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Abstract. The present paper illustrates some models and methods for the kinetic evaluation of neutron multiplying
systems. After introducing the general physical features of time-dependent neutronics, the simple point kinetics
model is analysed, giving details on the physical meaning and mathematical structure of the equations. The spatial
characterization of the neutronic transient is then investigated, with special regards to source-driven systems. It is
evidenced that in a source-dominated structures, the space transients are less important than in systems departing
from near criticality. The factorization technique used for quasi-static analysis is then presented and extended to
source-driven systems and some considerations on the problem concerning the choice of the weghting function are
made. The paper is concluded by a discussion of the physics of

�
uid-fuel systems, a consistent model is described

and the factorization procedure is applied.

1. Introduction

The study of the neutron evolution in nuclear systems is a challenging mathematical physical problem
and it constitutes a fundamental topic in the design of critical and subcritical reactors. The need to study
subcritical multiplying structures driven by an external neutron source which are being proposed for
long lived products transmutation and for safe and acceptable energy production is introducing new and
interesting features which need to be properly accounted for. These lectures are specially devoted to
source driven systems. However, a general description of reactor kinetics is obviously needed to settle
the basis for such a speci � c application. Therefore, the body of the lectures is divided in the following
chapters:

* General aspects of neutron time dependent problems

* Point kinetics and its features

* Spatial characterization of neutronic transients

* Factorization methods and quasi statics

* Extension of models to source driven systems

* Developments: the multipoint scheme

* A harder problem: the modeling of � uid fuel systems

The numerical results presented are intended to enlighten some speci � c physical aspects of the material
presented.
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2. General aspects of neutron time-dependent problems

The evolution of the neutron population within a multiplying system is strongly characterized by broadly
different time scales. Speci � cally, the different physical phenomena determine the appearance of the
following typical scales:

* prompt neutron scale, connected to the lifetime in the multiplication process of prompt neutrons � it is
a very fast scale (10 � � 10 � � s) �
* delayed emission scale, connected to the evolution of delayed neutron precursors (10 � � 10 � s) �
* thermal hydraulic scale associated to feedback, connected to the evolution of temperatures and hy
draulic parameters (10 � � 10 	 s) �
* control scale, connected to the movement of masses in the system (control rods, poisons) � it can range
very broadly from seconds to hours �
* nuclide transmutation scale, connected to neutron transmutation phenomena (from 
 to � 10 	 s).

The simultaneous existence of so many different time characteristics makes the physico mathematical
problem stiff. This fact implies that numerical methods have to be speci � cally tailored to the problem
needs. Often one is not interested in obtaining information on all the aspects of the evolution. In the
following presentation, the interest is focused mainly on the neutron evolution determined by relatively
fast phenomena. Therefore the long term effects due to the nuclide transmutation are not accounted for.

The neutron evolution in a nuclear reactor is strongly affected by the delayed emissions from the ra
dioactive decay of some � ssion products. Although the fractions are usually rather small, the effect is of
slowing down the evolution of the neutron population, thus making the system controllable [1]. Several
different precursors have been identi � ed. They are grouped according to similar decay characteristics,
usually in six families [2]. Recently, a IAEA endeavor has been undertaken to review existing data for
delayed neutrons and evaluate and compile new and more up to date data coming from recent experi
mental activities [3]. It has been advised a regrouping of the delayed precursors in eight families.

Each family is characterized by:

* the fraction of � ssion neutrons � � appearing in the i th family ( � � ��
� � �

� � ) �
* the decay constant � � [s � � ] �
* the emission spectrum � � , which is much softer that the prompt spectrum, thus signi � cantly changing
the contribution of delayed neutrons to the chain reaction process.

The delayed fractions depend dramatically on the � ssile nuclide being considered.

The neutron evolution is governed by the time dependent Boltzmann transport equation including de
layed neutrons [4]:���� ���

� � �  " $ " ' " ) +� ) � -. � ) + � �  " $ " ' " ) + 4 ��
� � �

� � � � � $ +6 8 9 � �  " ) + 4 = �  " $ " ' " ) + "
� � � � � $ + 9 � �  " ) + D 6 8 +� ) � -G � � ) + � �  " $ " ' " ) + H � � � � � $ +6 8 9 � �  " ) + " (1)

which is a linear version of the general non linear equation written for gases by the great scientist Ludwig
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Boltzmann (1844-1906) [5].

The operators appearing in Eq. (1) can all be time dependent, since the properties of the neutron diffusing
material can in general change in time. The change can be a linear effect, when it is not driven by the
neutron population itself but is driven by external (known) causes, or non linear, when it is determined
by a functional of the neutron distribution. They are named and de � ned as follows:

* balance operator: �� � � � � �	 � � � � � � � � � �
(2)

* leakage operator:

�	 � � � � � � � � � � � � � # � % ' � ' � � � � � � � + - � 0 2 - � 0 � � � 0 � # 8 � % ' � 0 = � ' � 0 � � ' � � �
(3)

* prompt multiplication operator:

� � � � � � C D E
D� � � �F H + - � 0 2 - � 0 � � � 0 � � J � K

D � L D � � 0 � # D N � % ' � 0 ' � � '
(4)

where the sum is carried out over all � ssile nuclides O
* delayed multiplication operator:

� P � � � � C D E
D

P � � �F H + - � 0 2 - � 0 � � � 0 � K
D

P L D � � 0 � # D N � R ' � 0 ' � � �
(5)

* total multiplication operator:

� � � � � � � � � � � SC P U V � P � � � �
(6)

* effective emission spectrum for each � ssile nuclide:

E
D � � � � � J � K

D � E
D� � � � � SC P U V K

D
P E

D
P � � � W

(7)

Some considerations are in order. The solution of the Boltzmann equation (1), associated to initial con
ditions for the neutron X ux and delayed neutron concentrations and to boundary conditions for the X ux
(usually zero incoming neutron X ux for a system exposed to vacuum) is a formidable task. Moreover,
it may yield too much physical detail, since in real systems only integral quantities can be observed.
Consequently, it is suitable to construct simpli � ed models (multigroup, diffusion, ...) based on some
adequate physical assumptions and then is it required to develop numerical algorithms (discretizations,
expansions). These necessary steps introduce some approximations which need to be assessed in order
to establish their adequateness for the problem considered.

