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ContentContent

• Background
• Basics and objectives of P&T
• Nuclear fuel cycle options

• Once-through cycle (OTC)
• Aqueous reprocessing fuel cycle (RFC)
• Advanced fuel cycle (AFC)
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BackgroundBackground

• Growing world population with increasing energy 
needs, especially in the developing countries

• Threat of global warming due to CO2 emissions 
demands non-fossil electricity production

• Nuclear will have to be part of a sustainable mix of 
energy production options
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Nuclear Energy: Significant FiguresNuclear Energy: Significant Figures

• 350 GWe worldwide capacity; ~ 100-120 GWe in 
each region USA/Europe/rest of the world

• 10’500 t HM annual spent fuel discharge worldwide
• 3’900 t HM industrial reprocessing capacity 

worldwide
• 130,000 t HM cumulative stored spent fuel inventory
• 70,000 t HM reprocessed and transformed into HLW 

and spent LWR-MOX
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Repository Needs, CharacteristicsRepository Needs, Characteristics

• Present worldwide spent fuel (containing high Pu
inventory) and HLW arising would need 2 and one 1
Yucca Mountain size repositories, respectively

• Spent fuel repository: high Pu content ⇒ non 
proliferation and criticality concerns

• Medium-lived fission products (137Cs and 90Sr) 
determine heat load ⇒ same in spent fuel and HLW 
repository

• Minor actinides (Np, Am, Cu) determine 
radiotoxicity potential ⇒ same in spent fuel and 
HLW repository
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P&T: Basics, ObjectivesP&T: Basics, Objectives

• Renewed interest in P&T ⇒ numerous efforts 
worldwide to assess its potential as a radioactive 
waste management option

• P&T is a complex technology ⇒ advanced 
reprocessing and transuranics fuel fabrication 
plants, innovative and/or dedicated transmutation 
reactors

• In addition to U, Pu and 129I, “Partitioning” extracts 
from the liquid high level waste the minor actinides 
(MA) and the long-lived fission products (LLFP) 
99Tc, 93Zr, 135Cs, 107Pd, and 79Se)
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P&T: Basics, Objectives (contP&T: Basics, Objectives (cont’’d)d)

• “Transmutation” requires fully new fuel fabrication 
plants and reactor technologies to be developed 
and implemented on industrial scale

• Present LWRs are not suited for MA and LLFP 
transmutation (safety consideration, plant 
operation, poor incineration capability)

• Only specially licensed LWRs can cope with MOX-
fuel; for increased Pu loadings (up to 100%), 
special reactor designs (e.g., ABB80+) are required; 
a combination of these reactor types could allow 
Pu inventory stabilization, albeit at the price of 
increased MA production
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P&T: Basics, Objectives (contP&T: Basics, Objectives (cont’’d)d)

• Long-term waste radio-toxicity can be 
effectively reduced only if transuranics are 
“incinerated” through fission ⇒ very hard 
neutron spectra needed

• New reactor concepts (dedicated fast 
reactors, Accelerator Driven Systems (ADS), 
fusion/fission hybrid reactors) have been 
proposed as transmuters/incinerators
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P&T: Basics, Objectives (contP&T: Basics, Objectives (cont’’d)d)

• Significant Pu+MAs incineration rates can be 
achieved in symbiotic scenarios: LWR-MOX & 
dedicated fast reactors; fast neutron spectrum ADS 
could be reserved for MA incineration; very high 
thermal flux ADS concepts could also provide a 
significant transuranics destruction

• LLFP transmutation problematic: 
• occur in elemental mixtures (different isotopes of the 

same element) ⇒ isotopic separation required
• transmutation yields small because of very low capture 

cross sections in thermal neutron fields ⇒ dedicated 
reactors required with very high loadings and/or high 
thermal flux levels
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P&T: Basics, Objectives (contP&T: Basics, Objectives (cont’’d)d)

