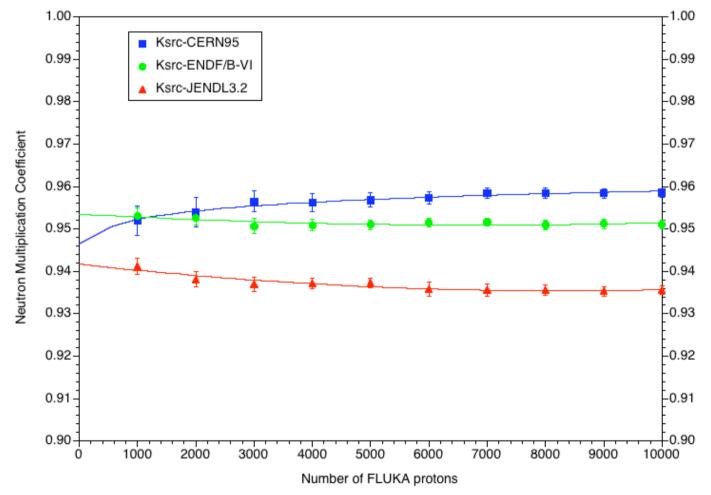
Main parameters of the EADF reference configuration

Global Parameters	Symbol	EADF	EADF	Units
Initial fuel mixture	MOX	$(U-Pu)O_2$	(Th-Pu)O ₂	
Initial fuel mass	m_{fuel}	3.793	3.793	ton
Initial Pu concentration	m_{Pu}/m_{fuel} Pu ^{39,41}	17.7	20.2	wt.%
Initial Fissile enrichment	$Pu^{39,41}$	14.7	16.9	wt.%
Thermal Power Output	P_{th}	80	80	MWatt
Proton Beam Energy	E _p	600	600	MeV
Spallation Neutron Yield	$N_{(n/p)}^{P}$	14.51 ± 0.10	14.51 ± 0.10	n/p
Net neutron multiplication	M	27.80 ± 0.56	26.74 ± 0.75	•
Multiplication Coefficient	k=(M-1)/M	0.9640 ± 0.0007	0.9626 ± 0.0010	
Energetic Gain	G	42.73 ± 0.88	40.64 ± 1.19	
Gain coefficient	\mathbf{G}_{0}	1.54	1.52	
Accelerator Current	I _p	3.20 ± 0.07	3.36 ± 0.10	mA
Core Power Distributions	÷			
Av. fuel power density	P_{th}/V_{fuel}	255	258	W/cm ³
Av. core power density	P_{th}/V_{core}	55	56	W/cm ³
Radial peaking factor	P_{max}/P_{ave}	1.25	1.21	
Axial peaking factor	P_{max}/P_{ave}	1.18	1.14	

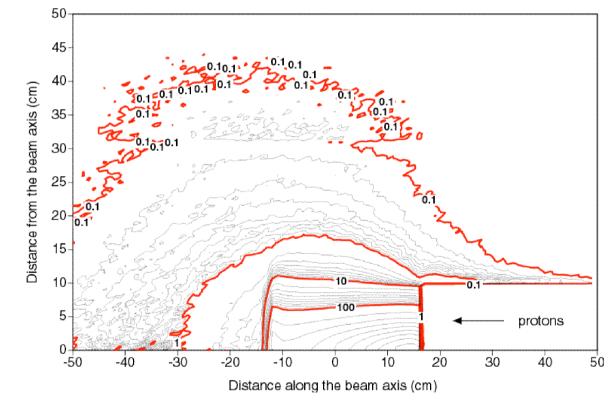

Statistical Fluctuations

Variation of the k_{src} multiplication coefficient and of the proton beam current as a function of the number of simulated primary protons

✓ From the results of the convergence run, we can assume that the fission source spatial distribution, i.e. k_{srcr} has achieved equilibrium $7x10^{3}$ after some primary protons been have transported.

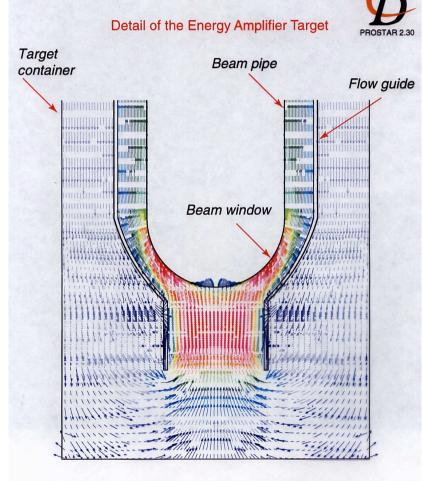

✓ The very poor initial guess for the spatial distribution of fissions causes the first cycles estimates of k_{src} to be extremely low. This situation occurs because only a fraction of the spallation neutron source enters cells that contain fissionable material.

$$\frac{\delta k}{1-k} = \frac{0.46}{\sqrt{N_p} \sqrt{1-k}}$$



Convergence of the k_{src} multiplication coefficient for different neutron cross section data files

Power deposited (W/cm³) by the 600 MeV, 3.2 mA proton beam impinging on the lead-bismuth eutectic spallation target



Total heat released: 1.45 MW (75% of Ep) lonization ~ 84% EMF ~ 4% Recoils + HF ~ 3% Neutrons < 20MeV ~ 9%

Y. Kadi / October 17-28, 2005

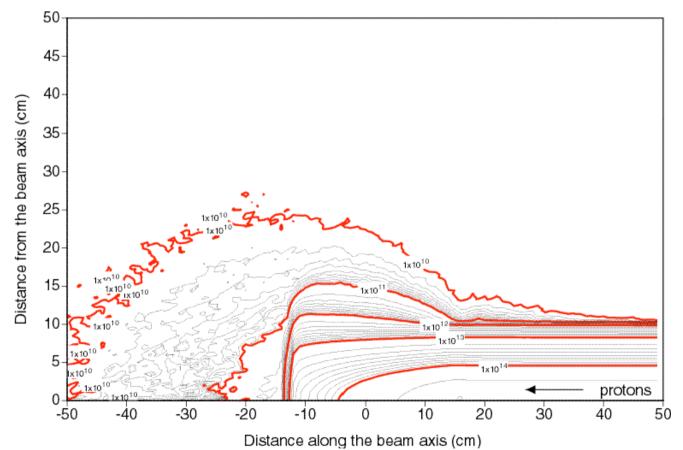
The EADF: Target thermohydraulics

10 11	1.209	0.6048
16-Nov-96	1.123	0.5184
VELOCITY MAGNITUDE	1.037	0.4320
M/S	0.9503	0.3457
ITER = 753	0.8639	0.2593
LOCAL MX= 1.209	0.7775	0.1729
LOCAL MN= 0.1764E-03	0.6912	0.8655E-01
	0.6048	0.1764E-03