3. Point kinetics and its features

Certainly the simplest Y Z [ el is point kinetics. Its formulation dates back to the early times of reactor
physics [6], [7], [8]. It has proved to be a powerful tool for many reactor evaluations, both in operation
and in safety transient situations. The name itself indicates that the neutron distribution is supposed to
evolve as a point, in the sense that each point is representative of the whole system. For a system that is
source free this is perfectly equivalent to saying that only the fundamental eigenfunction of the kinetic
operator appears in the neutron distribution at all instants. This statement is not true when the system is
injected by an external source, in which case the distribution is dominated by the source injection and
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may involve a superposition of many eigenfunctions. In this situation the point like behavior amounts
to saying in a quite general fashion that the neutron distribution can be factorized in the product of an
amplitude function (time dependent only) and a shape function (time independent, but dependent on all
phase space variables).

How is it possible to derive point equations consistently starting from the balance transport model (1)
or one of its approximations? This question is differed a while to the section 5.1, while it is useful and
instructive to consider some applications to deepen the meaning of a point behavior.

Let us consider a simpler and easier problem, i.e. space one group diffusion in a homogeneous slab
geometry with one delayed family and time constant properties. The basic equations are the following:���� ���

�� � � 
 � � � �� � � � � � � 
 � � � �� � � � � ! � 
 � � � � $ 
 � � ' � ( � ) � 
 � � � � $ + - 
 � � � � $ / 
 � � � � �� - 
 � � � �� � � � + - 
 � � � � $ ' ( � ) � 
 � � � � � (8)

with boundary and initial conditions, as:� 
 4 � � 5 4 � � � 
 8 � � 5 4 � � 4 �� 
 � � � � 4 � � � = 
 � � �- 
 � � � � 4 � � - = 
 � � ? (9)

This physical problem can be given an exact solution by an eigenfunction expansion [9], [10]. The
Helmholtz eigenfunctions constitute a complete and orthogonal system, the most suitable base for rep
resenting the solution of the diffusion problem@ � A B 
 � �@ � � � � C �B A B 
 � � �

A B 
 4 � � A B 
 8 � � 4 ? (10)

Hence the space functions appearing in Eq. (8) can be expanded as:� 
 � � � � � GHB I = J B 
 � � A B 
 � � �
- 
 � � � � � GHB I = K B 
 � � A B 
 � � �
/ 
 � � � � � GHB I = M B 
 � � A B 
 � � � (11)

where the source components are known time dependent functions given by:

M B 
 � � � OP = @ � / 
 � � � � A B 
 � � R 
 A B � / 
 � � � ?
(12)

Also the initial conditions can be expanded:

� = 
 � � � GHB I = J B = A B 
 � � R GHB I = 
 A B � � = � A B 
 � � �
- = 
 � � � GHB I = K B = A B 
 � � R GHB I = 
 A B � - = � A B 
 � � ? (13)
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After introduction of the above expansion into problem (8), making use of the orthogonality of the
Helmholtz eigenfunctions, the system of equations for the components of the unknown solutions can be
given a compact matrix form introducing the vectors:� � � � � � 	 
 ����  � � � �� � � � � � � � � � � � � 	 
 ���� � � � � �� � �

(14)

as �� � � � � � � � 	 
 �� � � � � � � � 	 � � � � � � � 	 �
(15)

where �� � 
  ! # � % ' ( � * + , ' - . /� 1 ! 2( * + , ' 2 4 5
(16)

The solution is expressed in terms of the eigenvectors of the characteristic matrix �� � . To this purpose
the following direct and adjoint eigenproblems are solved:�� � � 6 � 	 
 8 � � 6 � 	 �9 6 � � �� � 
 8 � 9 6 � � � (17)

where the eigenvalues 8 � are the solutions of the algebraic generalized inhour equation associated to
each spatial eigenfunction: : ; = ? �� � ' 8 � �@ A 
 � 5

(18)

In this case there are two (seven, when six families are considered) distinct real eigenvalues 8 C D F� , G 
% � I
. The un normalized eigenvectors turn out to take the form:� 6 � 	 
 ������

%( * + ,
8 � � 2 K �9 6 � � 
 M % ! 28 � � 2 ���� 5 (19)

In conclusion, the analytical full closed form solution is:� � � � � � 	 
 /ND O P %Q 6 C D F� ��� 6 C D F� S T Q 6 C D F� � � � � � � 	 Y [ \ ] ^_ a � b ac � � e Q 6 C D F� � � � � � e � S Y [ \ ] ^_ C a g a h F i ��� 6 C D F� S j/ND O P T k C D F� c Y [ \ ] ^_ a � b ac � � e n C D F� � � e � Y [ \ ] ^_ C a g a h F i ��� 6 C D F� S 5 (20)

The explicit form for the neutron p ux is:q � � � � � 
 tN� O c uv w /ND O P y % � ( { + , ! 2� 8 C D F� � 2 � / } g P ~� � � � � q c � Y [ \ ] ^_ a � ! 28 C D F� � 2 � � � � � c � Y [ \ ] ^_ a � ab c � � e � � � � � � � e � � Y [ \ ] ^_ C a g a h F � � � �� � � � � � 5 (21)

A point reactor is here de� ned as a system evolving according to the fundamental eigenfunction � c
only.

In this situation any of the following statements is true:

* no space distortion appear during the transient �
* the evolution is space time separable �
* any point is representative of the whole system.
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Obviously, this can be realized only if the source is distributed according to the fundamental eigenfunc
tion.

When six delayed families are considered, it is straightforward to generalize the point solution as:� � � � � 
 � �� � � � � � � � � � � �� � � � � � � 
  ! " � $ � % & � � & 
 ) * + , . / � � �� � � � � � � % & � 0 & 
 ) * + , . / �
(22)/2 & 3 � 5 7 % & � 8 � � 5 
 : ) * + , . � / " / ; � <= % & � � 
 �
(23)

0 � � � � 
 � �� � � � � � � � � � � �� � � � � � � 
  ! " � $ � % & � � & 
 ) * + , . / � � �� � � � � � � % & � 0 & 
 ) * + , . / �
(24)/2 & 3 � 5 7 % & � 8 � � 5 
 : ) * + , . � / " / ; � <= � G � �

� � � � � � % & � � 
 �
(25)

where � � � �
are solutions of the inhour equation:� I� � � I � �� � � I J K � � � K� � � K M O � P �

(26)