• Reduction of long-term hazard of spent fuel or 
HLW by transforming long-lived radionuclides 
into short-lived or inactive elements is one of the 
main P&T objectives

• Reduction of long-term radiological risk
(combination of potential hazard and confining 
properties) is “conventional” waste management 
objective
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P&T: Basics, Objectives (contP&T: Basics, Objectives (cont’’d)d)

• Hazard reduction (P&T objective) requires 
very different and much more fundamental 
measures as compared to risk reduction:
• long-term hazard of spent fuel and HLW is 

associated with the radioactive source, i.e., the 
transuranics

• short and long-term risks are due to the mobility 
of fission products in the geosphere and the 
possibility to enter the biosphere
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Nuclear Fuel Cycle OptionsNuclear Fuel Cycle Options

• Conventional
• Once through fuel cycle with direct disposal of 

spent fuel (OTC) 
• Aqueous reprocessing fuel cycle with 

vitrification of high-level liquid waste (RFC)
• Advanced fuel cycle with partitioning of actinides

(AFC)
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OnceOnce--through Fuel Cyclethrough Fuel Cycle

• Option considered in Canada, Spain, Sweden, USA, 
and some other countries

• Cheapest option at present low uranium prices
• Residual fissile material (1% Pu and 0.8% 235U) and 

remaining fertile material (238U) in spent fuel is not 
recovered and considered waste material 

• Spent fuel long-term radiotoxicity associated with 
transuranics (Pu, Np, Am, Cm, ...) ⇒ significant 
radiological source term in repository over hundred 
thousand years

• Effective isolation of transuranics in repository  due 
to intrinsic insolubility of actinides in deep geological 
formations
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OnceOnce--through Fuel Cycle (contthrough Fuel Cycle (cont’’d)d)

• FP γ-radiation and decay heat are most limiting 
short-term repository design factors

• Most FPs have decayed after 300 - 500 years, 
except for a few long-lived nuclides (135Cs, 99Tc, 129I, 
93Zr, ...)

• Some long-lived FPs are relatively mobile in the 
geosphere
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OnceOnce--through Fuel Cycle (contthrough Fuel Cycle (cont’’d)d)
• Long-term OTC radiological impact can be 

controlled by engineering design and natural 
barriers which should provide protection for the 
time period defined by the life-time of the confined 
source term ⇒ long time periods involved require a 
careful analysis of the confinement technology and 
of the long-term consequences of accident 
scenarios

• There is no worldwide agreement on the time 
periods for confinement of HLW in a geologic 
repository; periods of 103 – 105 years, or even 
longer, have in been put forward, but no 
internationally accepted confinement period has 
been established
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OnceOnce--through Fuel Cycle (contthrough Fuel Cycle (cont’’d)d)
• Safety and regulatory aspects of OTC

• Substantial quantities of fissile material are deposited, 
and also the decay of 239Pu to 235U has to be considered 
⇒ potential for criticality has to be addressed in the 
repository licensing process

• 129I is the limiting nuclide in risk repository analyses: if no 
specific actions are taken to limit 129I solubility in the 
deep aquifers, the entire 129I inventory will be fully 
dispersed in the geosphere after a few 104 yrs

• Beyond 500 years, spent fuel heat emission due to total 
actinide content is significantly higher than that of the 
FPs; absolute value of that long-term heat output is, 
however, significantly lower than that of the initially 
loaded FPs

• 70’000 t HM per repository is limit in the USA ⇒ new 
repository every ~30 years
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Aqueous Aqueous RReprocessing eprocessing FFuel uel CCycle with ycle with 
Vitrification of HLLWVitrification of HLLW

• Natural uranium contains only 0.72% of fissile 
235U ⇒ recycling of the “major actinides”, i.e., U 
and Pu, from spent fuel in the aqueous 
reprocessing fuel cycle (RFC) with vitrification of 
HLLW is standard scenario of nuclear energy 
production