High temperature field

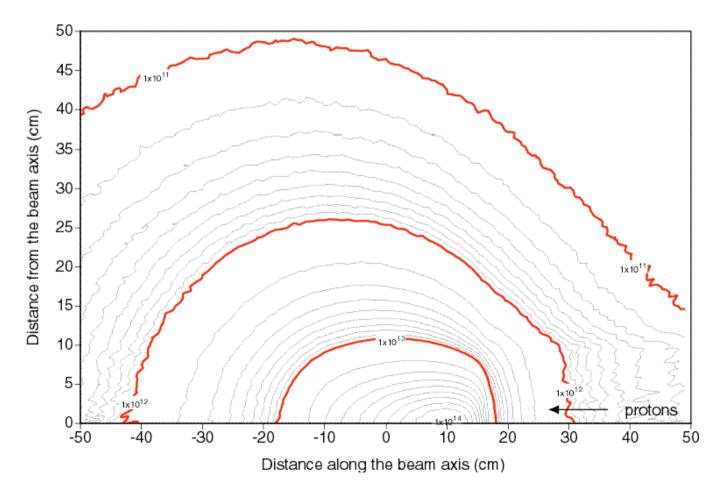
=>High coolant velocities

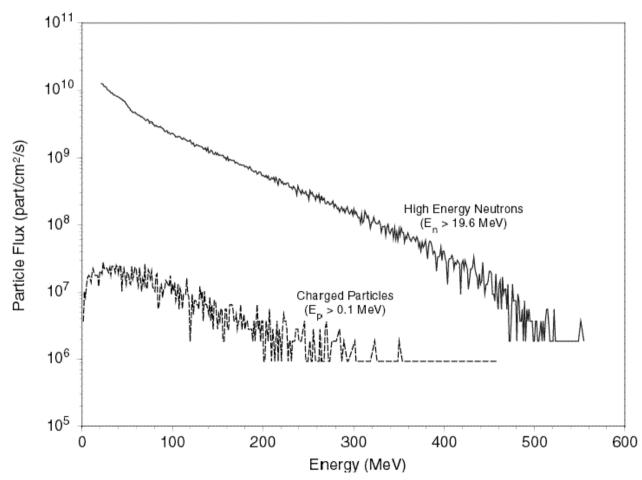
=>high turbulence, recirculation


=> High thermal stresses on the beam window

=> Windowless option

Y. Kadi / October 17-28, 2005


Charged particle fluence (cm⁻².s⁻¹) produced by the 600 MeV, 3.2 mA proton beam impinging on lead-bismuth eutectic.


The EADF : Beam-Target Interaction

High-energy neutron fluence (cm⁻².s⁻¹) produced by the 600 MeV, 3.2 mA proton beam impinging on lead-bismuth eutectic.

High-energy particle flux spectra at the exit of the spallation target unit (target containment vessel).

The EADF : Radiation Damage

Integrated flux, heating and damage of the spallation target unit internal structures, due to low-energy neutrons (LE) and high-energy particles (HE) as computed by EA-MC and FLUKA.

Region	Flux (part/cm ² .s)		Heat (W/cm ³)	DPA/year		
	HE	LE	HE	` LE ´	HE	LE
Proton beam tube (HT-9 Steel) Spallation target (LBE) Spallation target vessel (HT-9) Target unit containment vessel (HT-9)	$\begin{array}{c} 2.0 \text{x} 10^{13} \\ 1.7 \text{x} 10^{14} \\ 4.1 \text{x} 10^{12} \\ 4.8 \text{x} 10^{11} \end{array}$	$\begin{array}{c} 2.2 x 10^{13} \\ 5.9 x 10^{14} \\ 1.3 x 10^{14} \\ 8.2 x 10^{13} \end{array}$	2.7x10 ⁻¹ 26 2.1 1.6x10 ⁻²	9.4x10 ⁻² 5.2x10 ⁻¹ 4.9x10 ⁻¹ 2.6x10 ⁻¹	9.5x10 ⁻¹ 8.0 1.9x10 ⁻¹ 2.3x10 ⁻²	5.5×10^{-2} 1.6 4.3 \times 10^{-1} 2.3 \times 10^{-1}

Integrated flux, heating and damage in the reactor internal structures due to neutrons with energy below 20 MeV as computed by EA-MC.

Region	Flux $(n/cm^2.s)$	Heat (W/cm ³)	DPA/yr
Reactor roof	$7.0 \mathrm{x} 10^8$	3.7x10 ⁻⁶	6.7x10 ⁻⁷
Reactor vessel	1.2×10^{11}	2.9×10^{-3}	8.3x10 ⁻⁶
Safety vessel	3.6×10^{10}	7.7×10^{-4}	2.5×10^{-6}
Spallation target	5.9×10^{14}	0.515	1.566
Target vessel	8.2×10^{13}	0.263	0.230
Heat exchangers	5.8×10^{11}	1.6×10^{-2}	1.5×10^{-4}
HX secondary coolant	7.2×10^{11}	2.3×10^{-4}	$1.1 \mathrm{x} 10^{-4}$
Core neutronic protection	1.5×10^{13}	0.184	5.7×10^{-3}
Av. fuel	1.2×10^{14}	260	0.772
Av. fuel cladding	3.2×10^{13}	0.098	0.141
Core radial reflector	7.1×10^{13}	0.327	0.146

The EADF : Neutron Balance

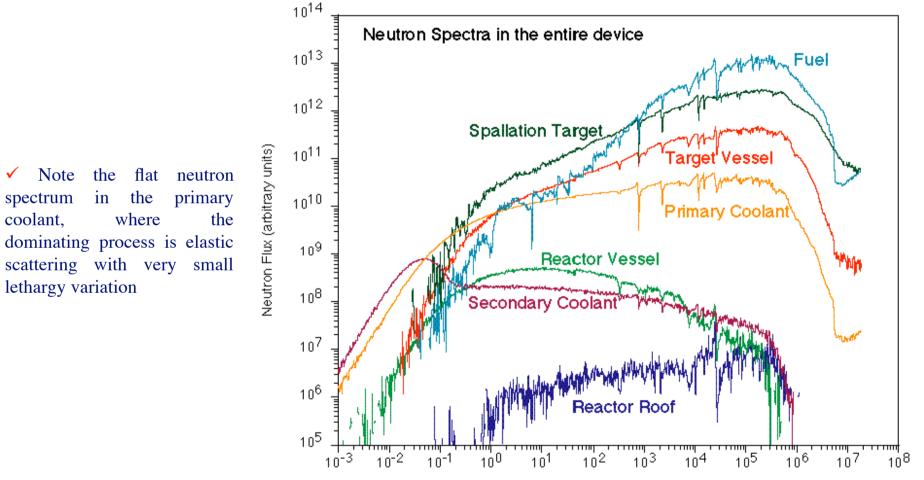
✓ The high-enrichment UPu MOX fuel, which contains a fissile concentration of about 20%, enables a very high fission-to-capture ratio, close to 0.95, to be achieved.