The following integral kinetic parameters can be deQ ned:O � S T
� � M �S T

� �
reactivity (27)

S T
� � � � � � X � Z� � \  ]  & multiplication constant (28)I � �� � Z 7 � � \  ]  & : prompt neutron lifetime (29)

It is worth while to remark on some features of the real roots � � � �
of the inhour equation (26):a six roots are close to and approach each

M � K as subcriticality increases ba the seventh one, � � �
�
, is much larger in absolute value and negative and it determines the prompt

response of the neutron population connected to the inverse of the prompt lifetime ba with a time constant source, asymptotically the solution is driven by the exponential associated to the
dominant root:� Z c � � � � 
 � � � � � � � � � �� � � & � � � 
  ! " � $ � % & � � & 
 ) * + i . / � � �� � & � � � � % & � 0 & 
 ) * + i . / �

(30)� % & � 8 
� � & � j � M ) * + i . / l m % & � � 
 �
(31)0 Z c � � � � 
 � � � � � � � � � �� � � & � � � 
  ! " � $ � % & � � & 
 ) * + i . / � � �� � & � � � � % & � 0 & 
 ) * + i . / �
(32)� % & � 8 
� � & � j � M ) * + i . / l m � G � �

� � & � � � % & � � 
 n
(33)a the ratio of the precursor density to the neutron density is:0 o � � 0� � � � G � �

� � & � � � � � S T
� �

I �� � & � � � �
(34)
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which may assume values of the order of 10 � - 10� ! This is physically due to the fact that delayed
precursors can largely accumulate with respect to prompt neutrons owing to their extremely large value
of their mean time before being released by radioactive decay as compared to the prompt lifetime �� � � � has a special role, since it limits the negative value of the fundamental time constant of the system �
consequently, the ”averaging” of the properties of delayed precursors to produce the delayed families is
a rather delicate task.

4. Spatial characterization of neutronic transients

The object of this section is to derive a mathematical framework to characterize space and energy effects
in neutron transients. To attain such scope, an analytical approach is always used analyzing simpli� ed
con� gurations, referring to the diffusion theory model with one group for neutrons and one delayed
family for precursors. This study can help to understand the physics of the neutron evolution in multi-
plying systems and to establish limits of simpli � ed models such as point kinetics [9], [11]. Some special
considerations are devoted to the physics of subcritical systems, with reference to the dominance of the
source.

The following parameters are introduced to characterize a spatial transient:� asymptotic ratio, as relative difference with respect to the asymptotic value of the solution
	 
 � �

:� 
 � � � ����
	 � 	 
 � �	 
 � � ���� �

(35)� dominance ratio, as relative difference with respect to the dominant portion of the solution
	 �

, which
is particularly useful to characterize source-driven systems:� � � ����

	 � 	 �	 � ���� �
(36)� spatiality parameter, as norm of the difference between the full solution and a reference steady-state� ux distribution: � � �� 	  " ##$ % & 	 � � 	  � (  ( ) * + ,
(37)

Two cases are now discussed.

Case 1. The critical reactor.

An initially critical reactor in absence of delayed emissions is � rstly considered. The analytical solution
is as follows [10]: - . � / 0 1 3 4 � 5 6 7 *. 8 3 
 ; < �

(38)	 > @ B D E � FG. H I K . I M N O P Q . > @ E �
(39)	 
 � � > @ B D E � K I I M N W P Q I > @ E B
(40)

hence: � 
 � � X M Z N [ \ N W ] P B
(41)

which assigns a special role to the time-eigenvalue separation of the system.
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The initially critical reactor is now considered with delayed emissions. In this case it is u � eful to separate
the contribution of the fundamental eigenfunction:� � � � � � 
 � � � � � � � � �� � � � � � �� �  � � ! �� � � � � # �� � $ % � � 
 � (

(42)

Noting that ) *** + � � �� *** - *** + � ! �� *** �
(43)

and + � ! �� / 0
, it is possible to write: � 2 3 5 � 
 � � � � � � � �� � � � � � �� � % � � 
 � �

(44)
hence: 9 2 3 5 < � � � � � �� > � � � �� � � (

(45)

Case 2. The source driven reactor.

For the subcritical system different considerations need to be made. The presence of the source intro
duces a convolution term in the solution:�? � @ � A B � C �� � � A � � � � E �G � � > � H � � I B � C ��+ � C �� � K I � � � E �G � $ (

(46)

For the no delayed neutron and constant source situation the asymptotic portion can be given the form:� 2 3 5 � 
 � � � � I OP� Q � B �+ � % � � 
 � (
(47)

It is then clear that it includes contribution from all eigenfunctions.

In the evolution towards the asymptotic behavior, also the contribution of the dominant transient portion
needs to be taken into account. The dominant R ux includes the contribution from the source induced
asymptotic portion and from the evolution of the fundamental eigenfunction:� S � 
 � � � � T U �  B �+ � V � � � � % � � 
 �  � 2 3 5 � 
 � � � �

(48)

hence: 9 S < ********
T U �  B �+ � V � � � � % � � 
 �� S ********

(
(49)

If the delayed neutrons are taken into account:� 2 3 5 � 
 � � � � OP� Q � Y B � � ��+ � � ��  B � ! ��+ � ! �� Z % � � 
 � �
(50)

and consequently: � S � 
 � � � � !PC Q � Y � � C �� �  B � C ��+ � C �� Z � � � E �� � % � � 
 �  � 2 3 5 � 
 � � � (
(51)

Therefore the dominance ratio takes the form:

9 S < **********
Y � � � �

� �  B � � �
�+ � � �

� Z � � � � �� � % � � 
 �� S **********
�

(52)
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FIG. 1. Relation between the separation of the � rst static multiplication eigenvalues and the separation
of the � rst time eigenvalues.

which shows the particular role of the � rst eigenvalue in the characterization of spatial transients in
source driven systems, differently from the situation of critical reactors.

Some numerical results are presented in Figs. 1 to 6.

The conclusions on the observation of the graphs can be synthesized in the following considerations:

1. The response to a perturbation in a critical reactor is spatially more signi � cant in a large system, i.e.� � � �
is larger and takes longer to reduce to zero, and thus the contribution of higher order harmonics is

more persistent �

2. The evolutions of both
� � � �

and
� �

for subcritical systems show that the importance of higher order
harmonics increases with increasing subcriticality, as the systems are more source dominated �

3. The comparison of initially critical and subcritical systems shows that the spatial feature of the
transients is larger in systems departing from criticality � therefore, one can expect that the point model
may have obvious limitations of applicability in these situations, while it may be more ef� cient in source
driven systems.