• Reduced support for this option in many 
countries due to costs and proliferation concerns
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Aqueous Aqueous RReprocessing eprocessing FFuel uel CCycle with ycle with 
Vitrification of HLLW (contVitrification of HLLW (cont’’d)d)

• ~99.9% of the U and Pu streams are extracted, thus only a very 
minor fraction of the “major actinides” goes to HLLW, and thus 
to HLW, and to geologic repository

• Removal of MAs (that become more important with increasing 
burnup) from HLLW would reduce the residual HLW 
radiotoxicity

• Adding a MA partitioning module to the standard reprocessing 
plant would be the most obvious change to the current RFC ⇒
countries with reprocessing infrastructure (France, UK, Japan, 
India, Russia, and China) could implement, in a medium-term, a 
partial partitioning scenario by which the HLW would be 
practically free from long-lived transuranics
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Aqueous Aqueous RReprocessing eprocessing FFuel uel CCycle with ycle with 
Vitrification of HLLW (contVitrification of HLLW (cont’’d)d)

• Use of LWR-MOX in the RFC option is industrially significant 
in Western-Europe (specially licensed reactors in France, 
Germany, Switzerland and Belgium are fuelled with MOX)

• Within the broader context of resources utilization and 
waste management, the reuse of Pu is the first step in a 
global P&T scenario

• Recycling spent LWR fuel as MOX provides an overall mass 
reduction of a factor ~5, but the radiotoxicity is not 
significantly reduced, since only ~25% of the recycled Pu is 
consumed and about 10% is transformed into a long-term 
radiotoxic MA source term
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Aqueous Aqueous RReprocessing eprocessing FFuel uel CCycle with ycle with 
Vitrification of HLLW (contVitrification of HLLW (cont’’d)d)

• Further radiotoxicity reduction requires loading of 
the spent LWR-MOX transuranics into a fast reactor 
⇒ part of the advanced fuel cycle (AFC)

• In theory, reprocessing the spent LWR-MOX fuel in 
view of recycling the transuranics in FRs is 
possible in present reprocessing plants

• Additional transuranics separation module is 
required to reduce significantly the radiotoxicity of 
the HLLW produced during reprocessing of LWR-
MOX (up to levels comparable to those of non-
reprocessed spent LWR-MOX), and this could be 
done with the same technology for HLLW from 
LWR-UO2
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Aqueous Aqueous RReprocessing eprocessing FFuel uel CCycle with Vitrification ycle with Vitrification 
of HLLW (contof HLLW (cont’’d)d)

• Recovery of U from spent fuel by TBP extraction in 
the PUREX process

• Very little of recovered U stockpile has been reused 
in subsequent reactor loadings

• Reprocessed U contains some troublesome 
radioisotopes (232U, a parent of natural decay 
chains with radiotoxic daughter nuclides, and 236U 
forming 237Np in a neutron field [via (n,γ) reaction to 
237U and its decay (β-, T½=6.8 d)]

• Recycling of reprocessed U in LWR fuel is done 
industrially ⇒ fresh fuel fissile enrichment increase
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Aqueous Aqueous RReprocessing eprocessing FFuel uel CCycle with ycle with 
Vitrification of HLLW (contVitrification of HLLW (cont’’d)d)

• The radiotoxic impact from stockpiling 
depleted and reprocessed U is greater than, 
e.g., Np ⇒ large amounts of depleted U (8 to 9 
tons per ton LWR fuel produced), stored as 
UF6, constitute an important long term 
radiotoxic and chemical hazard to be 
addressed
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Advanced Fuel Cycle (AFC)Advanced Fuel Cycle (AFC)

• AFC scenario with actinides P&T of comprises the 
following steps
• Improved reprocessing of LWR UO2 fuel with additional 

Np removal
• Separation of MAs from HLLW resulting from LWR UO2

reprocessing
• Fabrication of MA targets for heterogeneous irradiation in 

LWRs
• Recycling of U and Pu into LWR MOX fuel (single or 

multiple recycling)
• Reprocessing of spent LWR MOX fuel in adequate 

facilities (higher Pu inventory)
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Advanced Fuel Cycle (AFC) (contAdvanced Fuel Cycle (AFC) (cont’’d)d)

