





Workshop on "Technology and Applications of Accelerator Driven Systems (ADS)"

17 - 28 October 2005

1677/11

**Accelerator Design for Spallation Neutron Sources** 

**A. Aleksandrov** Oak Ridge National Laboratory, USA



## Accelerator Design for Spallation Neutron Sources

Alexander Aleksandrov Oak Ridge National Laboratory, USA

October 17-28, 2005

Workshop on Technology and Applications of ADS, - A. Aleksandrov





Level: Prerequisites: Duration: Topics: Introductory; overview Physics 101 2 x 1h 30 min

- General concept of accelerator for Spallation Neutron Source
- Fundamentals of accelerators; vocabulary; concepts
- Example: design of the SNS

E-mail: SASHA@SNS.GOV

Acknowledgments:

In preparation of this lecture I used materials generously provided by my colleagues from the SNS, in particular by N. Holtkamp, S. Henderson, R. Campisi, M. Plum, S. Assadi, J. Stovall, and J. Wei.

October 17-28, 2005



SI units will be used with one exception:

Beam kinetic energy is expressed in electron volt (eV), instead of Joules.

1eV=energy acquired by a particle with electronic charge 1.602 X 10-19 C accelerated through 1 Volt.

 $1 MeV = 10^{6} eV$ 

 $1 \text{GeV} = 10^9 \text{ eV}$ 





|                      | Energy<br>[GeV] | Current<br>[mA] | Reprate<br>[Hz] | Ave. power<br>[MW] | Туре      |
|----------------------|-----------------|-----------------|-----------------|--------------------|-----------|
| SNS                  | 1               | 2               | 60              | 2 (23)             | LAR       |
| ESS                  | 1.33            | 1.9             | 50              | 2.5x2              | LAR       |
| JKJ                  | 3               | 0.33            | 25              | 1                  | RCS       |
| CERN PD              | 2               | 2               | 100             | 4                  | LAR       |
| RAL PD               | 5               | 0.4             | 25              | 2                  | RCS       |
| FNAL PD              | 16              | 0.25            | 15              | 2                  | RCS       |
| EA                   | 1               | 10 20           | CW              | 10 20              | cyclotron |
| APT                  | 1.03            | 100             | CW              | 103                | linac     |
| TRISPAL              | 0.6             | 40              | CW              | 24                 | linac     |
| ADTW                 | 0.6 – 1.2       | 20 50           | CW              | > 20               | linac     |
| μ-collider<br>driver | 30              | 0.25            | 15              | 7.0                | RCS       |

## Why Neutrons?





1. Neutrons have the right wavelength Neutrons probe a broad range of length scales



**2.** Neutrons see the Nuclei

Can offer greater contrast than x-rays (e.g. H); isotopic contrasting



#### 3. Neutrons penetrate deep into Matter

Study material properties deep inside materials; characterizing deep welds and their associated stresses



#### 4. Neutrons see Elementary Magnets

Study magnetic structure of materials; advanced magnetic materials

#### Neutrons probe a broad range of length scales



# Nanoscale science and technology presents extraordinary opportunities





# Spallation-Evaporation Production of Neutrons and Why to use heavy metal target!





#### **Development of neutron science facilities**





(Updated from Neutron Scattering, K. Skold and D. L. Price: eds., Academic Press, 1986)

October 17-28, 2005





Efficient use of beam power requires W > 1GeV

➢ Approximately same neutron yield will be produced by 1 GeV \* 2 mA beam and 2 GeV \* 1 mA beam

➢Trade off between beam current and energy provides flexibility in choosing type of accelerator (will be discuss later)





Pulsed operation allows neutron energy separation by resolving time of arrival to the detector: faster neutrons arrive earlier slower neutrons arrive later

#### Choosing design parameters : beam pulse time structure

Seam pulse length  $\tau$  should be much shorter than neutron pulse widening in the moderator to preserve resolution of Time-of-Flight energy separation. Typically,  $\tau < 1 \ \mu s$ .