The conclusion in 3. has been proved in some recent independent papers [12]. The practical consequence
may be that quasi statics can prove to be highly ef� cient for ADS.

5. Factorization methods and quasi-statics

Multidimensional evaluations always require large computational effort for a direct numerical solution.
Quasi statics is an attracting method, because it can yield accurate results with a limited amount of
computational effort. The literature on the subject is very large. For instructional purposes, the classical
references to the work by Alan F. Henry [7] and by Jacques Devooght [13] are particularly useful. It is
appropriate to summarize here the steps that lead to the classic quasi static method as a background to
its extension to subcritical systems.
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) results for



are produced using as reference
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distribution, while squares (  ) using the initial state. For subcritical systems circles ( � ) indicate the
ratio

� � � � �
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5.1. Derivation of the factorized equations

It is supposed the initial system is a critical source free reactor in steady state condition. This system
is denoted as the reference reactor, and its neutron distribution is the solution of the following homoge
neous problem, for which a non vanishing solution is then assumed to exist:� �� � � �� � �  � � � � � � � �

� � �  � � � � � � � �  " �
� � �

(53)
where the steady state (global, prompt + delayed) multiplication operator is introduced:

�� �
� $ % '

% � � �( ) * , � - . , � - 1 � � - � 4 % � � - � 5 % 6 � � � � - � � � 9
(54)

both the multiplication and the leakage operators
�� �

and
�� �

are evaluated with the initial cross section
data. The global : ssion spectrum is de : ned by:

'
% � � �

�
�

� �
; � '

%= � � � � ?$  A C ;  '
%  � � � D (55)

For this system it is possible also to determine the solution of the adjoint equation:� �� E� � �� E� �  E� � � � � � � �
� � �  E� � � � � � � � K L N �

� � �
(56)

which is well known to assume the meaning of neutron importance, in the classical sense [6], [14].

The neutron density, whose knowledge is the object of all our efforts, is factorized as:P � � � � � � � R �
� S � R � T � � � � � � 9 R � D (57)S � R �

is the amplitude function, while
T � � � � � � 9 R �

is referred to as the shape function. It is obvious that
as such the factorization is not unique and further constraints need to be introduced. The idea underlying
the above factorization is that the evolution follows two scales in time: the scale for the amplitude may
be much faster than the one for the shape. In such a way one can deal with the stiffness of the problem.
Furthermore, if the scale for the shape is slower, it can be recalculated fewer times along a transient, with
a reduction of the computational effort, since it is apparent that it is much more dif: cult to calculate the
shape that contains information on the neutron behavior in phase space, while the amplitude is connected
to the evolution of the bulk of the neutron population and it is thus dependent only on time.

The factorized density is now introduced into the balance equations:WXXXXY XXXXZ
S \ T

\ R � T , S, R � S �^ T � `$  A C b  c '  ( ) d  e � g �
\ � '  d  

�
( ) �

\ R � S ��  T
� b  c '  ( ) d  e D

(58)

These are to be regarded as equations for the shape function, were the amplitude behavior known. It is
now possible to solve for the delayed neutron precursor concentrations:

'  � � �( ) d  � � � R �
� '  � � �( ) d  � � � R

�
R � � k l m n o N l N p q �

N
* N p S � R - � ��  T � � � � � � 9 R - � k l m n o N l N t q , R - D (59)

If this expression were cast into the balance equation for the neutron density, the problem would be
given an integro differential form in time. This expression will be used in the following.
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Equation (58) is now projected on the solution to the adjoint problem:����� ����
� �� � � 	 �� ��� � � � � �� � � 	 �� ��� � �

� � � 	 �� ��� �� � � � �� � � ! # � � 	 �� ��� % �& ( ) � � � � 	 �� ��� + � ,
�� � � 	 �� ��� % �& ( ) � �

� � � 	 �� ��� �/ � � �
� # � � 	 �� ��� % �& ( ) � � 2

(60)

The projection operation could be performed using a weighting function other than the importance
function. However, on observing the factorization (57), one can conclude that the use of such weighting
function implies that the amplitude plays the role of component of the total neutron density along the
fundamental eigenfunction of the reference system.

It is now possible to introduce a further constraint to make the factorization unique. A normalization
condition is imposed for the shape function:�� � � 	 �� ��� � �

� 3 4
(61)

consequently, the 5 rst term in Eq. (60) will drop out.

Some de5 nitions are now listed in the following chain of equalities:�� 6 � 8
�

�9 6 � 8 � �/ ; 6 � 8
�

6 �9 � � �/ � 8 � ? �� 6 � 8
�

�@� � ! �/ � 6 3 8
�

�@� � ! ? �/ � 6 � 8 � �@� � ! ? �/ � 6 � 8
�

�

6 �9 � � �/ � 8 � ? I �� 6 � 8 � �@� � ! �/ � 6 � 8 K
�

�@� � ! �/ � 6 � 8 , (62)

with the introduction of the perturbation operator:? �M
�

? �� 6 � 8 � �� � � ! ? �/ � 6 � 8 2 (63)

At last the equations for the amplitude are obtained (point like equations):����� ����
� � 6 � 8

� � � O 6 � 8
� QRS � 6 � 8 � �� � � ! # � Q) � 6 � 8 � Q+ 6 � 8 ,

� Q) � 6 � 8
� � �

QR �S � 6 � 8
� # � Q) � 6 � 8 2

(64)

It is immediate to note that, if the shape were constant (and known), the standard point model would be

obtained, with the same structure as each of the equations (15). If that is not the case, the model is not
consistent, since the coef5 cients of (64) contain the shape

�
which can be determined from (58) only

once the amplitude � is available.