• Separation of MAs from HLLW and conditioning of 
individual elements (Np, Am, Cm)

• Long-term storage and eventual disposal of specially 
conditioned MA

• Fabrication of FR (MOX, metal, or nitride) fuel with a 
limited MA content

• Irradiation of FR-fuel in Fast Burner Reactors or 
dedicated hybrid facilities (very high burnup)

• Reprocessing of spent FR fuel in specially designed 
(aqueous and/or pyrochemical) and licensed facilities

• Separation of all transuranics from the spent FR fuel 
processing during multiple recycling
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Advanced Fuel Cycle (AFC) (contAdvanced Fuel Cycle (AFC) (cont’’d)d)

• Multiple recycling of FR MOX fuel with major 
transuranics content until significant depletion

• Separation of certain long-lived fission products 
(if required for the disposal step)

• Revision of the fission product management ⇒
99Tc separation (head-end, HLLW)

• If wanted, platinum metals separation and 
recovery (economics)
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Advanced Reprocessing With Advanced Reprocessing With NpNp RemovalRemoval

• 237Np recovery from U-Pu technically possible in 
the PUREX (during the current reprocessing 
operations, Np is partly discharged with the fission 
products into the HLLW and partly associated with 
the U, Pu, Np stream in TBP; the purification of Pu
and its quantitative separation from Np is achieved 
in the second PUREX extraction cycle)

• Presently, LWR-MOX reprocessing mainly done by 
diluting LWR-MOX with LWR-UO2 fuel according to 
the ratio in which it occurs in the reactor-core 
(UO2/MOX=2)
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Advanced Reprocessing With Advanced Reprocessing With NpNp Removal Removal 
(cont(cont’’d)d)

• Reprocessing of spent LWR MOX fuel without dilution in 
UO2 fuel has been demonstrated at COGEMA La Hague UP2 
in 1992 (~5 t); it is industrially feasible, provided the 
reprocessing plant has been designed for the treatment of 
increased Pu concentrations and licensed for a much higher 
total Pu inventory

• Conclusions
• Np recovery from dissolved spent fuel streams can be realized in 

adequately designed and/or refurbished reprocessing plants
• Separated Np has to be stored under strict safeguarded conditions 

since its critical mass amounts to 55 kg
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Separation of AmSeparation of Am--Cm From HLLW Resulting Cm From HLLW Resulting 
From Spent LWR FuelFrom Spent LWR Fuel

• Conventional reprocessing: most MAs (Np, Am, 
Cm) transferred to the HLLW

• >99.5% of Am and Cm, and some shorter-lived 
transuranics (Bk, Cf, …) transferred to HLLW

• Am-Cm separation from HLLW is the first priority 
from the radiotoxic point of view

• Also prerequisite for a significant reduction of the 
(very) long-term radiotoxicity due to 237Np

• Separation of 241Am implies separation of the long-
lived 243Am (parent of 239Pu)
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Separation of AmSeparation of Am--Cm From HLLW Resulting Cm From HLLW Resulting 
From Spent LWR Fuel (contFrom Spent LWR Fuel (cont’’d)d)

• The Am-Cm spent fuel fraction contains all the rare 
earth (RE)
• RE constitute a 10 to 20 times higher inventory in the 

spent fuel than the actinides (depending on the burnup) 
⇒ in 1 t 45 GWd/t HM spent fuel there are 13.9 kg RE vs. 
0.870 kg Am-Cm)

• Several processes have been studied at the 
conceptual level and tested in hot facilities, e.g., 
TRUEX (Fig 6), DIDPA, TRPO, DIAMEX for An-Ln
group separation, in conjunction with CYANEX 
301™ SANEX, ALINA processes allowing the An/Ln
separation (Fig 7)
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Separation of AmSeparation of Am--Cm From HLLW Resulting Cm From HLLW Resulting 
From Spent LWR Fuel (contFrom Spent LWR Fuel (cont’’d)d)