✓ Parasitic captures in the fuel core as well as in the entire device have been reduced to a minimum, i.e. 10 and 25% respectively.

✓ Half of the absorption reactions occuring in the lead-bismuth eutectic coolant are due to (n,Xn) reactions, which further increase the overall neutron multiplication in the system.

 $\checkmark \qquad \text{Non-fission multiplicative} \\ \text{processes account for more than } 2\% \\ \text{of the total non-elastic scattering} \\ \text{reactions taking place in the EADF.} \end{aligned}$

Neutron reaction inventory at several locations of the EADF


Neutron Absorption Inventory	• •	Neutron Absorption Inventory	<u> </u>
Reactor vessel	0.33 %	Core upper reflector	5.49 %
Spallation target	1.96 %	Core radial reflector	2.04 %
Flow guides	0.14 %	Core lower reflector	6.91 %
Heat exchangers	0.80~%	Fuel core	72.63 %
Purification units	0.03 %	Primary coolant	6.83 %
Gas injection units	0.16 %	Escapes	0.16 %
Neutron shield	2.52 %	Total	100 %
Main Nuclear Reactions		Main Nuclear Reactions	<u>.</u>
Capture	66.28 %	Others	0.43 %
Fission	30.95 %	Escapes	0.16 %
n,Xn	2.18 %	Total	100 %

Neutron reaction inventory in the fuel core of the EADF

Neutron Absorption Inventory	· · · I	Neutron Absorption Inventory	•
MOX-Fuel	89.60 %	Sub-assembly wrapper	2.01 %
Cladding	3.83 %	Coolant	4.56 %
Main Nuclear Reactions	· · ·]	Main Nuclear Reactions	
Capture	54.44 %	n,Xn	2.40 %
Fission	42.61 %	Others	0.55~%

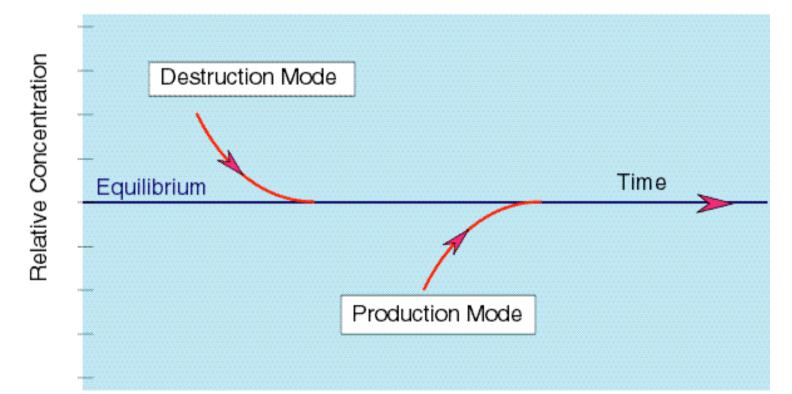
1954-2004 **Neutronic characteristics of the** sub-critical core

Neutron flux spectra at selected locations of the EADF

Neutron Energy (eV)

Globe of Innovation

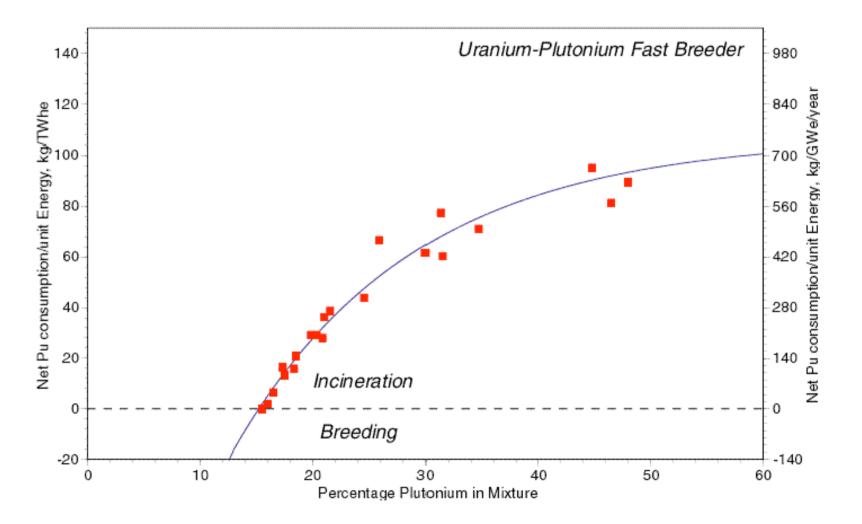
 \checkmark



- The availability of an external neutron source (accelerator) and of fast neutrons (lead) allows the sustained operation of a sub-critical system with a lot of a flexibility in the choice of fuel.
- Pure Thorium does not fission, in practice, seeds are needed to start energy production:
 - Any fissionable material can be used (²³³U, ²³⁵U, ²³⁹Pu or TRU)
- TRU's are destroyed by fission, a process which produces energy and makes the method economically attractive (TRU's still represent 40% of the energy delivered by the reactor which produced them).

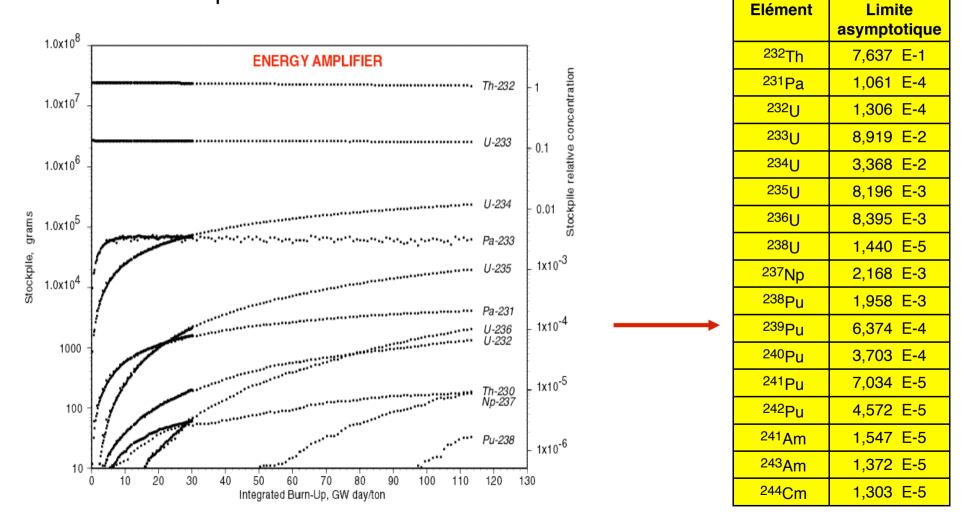
Principle of TRU destruction

Fast Neutron Reactors (SPX) or even Accelerator-Driven Systems (EA) can operate either as a « breeder » (production mode) or as a « burner » (destruction mode) :



It all depends on the concentration of the element of interest at a given time. For instance, an EA freshly loaded with pure ²³²Th will be in the breeding mode for ²³³U. This is explained by the simple fact that any system tends towards its equilibrium condition.