Before explaining how a consistent numerical technique can be developed, it is worth to write explicitly
all the kinetic parameters appearing in Eq. (64):

T system reactivity

O 6 � 8
�

� 	 �� ��� ? �M � �
� 	 �� � �� �/ � � 4

(65)

T effective mean prompt neutron generation time

S
�

� 	 �� ��� � �
� 	 �� ��� �/ � � 4

(66)

T effective delayed neutron fractions
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�� �
�

� � �� � �� 	
 � � 
� � �� � �� 	
 �  � (67)

New unknowns are also introduced as effective delayed neutron precursor concentrations:

�� � � � �
�

� � �� ��� � �� � � � 
� � �� ��� �  �

�� � � �� ��� � �� � � � 
� � �� ��� 	
 �  �

(68)

and the effective external source function:

�� � � �
�

� � �� ��� � 
� � �� ��� �  �

�� � � �� � �� � 
� � �� ��� 	
 �  � (69)

5.2. The numerical quasi-static scheme

For the numerical solution of the problem two time intervals are introduced:

* the shape interval (slow phenomena) �
� # %

* the amplitude interval (fast phenomena) �
� '

.

The integro differential equation for the shape is discretized across �
� #

:)
�

� � *
�

� # �

+ � ) � � � ) �
�

� � � � �
�

� # * � � ) � 0+ � ) �
� + � ) � 	3 � � ) � *

45 � 7 9 : � ; � � � = �� � � � � � � � @ A C E G H J * K MH N + � � O � 	
 � � � � � � @ A C E S M A H T U V � O W * � � ) � � (70)

with the objective of determining
� � ) �

through the solution of a stationary like problem of the same
type and difY culty as Eq. (53).

In general,
� � ) �

obtained by the solution of Eq. (70) will not satisfy the required normalization condi
tion, Eq. (61), namely: [ � ) �

� � � �� ��� � � ) �  \
�

[ � � � �
� � � �� ��� � � � � �  � (71)

To obtain a shape satisfying, as required, condition (61), an iterative process is necessary. Different
requirements can be applied to run the iteration. It is suggested here to preserve the continuity of
the amplitude function, thus allowing a discontinuity in its time derivative. Introducing an iteration
numbering index ] , the steps of the scheme follow:

+ � ) � � S ^ U � ) �
�

� � � � �
�

� # * � S ^ U � ) � 0+ S ^ U � ) �
�

+ � ) � 	3 � S ^ U � ) � * 45 � 7 9 : � ; � � � = �� � � � � � � � @ A C E G H J * K MH N + � � O � 	
 � � � � � � @ A C E S M A H T U V � O W * � � ) � � (72)

[ S ^ U � ) �
� � � �� ��� � S ^ U � ) �  �

(73)

� S ^ h 9 j k U � ) �
�

[ � � � �[ S ^ U � ) � � S ^ U � ) � � (74)
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The derivative of the amplitude function is updated according to Eq. (64):

�� � � � � 	 
 � 
� � 
 �  � � �� ��� �� � � � � � � � 	 !

� � �� ��� � � � � � � � 	 
 �  ! " #$ % ' � * % � � �� ��� + %, - . % !
� � �� ��� � � � � � � � 	 
 �  ! " � � �� ��� 1 
 �  !

� � �� ��� � � � � � � � 	 
 �  ! 4
(75)

up to convergence.

6. Extension of models to source-driven systems

It is foreseen that the analysis of ADS may require spatial and spectral neutron kinetics. It is advisable
therefore to try to adapt quasi statics also to subcritical systems [15], [16]. This is the scope of the
present section.

6.1. Application of the factorization procedure to source-driven systems

The reference reactor is driven by an external source, hence it is obvious that the initial shape should be
assumed as solution of the steady state equation:
 �5 � " �7 �  � � 
 < 4 > 4 @  " 1 �

� D 4 � � 
 < G 4 > 4 @ % � 
� D K (76)

In the projection procedure the problem that immediately arises is the choice of the weighting function.
Although the method can be constructed irrespective of such a choice, the accuracy may depend signiL
cantly on it. One possibility is to construct a L ctitious homogeneous adjoint equation by the introduction
of a multiplication eigenvalue:
 �5 �� " �

�
� �7 ��  � �� N O Q 
 < 4 > 4 @ 

� D 4 � �� N O Q 
 < G 4 > 4 @ S T V 
� D K (77)

Alternatively, a non homogeneous adjoint equation may be considered, which requires an adjoint source,
as 
 �5 �� " �7 ��  � �� N X 
 < 4 > 4 @  " 1 �

� D 4 � �� N X 
 < G 4 > 4 @ S T V 
� D K (78)

Now the problem of the deL nition of the adjoint source arises. This is connected to the physical meaning

one may want to assign to the importance function. The solution to the problem is not unique. If the
importance is deL ned as the number of L ssion neutrons to be produced per neutron injected at a point in
phase space, the adjoint source stems as: 1 �

�
] ^ _ K (79)

The choice of the weighting function has a consequence on the reactivity of the system
`
if the reactivity

is split as: a � a � " a b 4
(80)

where a b is the perturbation reactivity and a �
(always negative) is the initial subcriticality level, one has,

alternatively:

a �
�

� � �� N O Q ��� �7 � � !
� � �� N O Q ��� �7 � ! g � � �

� h 4
(81)

a �
� � i 1 � j � k

� � �� N X � �� �7 � ! K (82)

6.2. Discussion on the choice of the weighting function in separation schemes

The most suitable choice of the weighting function for subcritical systems is an open problem for dis
cussion. No univocal answer can be given. The best option may be strongly dependent on the physical
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FIG. 7. A typical transient in a source-driven system computed by the quasi-static method. The weight
function is a source adjoint problem solution [18].

�
indicates the number of shape recalculations.

problem considered. This consideration is proved by the following Figs. 8 to 10. Here the problem is
evidenced and no general solution is proposed.

6.3. A computational tool

A code is available for the evaluation of transients in accelerator driven systems. The code is the result of
the coupling of a neutronic module with a thermal model, in order to compute also feedback effects. The
neutronic module solves the multigroup diffusion equations in cylindrical geometry with the presence
of delayed emissions. The thermal calculation is performed by the channel code TIESTE developed at
ENEA (Italy) for accelerator driven systems cooled by lead bismuth [17]. The code determines the axial
distribution of temperatures for the fuel, the cladding and the coolant, for different channels. The instants
for the thermal calculation are chosen according to the power change of the system. The average values
of the power density are computed for pre de� ned zones of the multiplying structure and input into the
thermal module. At the end of the thermal calculation, the cross sections are updated according to a
linear interpolation process between tables of data generated at different fuel and coolant temperatures.
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7. A development: the multipoint scheme

The quasi static method proves to be a powerful and computationally ef� cient tool for the analysis of
source driven systems [12], [18], [19]. Accurate predictions of the transient behavior in non linear
conditions dominated by thermal feed back can also be attained by a coupling of the neutronic module
with a thermal hydraulic tool. However, signi� cant improvements can be reached with little increase in
computational effort passing to a multipoint scheme. This is a generalization of the method originally
proposed by Avery [20] and more recently revived by Kobayashi [21]. It is seen that it can easily be
included in quasi static framework. In the following the method will be developed in a factorization
projection formalism, extending the Henry technique.