• Basic criterion to judge the different methods is the 
overall decontamination factor (DF) obtained during 
HLLW extraction as compared to the required DFs
in order to reach the 100 nCi level of α active 
nuclides in the HLW

• The highest DFs must be reached for 241Am 
(3.2×104, if immediate separation is considered)
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Separation of AmSeparation of Am--Cm From HLLW Resulting Cm From HLLW Resulting 
From Spent LWR Fuel (contFrom Spent LWR Fuel (cont’’d)d)

• Hot cell tests carried out at the JRC-ITU at 
Karlsruhe indicate that DIAMEX represents 
the best compromise ⇒ DFs ~103 were 
obtained for MAs in 3.5 M acid HLLW

• An/Ln separation was demonstrated in the 
laboratory with ALINA (based on the use of a 
new organo-sulfinic acid extractant) ⇒ DFs
~30 were obtained in 0.5 M acid solution
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Separation of AmSeparation of Am--Cm From HLLW Resulting Cm From HLLW Resulting 
From Spent LWR Fuel (contFrom Spent LWR Fuel (cont’’d)d)

• TRUEX is very effective for α decontamination of 
medium-level and non-heating high active waste
• MA fraction with 90% purity requires An/Ln DF > 102

• MA fraction with 99% purity requires An/Ln DF > 103

• Research labs have strong limitations with regard 
to the MA quantities which can be handled in 
shielded facilities (e.g., the new JRC-ITU MA 
laboratory has an authorization for maximum 150 g 
241Am, and 5 g 244Cm
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Separation of AmSeparation of Am--Cm From HLLW Resulting Cm From HLLW Resulting 
From Spent LWR Fuel (contFrom Spent LWR Fuel (cont’’d)d)

• 100 GWe NPP park produces annually about 
1’600 kg of each Np, and Am-Cm ⇒ large 
effort needed to upscale the laboratory 
methods to pilot scale (and, later, industrial 
prototype scale) in order to include MA 
separation rigs from the design phase on, in 
the future advanced reprocessing plants
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Separation of AmSeparation of Am--Cm From HLLW Resulting Cm From HLLW Resulting 
From Spent LWR Fuel (contFrom Spent LWR Fuel (cont’’d)d)

• Considering Europe, industrial RFC can be 
taken for granted ⇒ sufficient reprocessing 
capacity (La Hague, Sellafield) to cover the 
European and some overseas needs for the 
next 20-30 years
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Separation of AmSeparation of Am--Cm From HLLW Resulting Cm From HLLW Resulting 
From Spent LWR Fuel (contFrom Spent LWR Fuel (cont’’d)d)

• The first steps towards AFC implementation
• Installation of the separation facilities for MA from liquid 

HLLW
• Conditioning of these nuclides for intermediate storage 

or as potential target material for transmutation
• "Actinide-free HLW" could be produced by the 

vitrification plants and stored for cooling in surface 
facilities followed by geological disposal. There are no 
objective arguments to oppose geological disposal of 
such a waste stream which decays by more than four 
orders of magnitude during 500 years
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Separation Of LongSeparation Of Long--lived Fission And lived Fission And 
Activation ProductsActivation Products

• P&T must consider some radiologically important fission 
and activation products given their important role in the 
geologic repository assessment

• Fission products: 99Tc, 129I, 135Cs, 79Se, 93Zr, and 126Sn
• Activation products: 14C, and 36Cl
• Some of these radionuclides must be examined in depth in 

order to establish their risk and potential radiotoxic role in 
comparison with the transuranics: their radiotoxicity is 
between 103 and 105 times smaller than transuranics, but 
their contribution to the very long-term risk is predominant 
because migration to the biosphere may be much more 
rapid
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Separation Of LongSeparation Of Long--lived Fission And lived Fission And 
Activation Products (contActivation Products (cont’’d)d)