CAPRA Core (CEA)

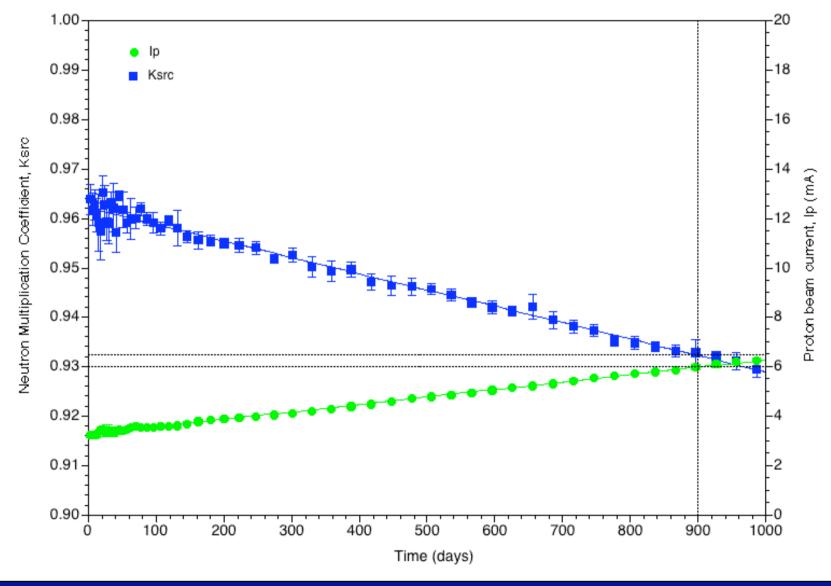

Plutonium incineration in fast neutron reactors

Equilibrium concentrations are orders of magnitude lower than in a Uranium-plutonium based fuel

Thorium-Based Fuels

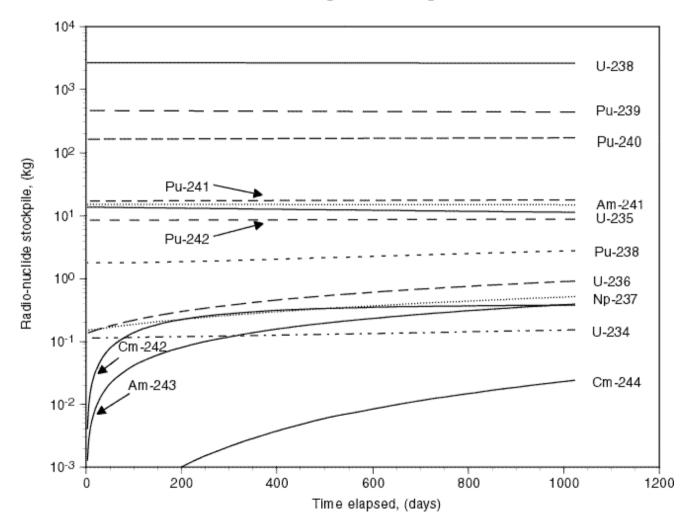
CHOICE OF FUEL: Thorium [232ThO2 (+ 233UO2)]

 $n + {}^{232}Th(1.4 \times 10^{10} \text{ a}) \rightarrow {}^{233}Th(22.3 \text{ m}) \rightarrow {}^{233}Pa(27 \text{ j}) \rightarrow {}^{233}U(1.6 \times 10^5 \text{ a})$ Among the 60% of neutrons not used for fission, 20% are lost and 40% are used to breed 233-U 22.3 mr 24.1 d 7.2 mp from 232-Th. In this way, new fissile material replaces what is used for fission. 27 d 6.71 24.4 mn (1.17 mm) 0.15 85:10 14.1 b (n, γ) capture σ(barn) 6 2 f 2 (7.2 mm) 1.65 $\begin{bmatrix} t_{1/2} \\ (isomer) \end{bmatrix} \beta$ -decay ≤ 10 a (_{barn)} Fission (3.1)(0.2)(n, 2n) Note the difference between 232-Th and 238-U $(E_n: \ge 6 \text{ MeV})$ in terms of TRU access!

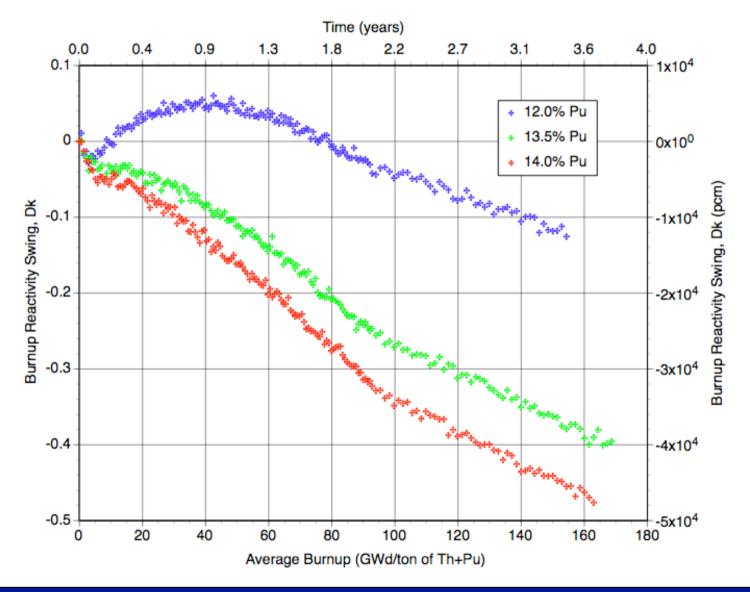

The EADF : Fuel Burnup

Main parameters of the EADF reference configuration after one burn-up cycle

\checkmark We report the variation	Global Parameters	BOC	EOC	Units
of the neutron multiplication	Fuel mixture	(U-Pu)O2	(U-Pu)O2	
coefficient after a fuel burnup	Fuel mass	3.793	3.723	ton
of 20 GWd/t, that is 900 days	Pu concentration	17.7	16.3	wt.%
of operation at 80 MW _{th} .	Fissile enrichment	14.7	14.3	wt.%
I UI	Fuel burnup	-	20	GWd/t
✓ During this period of	Cycle length	-	900	EFPD
operation the reactivity of the	Thermal Power Output	80	80	MWatt
EADF drops by 2.94% in Δk ,	Proton Beam Energy	600	600	MeV
which is compensated by a	Spallation Neutron Yield	14.51 ± 0.10	14.51 ± 0.10	n/p
factor two increase in the	Net neutron multiplication	27.80 ± 0.56	14.77 ± 0.65	
	Multiplication Coefficient	0.9640 ± 0.0007	0.9323 ± 0.0011	
accelerator current to 6.0 mA	Energetic Gain	42.73 ± 0.88	21.27 ± 1.01	
in order to maintain a	Gain coefficient	1.54	1.44	
constant power output.	Accelerator Current	3.20 ± 0.07	6.00 ± 0.11	mA