It is simple to start from the balance equations in discretized form:����� ����
�� � � 
 � �� � �  � �  � � �

� � � � � � � 
 � � � � � � � � � � � � � � � � � � � � � � � �
� � � � �

� � �
� �  � �  � � � 
 � � �

� � � � � � � !
� �

� # � % % % � ' � (83)

where: 
 � � ( � *
� 
 ( , � � / � � � * � � � � � ( � *

� � � ( , � � � * % (84)
One can notice that system (83) shows a multipoint structure, in the sense that it describes the evolution
of the neutron population at each point 4 5 as the results of the phenomena taking place at this point as
well as of the transfer from other points in phase space. However, the discretization is carried out in order
to capture the physical features of the neutron migration, hence it has to be tuned to the characteristics
of the problem. This involves then too many points. The method presented intends to reduce drastically
the number of points, to very few. Point kinetics is the limiting model.

The phase space of the problem is subdivided into macroregions, 6 7 9 , where indexes
:

and ; are
used to denote space and velocity, respectively. A factorization is now applied to each macroregion.
 � � ( � *

� > 7 9 ( � * @ � � ( � * , � � / � F 6 7 9 % (85)
A de� nition of a regionwise inner product needs to be preliminarily given:

H I J K M
� O  �  � P 7 9 I � � K � � % (86)

The factorization is introduced into the balance equations:��������������� ��������������

�� � @ � � � > 7 9� � � �� � > 7 9 � @ � �� � �

 7 �  9 � O  � �  � � P 7 � 9 � �
� � � � � � � @ � � � � > 7 � 9 � � � � � � � � � � � � � � � � � � � � �

� � � � �
� � �

� �  9 � O  � � P 9 �  � � � @ � � � > 7 9 �
� � � � � � � �

!
� �

� # � % % % � ' � , � � / � F 6 7 9 �
(87)

and the equations are multiplied by
I � �

and summed on
: ; . Following what is done is standard

factorization projection procedures, a normalization condition is imposed:

�� � O  �  � P 7 9 I � � �� � @ � � ( � *
�

�� � X 7 9 � Z % (88)

The point to point transfer term can be easily manipulated as:
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�� � � � � � � � 	 � � � � � � � � � � � � � � � � � � 	 � � � � �
� �  � � � � � � � � � � � � � �

�

� � � � � � �� � � � � � � � 	 � � � � � � � � � � � � � 	 � � � � �
� �  � � � � � � � � � � � � � � �

� � � � � � � � � �  � � � � � � � � � �
(89)

At last, the multipoint equations can be cast into the following form:������� ����� 
! � � �! " � � � � � � � � � �  � � � � � � � � � $ %� & ' ) * & + &  � � $ - � � .
! + &  � �! " �

/ & � � � 0 &  � �  � � � � � �
� * & + &  � � 1

� �
. 3 . � � � . 6 . (90)

which is a system of coupled point models. The following de7 nitions hold for the effective multipoint
source (known): - � � �

�� � � � � � � � 	 � � � � � - � � .
(91)

and the effective multipoint delayed precursor concentrations (unknown):

+ &  � � �
�� � � � � � � � 	 � � � � � : &  � + &  � � (92)

The delayed neutron production coef7 cients appearing in Eq. (90) are de7 ned according to the following
expression:

0 &  � �  � �
�

�� � � � � � � � 	 � � � � � : &  � / & � � � � 	 � � ; � � � � � � � � (93)

It is rather easy to include the multipoint can be included into a quasi static scheme, following the

standard steps [1]:

* Solution of the slow shape equation at time
" <

(either the equation for the steady state reference
system at

" <
� = , or Eq. (87) at successive steps)

>
* Determination of the multipoint equation parameters (point to point transfer terms and delayed neu
tron production coef7 cients) together with the effective multipoint source

>
* Solution of the multipoint system (90) in the interval ? " < . " < $

�
" A C

. De 7 ning
D

�
" < $

�
" A

, after
time discretization the shape equation is written as:������������ ���������� 

�F � G� � � H D J � � � H D J $ �F � � � � H D J � � � H D J
�

� � � H " < J
�

" A �

� � � � � � � � � � � � � 	 � � � � �
� �  � � � � H D J � � � � � H D J � � � � � H D J $ %� & ' ) * & : &  � + &  � H D J $ - � � H D J .

+ &  � H D J
� + &  � H " < J S T U W X Y [ $ \ ^Y _ / & � � � � � � � 	 � � ; � � � H D J � � � � H " < J � � � � � H " b J S T U W c ^ T Y � d ! " b �

(94)
To ful 7 ll the normalization condition, as for the standard quasi static scheme, an iteration sequence is
required, according to the following steps:
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FIG. 11. Flux at end of transient: � � point kinetics � � � 2 point kinetics � � � exact solution.

�
 � � � � �� � � � � � � � �� � � � � � �
 �  � � � � � � � � �� � � � �
�

� � � � ! " �
�

! % �

& � ' & � ' ( & � ' & � ' ) � ' � ' �
� � * � ' � ' � � � � � � �� ' � ' � � �  � ' � ' � � � � .& / 1 2 4 / 5 / * � 6 / * � � � � � : � � � � � ; (95)

< � � �� � � � �
� ( & � & � ) � � @ � � �
 � � � � �� � � � � ;

(96)

� � � C 2 D F �� � � � �
�

� � � �� � � � �< � � �� � � � � < � � � ! " � ;
(97)

� � � C 2 �� � � � �
�

< � � C 2 D F �� � � � � & � ' & � ' ( & � & � ) � � K @ � � ( & � ' & � ' ) � ' � ' �
� � * � ' � ' � � � � � � C 2 D F �� ' � ' � � � L  � ' � ' �

( & � & � ) � � @ � � 5 / * � 6 / * � � � �< � � C 2 D F �� � � � � � ( & � & � ) � � @ � � : � � � � �< � � C 2 D F �� � � � � N
(98)

The calculations performed on the multipoint scheme allow to make the following conclusions [9]:

* multipoint is effective in many reactor kinetics problems, specially for source driven decoupled conO gurations
P

* the method can easily be included within quasi statics, greatly enhancing its performance.