> Time between pulses T should be large enough to prevent "frame-overlap" from consecutive pulses. Typically, T > 10 ms (or repetition rate < 100 Hz).

*Time widths W (FWHM) of neutrons emerging from a room-temperature water moderator in different regimes.* 

Accelerator stability improves if pulse rate is synchronized with AC power line: 60 Hz, 30 Hz, 20 Hz ... in USA (50 Hz, 25 Hz, 10 Hz ... in Europe).

In pulsed systems distinguish peak values of parameters (e.g. current, power) vs. average values.

12



100

 $W(\mu s)$ 



October 17-28, 2005



#### How to resolve discrepancy?

- 1. Increase beam energy to 200 GeV. Impractical and cost prohibitive.
- 2. Accelerate 200  $\mu$ s long beam pulse then compress it to 1  $\mu$ s.



#### Multi-turn injection into the ring



#### Multi-turn charge-exchange injection in practice



- Negative ions of hydrogen (bound state of proton + 2 electrons) are produced in the source and accelerated
- Two electrons are removed by the stripping foil, injected protons are merged with previously accumulated beam
- The Secondary foil strips the H<sup>-</sup> and H<sup>0</sup> which survived the first foil





#### **Single-turn extraction from the ring**

- $\succ$  Install electro-magnetic deflector in the ring.
- > Zero voltage on deflector. No deflection. Beam is circulating.
- > Maximum voltage on deflector. Beam is deflected to extraction channel.







End of accumulation

Extraction

#### **Extraction losses**



- SPALLATION NEUTRON SOURCE
- Deflector can't switch on instantly
- ≻ Typical rise-time ~ 200ns
- ➤ What happens to partially deflected beam?

➢ Half-deflected beam misses extraction channel and hits the wall

➢ Power of lost beam

$$\approx \frac{deflector\ rise\ time}{revolution\ period} \cdot P \approx \frac{0.2\,\mu s}{1\,\mu s} \cdot 1MW = 200kW$$

➤ Unacceptably high. Higher than power on target for best existing machines!





 $\succ$  Have to add "chopper" creating gaps in the beam

➤ Chopper should be placed at as low energy as possible to minimize power of beam removed from the gaps



#### Acceleration



>Lorentz force: 
$$\vec{F} = e(\vec{E} + \vec{v} \times \vec{B})$$

>Total particle energy:  $T = mc^2 + W$ 

Energy change by  
external force: 
$$\frac{dT}{dt} = \vec{v} \cdot \vec{F} = e\vec{v} \cdot (\vec{E} + \vec{v} \times \vec{B}) = e\vec{v} \cdot \vec{E}$$

Only electrical field collinear with particle velocity can change its energy

> For velocities v $\approx$ c a moderate magnetic field of 1Tesla creates transverse force corresponding to a huge electric field of 3000 kV/cm.

> Use magnetic fields to deflect particles at high energy, v $\approx$ c

➤ Use electric field to deflect particles at low energy, v<<c</p>

#### **Radio Frequency Acceleration Principle**



> Need electric field to accelerate particles

> From Maxwell equations: 
$$\vec{E} = -\nabla \varphi - \frac{\partial}{\partial t} \vec{A}; \qquad \vec{B} = \nabla \times \vec{A}$$

Electrostatic field is associated with difference of potentials
To gain 1GeV energy particle needs to traverse 1 Giga-Volt potential difference.
Absolutely not feasible technically. Maximum energy of DC accelerator ~10MeV:
Van de Graaff, Cockcroft-Walton, Tandem...