• 99Tc
• T½ = 213’000
• Occurs as Tc metal and TcO2 in the insoluble 

residues, and as soluble pertechnetate ion in the 
HLLW solution

• Generation rate = 26.6 kg/GWe-yr
• Overall specific concentration = 1.2 kg/tHM
• Effective long-term radiotoxicity reduction by 

transmutation requires combination of the 
soluble (80%) and insoluble (20%) fractions
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Separation Of LongSeparation Of Long--lived Fission And lived Fission And 
Activation Products (contActivation Products (cont’’d)d)

• The extraction of soluble TcO4
= is relatively easy

• The similarity between Tc and the platinum metals in 
insoluble waste and the nature of the separation methods 
makes this partitioning operation very difficult ⇒
pyrometallurgical processes might be more adequate to 
carry out a group separation together with the platinum 
metals

• Separation from aqueous effluents is possible in an 
advanced PUREX scheme

• Recovery from insoluble residues is very difficult (the 
present recovery yield could approach 80% at best (DF = 
5))

• A significant improvement of the 99Tc recovery from HLW 
is only possible if it is converted into a single chemical 
species ⇒ difficult task
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Separation Of LongSeparation Of Long--lived Fission And lived Fission And 
Activation Products (contActivation Products (cont’’d)d)

• Iodine
• Generation rate = 7.1kg/GWe-yr
• Isotopic composition: 80% 129I (T½ = 16×106 yr), and 20% 

stable 127I
• 129I occurrence in spent fuel: molecular iodine, soluble 

CsI, solid ZrI4-n, and volatile ZrI4
• 129I is in most of the land-based spent fuel repository 

concepts the first nuclide to emerge in the biosphere due 
to its very high mobility in aquifers

• 129I is removed from the dissolver solution during 
reprocessing (PUREX, UREX) with a yield ~95-98% (DF 
~20-50)
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Separation Of LongSeparation Of Long--lived Fission And lived Fission And 
Activation Products (contActivation Products (cont’’d)d)

• 129I radioactive concentration in spent fuel is, depending 
on the burnup, ~1.6×109 Bq/tHM and its Annual Limit of 
Intake (ALI) is 2×105 Bq

• 129I radiotoxicity is the highest among the fission 
products (1.1×107 Sv/Bq), and it is very soluble ⇒
increased separation yields should be aimed at (DF~103

would be a significant improvement)
• Higher separation yields require more complex chemical 

treatments (e.g., high temperature pyrochemical 
processes)
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Separation Of LongSeparation Of Long--lived Fission And lived Fission And 
Activation Products (contActivation Products (cont’’d)d)

• Separated 129I can either be stored on a specific (zeolite) 
adsorbent, or discharged into the ocean

• In a salt-dome (evaporated sea water) type of repository 
the dilution of eventually migrating 129I by the mass of 
natural iodine (127I) present in the body of the salt dome 
strongly decreases the radiological hazard

• Final storage in a salt dome is an alternative which 
undoubtedly has its merits but, conditioning and 
confinement are the preferred 129I management options to 
reduce its radiological impact
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Separation Of LongSeparation Of Long--lived Fission And lived Fission And 
Activation Products (contActivation Products (cont’’d)d)

• 79Se
• T½ = 65’000
• Generation rate = 0.16 kg/GWe-yr 
• Chemically it is a sulfate
• 79Se separation from HLLW is not obvious because of the 

very small chemical concentration in which it occurs, in 
comparison with natural sulfur compounds

• Incorporated in vitrified waste
• Radioactive concentration in spent fuel is ~2×1010 

Bq/tHM, and its Annual Limit of Intake (ALI) is 107 Bq
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Separation Of LongSeparation Of Long--lived Fission And lived Fission And 
Activation Products (contActivation Products (cont’’d)d)