A typical transient is reported in Fig. 11. A 1D plane source driven system (spatially localized and sym
metrically located source) is materially perturbed, homogeneously increasing the absorption on the half
right of the slab and simultaneously decreasing it on the left, thus maintaining the same multiplication
eigenvalue. The curves report the Q ux distribution at the end of the transient. Multipoint kinetics is con
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structed with two point, for each two halves of the system. It can be seen that point kinetics is highly on
the side of unsafety and it is unable to follow the space transient, since no distortion is allowed. The two
point model is much closer to the real solution (computed numerically) and it yields almost the exact
value of the power (integral of the � ux). A spatial discontinuity can be seen, owing to the fact that the
two amplitudes are allowed to evolve separately (although connected through the multipoint system).
This shortcoming can be easily overcome in a quasi static framework.

It seems also particularly interesting a development to apply the multipoint procedure to angular schemes
in transport calculations. However, some information on the nature of the transient to be studied is
needed, to perform the most suitable subdivision of the phase space of the problem in order to enhance
the capability to capture the physical features of the evolution [22].

8. A harder problem: the modeling of � uid-fuel systems

Fluid fuel systems are today proposed within the Generation IV project as viable means for energy
production and radioactive product transmutation. Fuel should be a mixture of � ssile and fertile molten
salts. The fuel itself is to be circulated and transport the � ssion generated energy into a heat exchanger.
There are obvious advantages in the fuel cycle and in the management of � ssile materials and there is
a possibility of on line removal of � ssion products, thus reducing the radioactivity inventory in the core
with meaningful consequences on the safety of the system. Unfortunately, many problems still exist
concerning material compatibility and corrosion. However, experimental systems of this type were built
and operated in the sixties, e.g. the Molten Salt Reactor Experiment, MSRE, carried out at ORNL, and
a lot of data is actually available. It seems possible to run this systems both in the critical and subcritical
state.

The study of the physics of these systems involves very interesting mathematical problems. In the fol
lowing a model is presented and discussed and some numerical techniques for its solutions are outlined.

The Fig. 12 illustrates the schematics of a molten salt reactor.

FIG. 12. Layout of a circulating fuel reactor.

8.1. General model

An essential feature of the neutron kinetics of a recirculated � uid fuel system is the motion through and
outside the core of the delayed neutron precursors produced by � ssions. As a consequence, while the
structure of the balance equation for neutrons is essentially unchanged with respect to solid fuel systems,
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a streaming term appears in the balance for delayed neutron precursors:�������� �������

� � � 
 � � � � � � �� � � � �� � � � � ��  � � � $ � � 
 � � � � � � � � () * , - / * � 
 � � � � � � 2 � 
 � � � � � � � �
67 * � / * � 
 � � � � �� � � 67 * : � � � / * � 
 � � � � � � � �� * � � � � � 
 � � � � � � � � / * � 
 � � � � � �

� � 6 � � � 	 	 	 � � �
(99)

where the isotropic delayed neutron emissivity
/ *

is introduced according to the following de� nition:

/ * � 
 � � � � � � 7 *  * � 
 � � � � * � � �� � 	
(100)

Since the equation for delayed precursors is � rst order differential in space, an appropriate boundary
condition must then be introduced [23]. The most general, though rather complicated, form of this
condition is as follows:/ * � 
 � � � � � � � 
 � � � � � � � �

� � � � / * � 
 � � � � � �  � 
 � # 
 � � % ' ) + - . 0 2 3 0 6 � � 
 � � � � � : � 
 � # 
 � < > � �

 A > * C � (101)

where the function
: � 
 � # 
 �

describes the transfer form the exiting point to the re entering point of the
system through the external circuit, and

 � 
 � # 
 �
is the corresponding recirculation time. Of course, the

velocity � eld � has to be determined by the simultaneous solution of the D uid equations. The physical
model is completely de� ned once initial conditions are associated to Eqs. (99).

It is useful for the physical comprehension to write a simpli� ed version of problem (99), assuming the
multigroup diffusion model in cylindrical geometry for the neutron and a one dimensional (axial) slugD ow, imposed by the externally driven devices. Therefore, � � 
 � � F G I , and it follows:JKKKKL KKKKM

6N O � P O� � � R � S O R P O � U O P O � ) O 2 W �  X O Y U [ O 2 � 6 � ] � � U O 2 3 O _ P O 2 � 2 O � () * , - 7 * � * X O  * �
�  *

� � � � 7 *  * � ] * ) O Y U [ O P O � �� a � F  * � � � � 6 � � � 	 	 	 � � �
(102)

with boundary conditions:

F � c �  * � a � c � d � � � � F � e � % ' ) + - h> i j k l �
� m � o p  * � a � e � d � � �  q � < > 	

(103)

8.2. Discussion of the dynamic effects of fuel motion

The main physical features connected to the motion of the � ssile material are now brie D y discussed.
First of all, it is important to notice that the delayed precursor equations cannot be eliminated in the
steady state con � guration. It is straightforward for a solid fuel problem in absence of the streaming term
to express the emissions from precursors as functions of the � ssion term as:/ * � 
 � � � � �� * � � 
 � � � � � �

(104)
and back substitute them into the neutron balance equation. In the case of circulating fuel the equations
for precursors are still differential for the space variable and their concentrations can not be made explicit
and substituted: : � � � / * � 
 � � � � � 7 *

�� * � � 
 � � � � � � 7 * / * � 
 � � � 	
(105)

A direct consequence of this fact is that the multiplication eigenvalue depends on delayed neutron and
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FIG. 13. Steady state distributions of � uxes and precursors.

� ow characteristics.

The space distribution of delayed precursors is completely different from what is expected in the case
of a solid fuel system. Figure 13, well illustrates this fact, reporting the typical neutron � ux (in a three
group model) and the delayed neutron concentrations [24].

The role of delayed emissions is signi � cantly reduced with respect to standard systems. This is due to
two causes: i) the space redistribution of the delayed precursors, as delayed precursors can emit neutrons
at positions having different importances with respect to the position where the � ssion event took place
and ii) the external recirculation, as delayed emission can take place outside the core region and thus the
neutrons cannot take part to the chain reaction process. These effects cause a reduction of the effective
delayed neutron fraction. In the following some results will quantify the extent of such effect.