~

➤ Have to use time-varying field

Same potential  $\Leftrightarrow$  no acceleration



Same potential but can be an acceleration because time varying field is not conservative



#### Inducing voltage in the gap



> Rf power required to create 100kV voltage in the gap:  $100^{2}$ 

gap:  
$$P = \frac{V^2}{2Z} = \frac{(10^5 volt)^2}{2 \cdot 50\Omega} = 10^8 Watt$$

> Transformer allows higher voltage without power increase

➢ Gap capacitance and transformer inductance form resonant LC circuit

➢ If driven at resonant frequency allows significantly (10<sup>2</sup> - 10<sup>4</sup>) higher voltage without power increase

> At high frequencies ( $10^7 - 10^{11}$  Hz) RF cavity is more efficient than ordinary LC circuit

October 17-28, 2005

## **RF** cavity





Electric E and magnetic B fields for the lowest mode in a cylindrical (pillbox) cavity resonator. ➢ Solution of Maxwell equations for e/m fields inside a conducting boundary can be represented as an infinite sum of specific field configurations (field eigenvectors or modes) oscillating at specific frequencies (eigenvalues or resonant frequencies)

➢ If driven at resonant frequency only the corresponding mode is excited

> Final conductivity of the cavity walls cause resistive energy losses 
$$P_{loss} \sim E$$

- > Energy of the filed in the cavity is stored energy
- > Quality factor is figure of merit for cavity efficiency

▷ Balance of power 
$$P_{generator} = P_{loss} + P_{beam}$$

 $U \sim E^2$ 

 $Q = \frac{\omega U}{P_{loss}}$ 

**Energy gain in RF gap** 







- 1. Particle enters the gap
- 2. Particle in the middle
- 3. Particle exits the gap

#### **Transit-Time Factor**





- ➤ Assume uniform electric field in the gap
- > Assume particle velocity v change in the gap is small





- > Transit-time factor decreases with gap width
- > Transit-time factor increases with particle velocity

➢ Transit-time factor is "geometrical" factor – depends on gap geometry but doesn't depend on electrical field strength



$$\Delta W = e \cdot V \cdot T \cdot \cos \phi$$

Energy gain for individual particle depends on arrival phase

> If particles in the beam occupy a finite range of phases  $\delta\phi$ , the output energy will occupy range of energies – energy spread  $\delta W$ 

➢ To obtain accelerated beam with small energy spread requires grouping particles in the narrow range of phases (bunch) around the accelerating phase



Typical values :

$$\delta W \approx (10^{-3} \div 10^{-2}) \cdot W$$
$$\delta \phi \approx 1^{\circ} - 10^{\circ}$$

#### Gap voltage



L

$$V_0 = \int_{-\frac{L_2}{2}}^{\frac{L_2}{2}} E_0(z) \cdot dz \qquad \text{In uniform field:} \quad V_0 = E_0 \cdot C_0$$

➤ To increase energy gain:

- $\checkmark$  increase gap length L
  - Iimited by transit-time factor decrease
- $\checkmark$  increase electrical field strength E
  - limited by electrical breakdown; available RF power

Typical values :

$$E = 3 \div 30^{MV} /_{m} \qquad L \approx \frac{\beta \lambda}{4} = .01 \div .1m$$
$$V \approx .03 \div 3MV$$

 $\succ$  Can not reach large acceleration in single gap  $\rightarrow$  use multiple gaps

October 17-28, 2005



#### Multi – gap acceleration



- We can make an accelerator by "stringing" together many individual accelerating cells, one after the next
- Since the particle is accelerated in each cell, we have to space the cells farther apart as the velocity increases





> A synchronous particle is one whose velocity is such that particle appears in the center of successive accelerating gaps in step with the RF fields. That is, the particle arrives at each gap center at the synchronous phase  $\phi_s$ 

 $\succ$  For synchronous particle to exist the accelerator has to be properly designed:

 $\succ$ Time of flight from one gap center to another is multiple of the RF period

➢ Synchronous particle has exact phase and energy.

Other particles in the bunch do not satisfy the synchronicity condition

➢ How to keep particles in compact bunch around the synchronous phase?