• 93Zr and 135Cs
• T½ = 1.5×106 and 2×106 yrs, respectively 
• Generation rate = 23 kg/GWe-yr and 12.5 kg/GWe-

yr, respectively
• 93Zr and 135Cs are contained in the spent fuel by 

other radioisotopes which are either very 
radioactive (137Cs) or present in much larger 
quantities (23 kg/GWe-yr 93Zr among 118 
kg/GWe-yr Zr) ⇒ 93Zr and 135Cs separation 
presently excluded, both from a technical and an 
economical point of view
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Separation Of LongSeparation Of Long--lived Fission And lived Fission And 
Activation Products (contActivation Products (cont’’d)d)

• 126Sn
• T½ = 250’000 yrs
• Occurs partly in the insoluble residues, and is partly 

soluble in the HLLW
• 126Sn generation rate = 0.72 kg/GWe-yr (1.81 kg /GWe-yr 

for Sn
• 126Sn radioactive concentration in HLLW is ~3.2×1010 

Bq/tHM, and its Annual Limit of Intake (ALI) is  ~3×106 Bq
• 126Sn is accompanied by a series of stable isotopes 

(116,118,119,120,122,123,124Sn) ⇒ transmutation difficult



56 International Atomic Energy Agency

Separation Of LongSeparation Of Long--lived Fission And lived Fission And 
Activation Products (contActivation Products (cont’’d)d)

• 14C
• T½ = 5’730 yrs
• Soluble in groundwater, important radio-

toxicological role because of its uptake into the 
biochemical life cycle

• Its role in the long-term radiotoxicity is 
dependent on the physico-chemical conditions 
occurring in deep underground aquifers or in 
water unsaturated geospheres

• The capture cross section in a thermal neutron 
spectrum is negligibly small
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Separation Of LongSeparation Of Long--lived Fission And lived Fission And 
Activation Products (contActivation Products (cont’’d)d)

• 36Cl
• 5 to 20 ppm chlorine impurity in Zircaloy cladding ⇒

producing 36Cl
• T½ = 300’000 yrs
• Arises in the dissolver liquid and remains, in part, within 

the washed Zircaloy hulls
• At 45 GWd/tHM ~2×106 Bq in the HLW and MLW
• The Annual Limit of Intake (ALI) is  ~2×107 Bq
• 36Cl is gradually dissolved in groundwater and could 

contaminate water bodies around a repository
• 36Cl cannot be considered in a recovery or transmutation 

scenario
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Conclusions On Advanced Aqueous Conclusions On Advanced Aqueous 
Reprocessing Options With P&TReprocessing Options With P&T

• 237Np separation is technically feasible in 
refurbished reprocessing plants or in newly 
designed facilities

• Separation of MAs has been demonstrated at the 
hot-cell lab level; the corresponding flow sheets are 
very complex and need to be simplified in order to 
allow up scaling to technological levels

• The secondary wastes expected from MAs 
separation are of the same order of magnitude as 
from the second cycle of the PUREX process
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Conclusions On Advanced Aqueous Conclusions On Advanced Aqueous 
Reprocessing Options With P&T (contReprocessing Options With P&T (cont’’d)d)

• Separation of MAs followed by conditioning as a 
ceramic waste form and retrievable storage is a 
valid option for the MAs management

• Among LLFP only 129I has a radiotoxicity
comparable to that of the actinides (the 
radiotoxicity of the other FP is ~103 smaller); 
isolation and specific conditioning of 129I is 
advisable

• Transmutation of 99Tc is technically feasible, but at 
very high economic burden



60 International Atomic Energy Agency

Conclusions On Advanced Aqueous Conclusions On Advanced Aqueous 
Reprocessing Options With P&T (contReprocessing Options With P&T (cont’’d)d)

• All the other LLFP cannot be effectively 
separated from HLLW, unless isotopic 
separation techniques are envisaged

• The activation products C-14 and Cl-36 are 
troublesome contaminants of medium level 
wastes
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For more information, please visit 
http://www.iaea.org/inis/aws/fnss/

Thank You !Thank You !