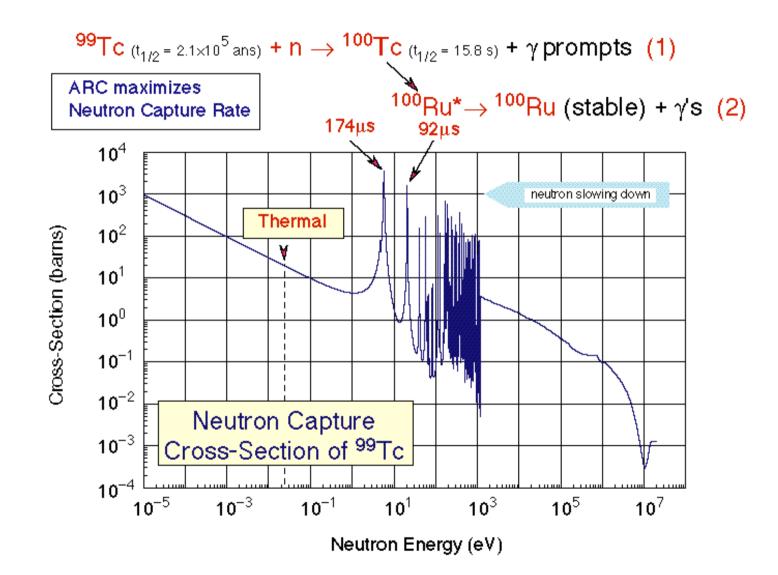


The EADF : Evolution of the reactivity for UPu fuel



Variation of the UPu MOX fuel composition is plotted as a function of time

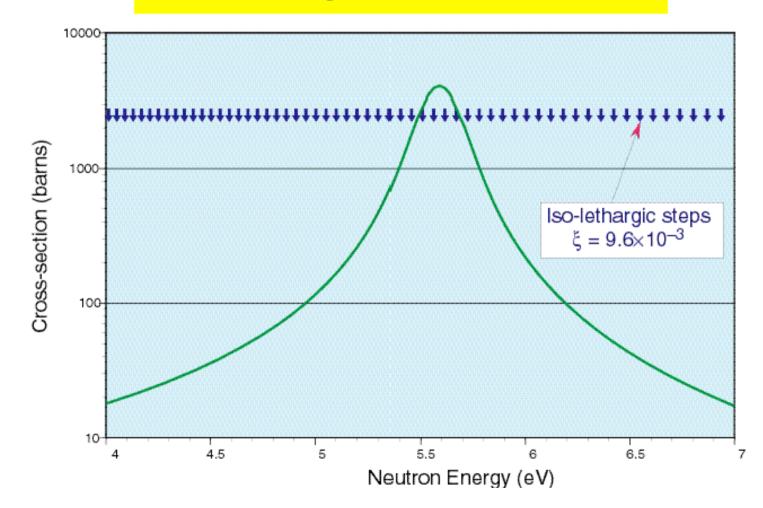
The EADF : Evolution of the reactivity for ThPu fuel


Transmutation of Nuclear Waste: Fission Products

Fission Fragments activity and toxicity after 1000 years of cool-down in a Secular Repository

(Values are given for 1 GWe ' year)

Radio- Isotope	Half-Life	Mass	Activity @ 1000 yr	Ingestive Toxicity	Dilution Class A
	(years)	(kg)	(Ci)	$(Sv) \times 10^3$	(m ³)
¹²⁹ I	1.57 x 10 ⁷	8.09	1.43	19.58	178.47
⁹⁹ Tc	2.11×10^5	16.61	284.29	27.67	947.65
¹²⁶ Sn	1.0 x 10 ⁵	1.187	33.79	3.20	9.65
¹³⁵ Cs	2.3 x 10 ⁶	34.12	39.32	9.87	39.32
⁹³ Zr	1.53 x 10 ⁶	26.11	65.64	2.38	18.75
⁷⁹ Se	6.5 x 10 ⁵	0.30	2.06	0.745	0.59

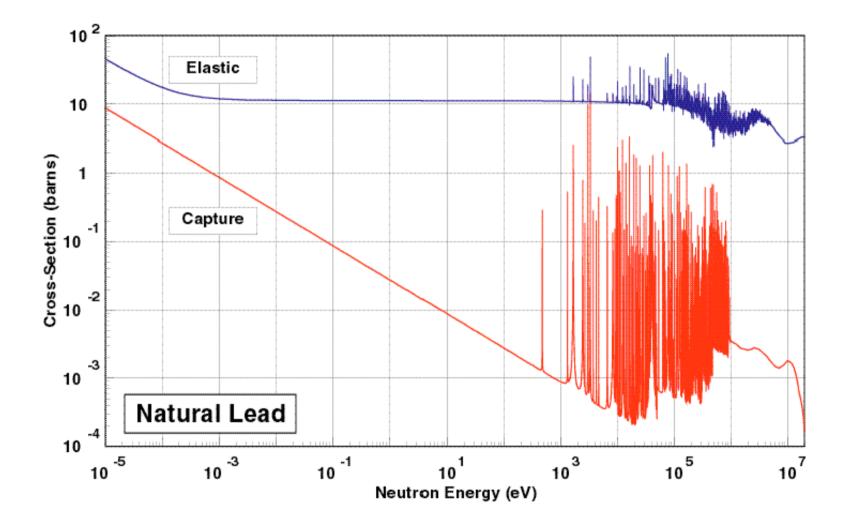


1954-2004

Globe of

Adiabatic Crossing of the 5.6 eV Resonance of ⁹⁹Tc

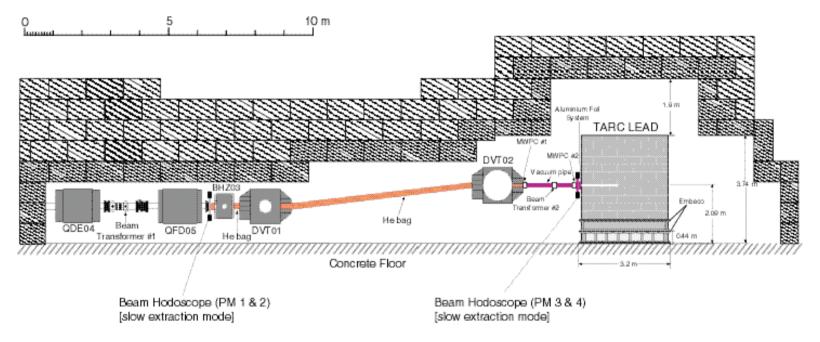
- Unique properties of Lead from the point of view of neutronics:
 - Small capture probability (λ mig. ~ 1.2 m);
 - High elastic collision probability ($\lambda_{el} \sim 3 \text{ cm}$), independent of E_n
 - Small "Lethargy" kinematics of elastic collisions [below threshold for inelastic processes, (n, 2n), (n,3n), etc.]:


$$\frac{E_{2}}{E_{1}} = \frac{m_{n}^{2} + m_{Pb}^{2}}{\left(m_{n} + m_{Pb}\right)^{2}} + \frac{2m_{n}m_{Pb}Cos\theta}{\left(m_{n} + m_{Pb}\right)^{2}} \approx 1 - \epsilon$$