Owing to the peculiar space distributions of the delayed precursors, the factorization schemes for de
riving the neutron kinetics equations should unavoidably be applied to both neutrons and precursors.
Therefore, the point kinetic model needs a speci � c formulation, which is presented in the following sec
tion.

8.3. Derivation of consistent point kinetics

To derive a consistent point kinetic model, the Henry factorization procedure is now applied to the
balance equations (99). For this purpose, a reference con � guration is introduced as described by the
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equations:����� ���� � �� � � �� � � � � 	 � � 
 � � � � � � �� � � � � � � � � 
 � � � � � � � 
 � � � � � # 
 �
$% � & � �  � � � � � � 
 � � � � # �� � � � 	 � � 
 � � � � � � � � � � � 
 � � � � � # $ � � � � � � � � � (106)

with appropriate boundary conditions. For the projection procedure it is necessary to de� ne the inner
product between elements � # � 0 � � � � � � � � �

� � �
of the direct and � � # � 0 � � � �� � � � � � � �� �

of the adjoint
space as:

� � � � � � # � !
�

�" � � $ & �" ( & " *
# � !

�
�" � � , . / 0 , 2 / � , 3 5 / � � & �" & " �

(107)

It is physically meaningful to use for the weighting function a proper mathematical adjoint. The im
portance is de� ned consistently as the number of � ssion neutrons that would be produced within the
multiplying system by the injection of a neutron at a given point in phase space. Thence, the system of
equations for the importance takes the form:����� ���� � �� �� � �� �� � � � 	 �� � 
 � � � � � � �� � � � �� �� � � � �� � � � 
 � � � � � �� � 
 � � � � � # 
 �

$6 7 9 / � 	 �� � 
 � � � � � � $% �  � � & < � �� � � � 
 � � � > � � �� � � � 
 � � � # 
 � � # $ � � � � � � � � � (108)

with boundary conditions:� �� � 
 � � � # ,
@ A C

� �� � 
 D � � � E F G A H I J K J M N O P 
 Q 
 D R / T D � 
 U T V X � �
(109)

These boundary conditions are symmetric with respect to Eq. (101), and can be physically interpreted
consequently.

Both Y ux and delayed emission distributions are factorized with an amplitude shape formula:0 � 
 � � � � � > � # [ � > � \ � 
 � � � � ^ > � �� � � 
 � � � > � # _ � � > � E � � 
 � � ^ > � � # $ � � � � � � � � � (110)

Afterwards, the factorized formula is introduced into the balance equations (99), which are then pro
jected on the adjoint solution. Normalization conditions are imposed on the shape functions, for both
neutrons and precursors, to make the factorization unique:// > c 	 �� d dd \ *

# 
 �
// > c � �� � � d dd E � *

# 
 � � # $ � � � � � � � � � (111)

The amplitude functions are found to obey a generalized point like model [24]:���� ��� f h
/ [/ > # < i j � lm > [ � �� � � � % � n � � l� �

f
� / n �

/ > # < lm � � i � > [ � � % � � p X � � � p r � � � n � � t � � � # $ � � � � � � � (112)

The structure of system (112) is equivalent to the point kinetic model for solid fuel systems. However,
the kinetic parameters and the effective delayed neutron functions

n �
have different de� nitions, and

unconventional coef� cients appear, such as
i �

, connected to the perturbation of the delayed neutron
precursor production,

p X � �
, due to the perturbation of the Y uid velocity, and

p r � �
, due to the perturbation

of the recirculation time. The de� nitions of the parameters and of the effective source and delayed
neutron precursor functions follow:
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� normalization factor:

� � �� � � � ��� � � � � �� ��� 	 � 
 � 
 � � � 
 � � � �  � � � ��� � � ��� � � � � �� ��� 	 � � � � � � � 
 � � � 
 � � �
(113)� effective delayed neutron precursor functions:� �

� � ��� � � � � �� ��� 	 � 
 � � � 
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� � � � �

(114)� effective external neutron source: �� � � ��� � � � � �� ��� � � � �
(115)� effective delayed neutron fractions

�� �
� � ��� � � � � �� ��� 	 � 
 � 
 � � � 
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(116)� reactivity
� � � � � � � �

, where: � � � � � ��� � � � � �� ��� � � 
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(117)

in diffusion theory (Eqs. (102)), the perturbation reactivity term takes the form:

� � � �  � ��� � � � � � �� ! ��� "
# � � � � 
 � � � ��� � � ��� � � � � �� ��� �  � � � 	 �
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 � � �
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 � � � 
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 � � ( *+ � (118)

� effective prompt neutron lifetime:

, - � � ��� � � / � �� ����
0 � � � 
 � 2 �

(119)� effective generalized precursor lifetime:

,
�

� � � �� ��� � � 
 � �
��� � � � � �� ��� 	 � 
 � � � 
 � � �

(120)
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� unconventional coef� cients:� �
�
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� apparent precursor source:

1 �
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where: 6 �
�

�0 @ A C D � � �  � E F � � � � � F � G !
" $ % ' ( � �� � , � H � . 0 !

" $ % ' ( � � � � � , �  � J
(123)

It is worth to present some values of the effective delayed neutron fractions, Table I, which are computed
for a reference system in a 1D model in a Uranium fueled reactor [25]. The column for

; � H
is ideal,

but it gives an indication of the extent of the effect due to the spatial redistribution only, since no external
decay is accounted for. It is seen that this effect alone is about 16 17%. Globally the reduction of the
role of delayed neutrons can be rather signi � cant, up to almost 70%. For source driven systems, this is
to be added to the reduction that has to be associated to subcriticality [26].

If the shape function in the factorization (111) is kept constant and coincident with the solution of the
reference problem (106), the point model is obtained. However, a quasi static procedure can easily be
implemented [23].
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Table I. Ratio
��

/
�

as a function of
�

and � for different � uid velocities.�
[s]

�
0 5 10 15 � [cm/s] �

� �
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 � � � � � 0.842

0.835
0.542
0.422

0.470
0.363

0.443
0.332 �

�
� � �

� �
� 
 � � � � � 0.843

0.834
0.540
0.420

0.469
0.353
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0.330 �

�
� � �

� �
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0.833
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0.419

0.467
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�
� � �
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0.329 �
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