 \Rightarrow E₂ bounded: α E₁ \leq E₂ \leq E₁; where:

$$\alpha = \frac{(m_{Pb} - m_n)^2}{(m_{Pb} + m_n)^2} \approx 0.98, \quad (m_{Pb} \approx 2072)$$

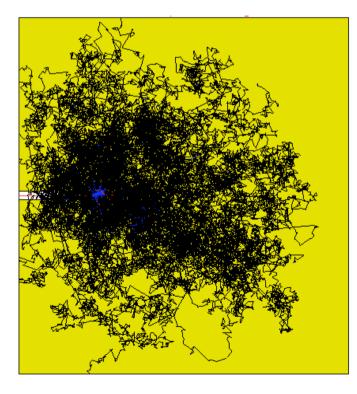
 $\Rightarrow \frac{E_2}{E_1}$ independent of energy and close to 1


The TARC Experiment

- Understanding the phenomenology of spallation neutrons in lead (neutron flux measurements by electronic detectors and by activation measurements, etc.)
- D irect test of Transmutation of Long-Lived Fission Fragments (⁹⁹Tc, ¹²⁹I) by Adiabatic Resonance Crossing
- D e velopment & validation of appropriate simulation/computing tools

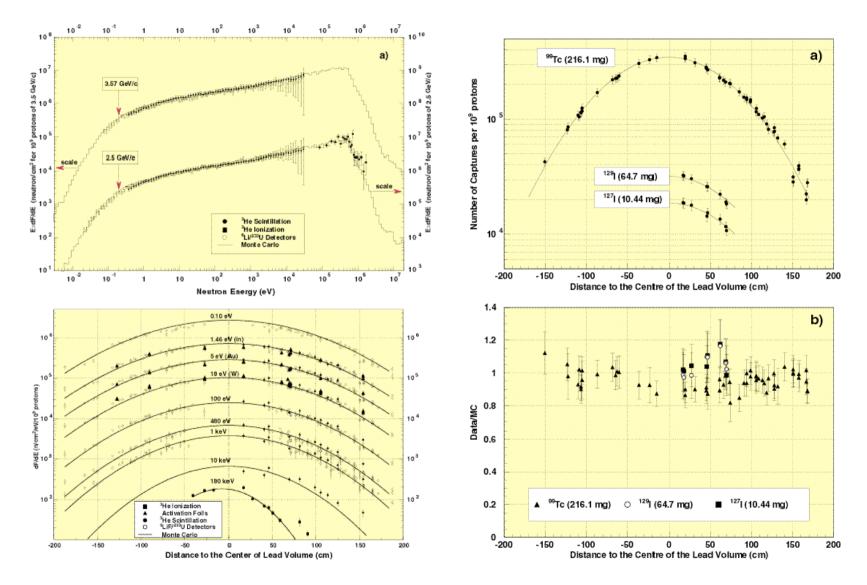
Experimental Setup

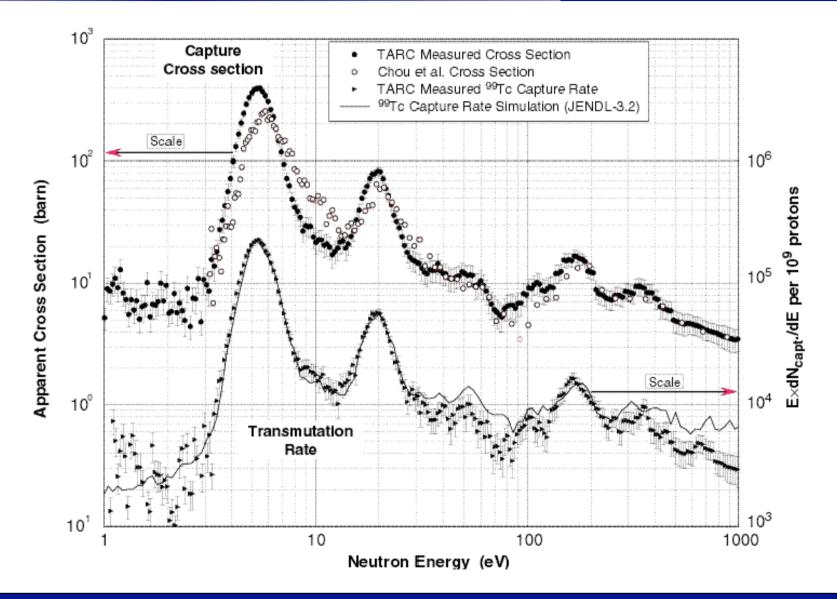
THE TARC EXPERIMENT



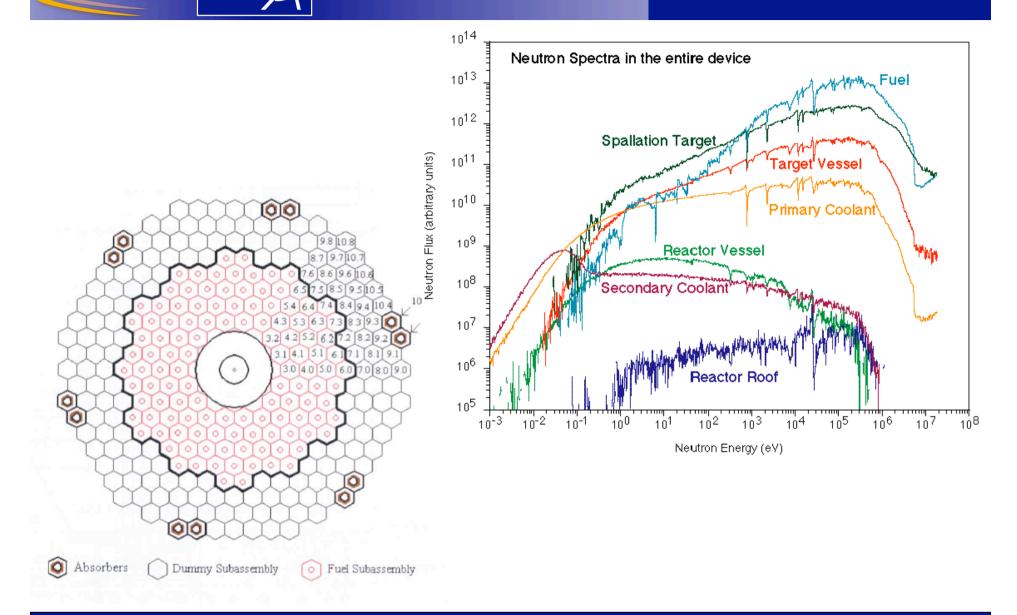
Side view of the TARC experimental area showing the details of the beam line. In the slow extraction mode the two station beam hodoscope is introduced in the beam line where indicated.

Experimental Setup (2)


Simulation of neutrons produced by a single 3.5 GeV/c proton (147 neutrons produced, 55035 scattering)



TARC Results


TARC Results (2)

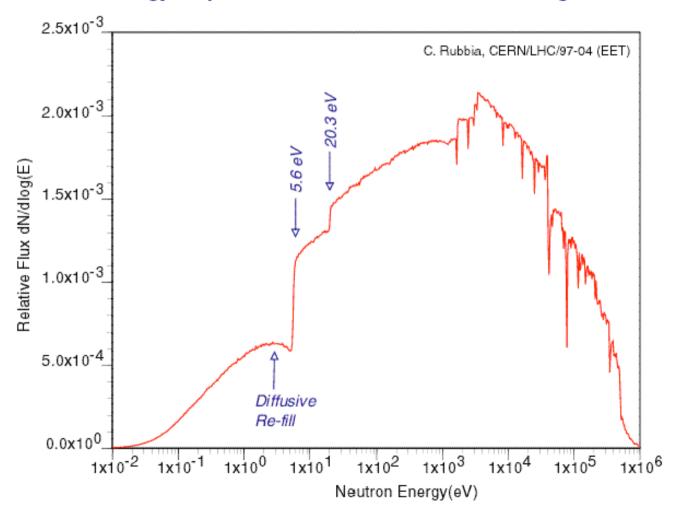
1954-2004

Globe of

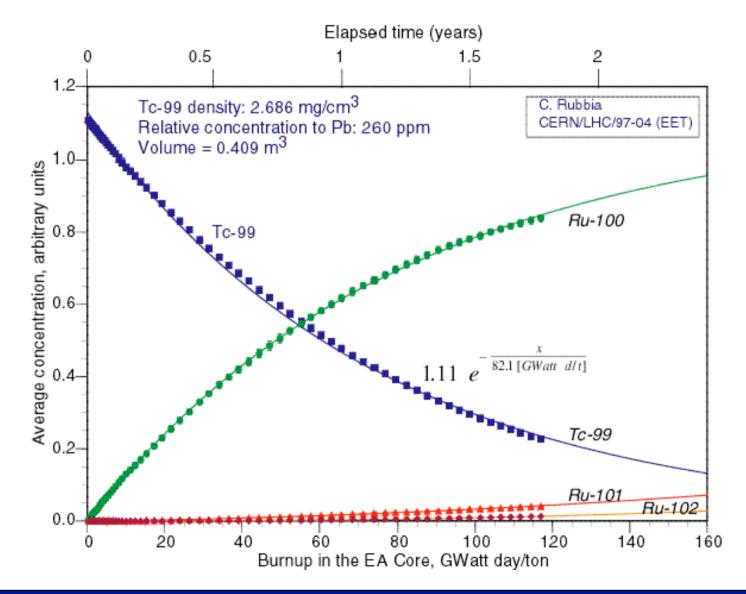
LLFP Incineration

Y. Kadi / October 17-28, 2005

1954-2004


CERN

Globe of

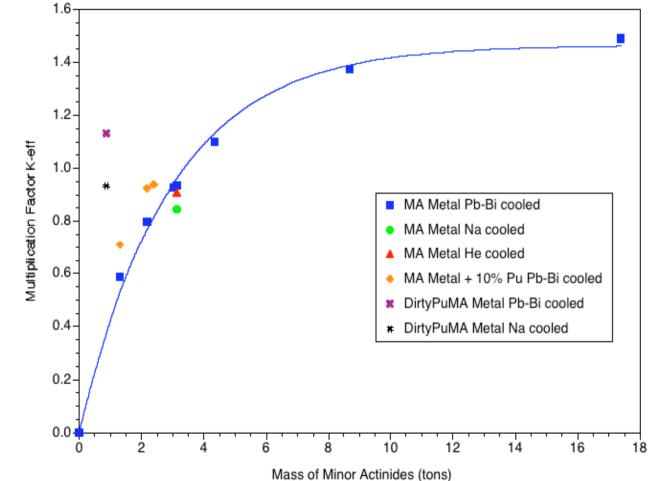

LLFP Incineration (2)

Monte Carlo simulation of the neutron fluence in the lead outside the Energy Amplifier core after introduction of 2.7 mg/cm³ of ⁹⁹Tc.

LLFP Incineration (3)

The EADF : Transmutation Rates

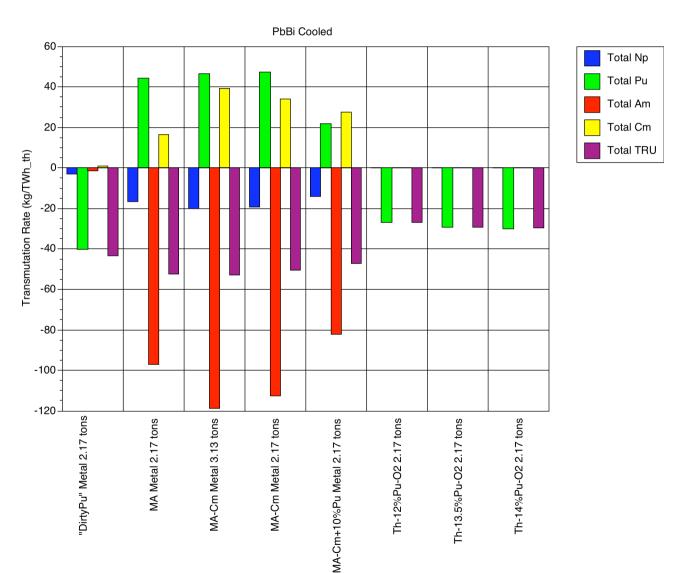
Plutonium incineration in ThPu based fuel is more efficient and settles to approximately 43 kg/TWh, namely 4 times what is produced by a standard PWR. The minor actinide production is very limited in this case.

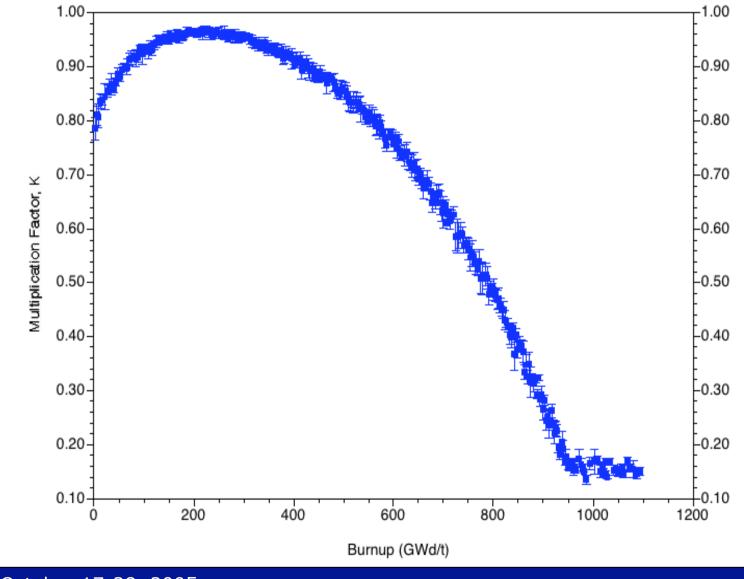

Nuclides	EADF (ThPuO2) ENDF/B-VI	EADF (UPuO2) ENDF/B-VI	EADF (UPuO2) JENDL-3.2	PWR (UO2)
²³³ U	+ 31.0			
Pu	- 42.8	- 7.39	- 5.55	+ 11.0
Np	+0.03	+ 0.25	+ 0.24	+ 0.57
Am	+0.24	+ 0.17	+ 0.14	+0.54
Cm	+0.007	+0.017	+0.020	+0.044
⁹⁹ Tc prod	+ 0.99	+ 1.07	+1.22	+ 0.99
⁹⁹ Tc trans	- 3.77	-3.77		
¹²⁹ I prod	+ 0.30	+ 0.31		+ 0.17
¹²⁹ I trans	- 3.01	- 3.01		

Transmutation rates (kg/TW_{th}h) of plutonium and minor actinides and LLFPs

Long-Lived Fission products incineration is made possible in a very efficient way through the use of the Adiabatic Resonance Crossing Method. Such a machine could in principle incinerate up to 4 times what is produced by a standard PWR.

Minor Actinide transmutation is on the other hand very sensitive to the fuel type




MA Transmutation Rates

Typicaltransmutationrates(~ 50 kg/TWh)using MA based fuels.

Doping with Pu will sensibly decrease the transmutation efficiency of such systems

The EADF : Evolution of the reactivity for pure MA fuel

1954-2004

CERN

Globe of

Reactivity Coefficients

Configuration	Fuel	dk/(drho/rho)		dk/dT		Kinf
Na	MA-Metal	-15.2 e-2	NA	-1.02 e-5	OK	1.26
Na	MA-Oxide	-24.4 e-2	NA	+0.2 e-5	NA	1.08
Na	Pu+MA-Metal	+33.0 e-2	ОК	+0.4 e-5	NA	2.68
Na	Pu+MA-Oxide	+4.5 e-2	OK	-1.0 e-5	OK	2.53
Pb-Bi	MA-Metal	-8.14 e-2	NA	+1.19 e-5	NA	1.30
Pb-Bi	MA-Oxide	-8.12 e-2	NA	-1.0 e-5	ОК	1.08
Pb-Bi	Pu+MA Metal	+39.1 e-2	ОК	+2.32 e-5	NA	2.37
Pb-Bi	Pu+MA Oxide	+2.27 e-2	ОК	-0.7 e-5	OK	2.26

- Present accelerator technology can provide a suitable proton accelerator to drive new types of nuclear systems to destroy nuclear waste or to produce energy.
- □ The Energy Amplifier, based on physics principles well verified by dedicated experiments at CERN, is the result of an optimization made possible by the use of an innovative simulation code validated in these experiments (FEAT and TARC).
- An Energy Amplifier could destroy TRU through fission at about x4 the rate at which they are produced in LWRs. LLFF such as ¹²⁹I and ⁹⁹Tc could be transmuted into stable elements in a parasitic mode, around the EA core, making use of the ARC method.
- □ Next step: SAD ? MYRRHA ? Energy Amplifier DEMO ?

ADS Programs Worldwide

Project	Neutron Source	Core	Purpose
MUSE	DT	Fast	Reactor physics of fast subcritical system
(France)	(~10 ¹⁰ n/s)	(< 1 kW)	
TRADE	Proton (140 MeV)	Thermal	Demonstration of ADS with thermal feedback
(Italy)	+ Ta (40 kW)	(200 kW)	
TEF-P	Proton (600 MeV)	Fast	Coupling of fast subcritical system with spallation source including MA fueled configuration
(Japan)	+ Pb-Bi (10W, ~10 ¹² n/s)	(< 1 kW)	
SAD	Proton (660 MeV)	Fast	Coupling of fast subcritical system with spallation source
(Russia)	+ Pb-Bi (1 kW)	(20 kW)	
MYRRHA	Proton (350 MeV)	Fast	Experimental ADS
(Belgium)	+ Pb-Bi (1.75 MW)	(35 MW)	
MEGAPIE (Switzerland)	Proton (600 MeV) + Pb-Bi (1MW)		Demonstration of 1MW target for short period
TEF-T (Japan)	Proton (600 MeV) + Pb-Bi (200 kW)		Dedicated facility for demonstration and accumulation of material data base for long term
Reference ADS	Proton (≈ 1 GeV) + Pb-Bi (≈ 10 MW)	Fast (1500 MW)	Transmutation of MA and LLFP

LECTURES OUTLINE

- ✓ LECTURE 1: Physics of Spallation and Sub-critical Cores, Fundamentals (Monday 17/10/05, 16:00 – 17:30)
- ✓ LECTURE 2: Nuclear Data & Methods for ADS Design I (Tuesday 18/10/03, 08:30 - 10:00)
- ✓ LECTURE 3: Nuclear Data & Methods for ADS Design II (Tuesday 18/10/03, 10:30 - 12:00)
- ✓ LECTURE 4: ADS Design Exercises I & II (Tuesday 18/10/03, 14:00 - 17:30)
- LECTURE 5: Examples of ADS Design I (Thursday 20/10/03, 08:30 - 10:00)
- LECTURE 6: Examples of ADS Design II (Thursday 20/10/03, 10:30 - 12:00)
- LECTURE 7: ADS Design Exercises III & IV (Thursday 20/10/03, 14:00 - 17:30)

EXERCISE OUTLINE

Exercises III & IV: Simulation Energy Amplifier Demonstration Facility, an 80 MW PbBi cooled fast neutron device setups using the FLUKA-EAMC code package, varying the sub-criticality in the nuclear data libraries.

Results:

- Neutron source importance (ksrc vs DD/DT vs Fiss vs Spall);
- Ksrc vs nuclear data
- Neutron interactions tables;
- Neutron flux and energy distributions.
- Transmutation rates (for minor actinides and long-lived fission products);