> ! Autophasing mechanism can provide longitudinal focusing



October 17-28, 2005







#1 – synchronous particle arrives at synchronous phase; gets design energy increment

#2- fast particle arrives at smaller phase; gets smaller energy increment

#3 - slow particle arrives at larger phase; gets larger energy increment

fast particle decelerates until it becomes slow particle, then accelerates and so on – stable oscillations around the synchronous phase



#1 – synchronous particle arrives at synchronous phase; gets design energy increment

#3- fast particle arrives at larger phase; gets larger energy increment

#2 - slow particle arrives at smaller phase; gets smaller energy increment

fast particle accelerates, slow particle decelerates – unstable longitudinal motion.



> Need many accelerating gaps to achieve high energy thus long particle path

#### $\succ$ Particles tend to travel away from the axis because of

- Spread of initial transverse angles
- Coulomb repulsion of charged particles
- Transverse component of RF field in the gaps
- Stray magnetic field (Earth, cables....)

➢Need mechanism to keep particles near the axis of the accelerator (Transverse focusing)

- Electric fields (at low energy) electrostatic lenses, RFQ
- Magnetic fields (at high energy) magnetic lenses

#### **Quadrupole focusing**



Quadrupole magnet cross section showing magnetic field pattern

> In an ideal quadrupole field the pole tips have hyperbolic profiles and produce a constant transverse quadrupole gradient:

$$G = \frac{\partial B_x}{\partial y} = \frac{\partial B_y}{\partial x}$$

For a particle moving along the z direction with velocity v and transverse coordinates (x,y), the Lorentz force components are:

$$F_x = -e \cdot v \cdot G \cdot x, \quad F_y = e \cdot v \cdot G \cdot y$$

 $\succ$  For a pole tip with radius a and pole-tip field B, the gradient is G=B/a

- $\succ$  If e·G is positive, the lens focuses in x and defocuses in y
- $\succ$  Although individual quadrupole lenses focus in only one plane, they can be combined in systems to give overall strong focusing in both transverse plains.



> The FODO lattice periodic structure is the most common focusing structure in accelerators.

> Provides focusing in both transverse plains

Certain relations between focusing strength of the lenses and distance between them should be satisfied to ensure stability. Well developed mathematical methods exist. Matrix formalism.

Workshop on Technology and Applications of ADS, - A. Aleksandrov


## **The Spallation Neutron Source (SNS)**







| Power on target                | 1.4       | MW        |  |
|--------------------------------|-----------|-----------|--|
| Proton beam energy on target   | 1.0       | GeV       |  |
| Proton pulse width on target   | 695       | ns        |  |
| Linac pulse width              | 1.0       | ms        |  |
| Linac peak current             | 38        | mA        |  |
| Pulse repetition rate          | 60        | Hz        |  |
| Beam availability              | >95       | %         |  |
| Linac length                   | 335       | m         |  |
| Accumulator ring circumference | 248       | m         |  |
| Peak power                     | <b>23</b> | <b>MW</b> |  |



| WBS                           | Description     | November 2003<br>Review<br>Baseline<br>(\$M) | Net<br>Forecast<br>Changes<br>(\$M) | Management<br>EAC<br>(\$M) |
|-------------------------------|-----------------|----------------------------------------------|-------------------------------------|----------------------------|
| 1.2                           | Project Support | 75.6                                         | 0.3                                 | 75.9                       |
| 1.3 Front End Systems         |                 | 20.8                                         |                                     | 20.8                       |
| 1.4 Linac Systems             |                 | 313.2                                        | 1.4                                 | 314.6                      |
| 1.5 Ring and Transfer Systems |                 | 141.2                                        | 0.9                                 | 142.1                      |
| 1.6 Target Systems            |                 | 106.5                                        | 1.6                                 | 108.1                      |
| 1.7 Instrument Systems        |                 | 63.3                                         | 0.0                                 | 63.3                       |
| 1.8 Conventional Facilities   |                 | 367.5                                        | 9.4                                 | 376.9                      |
| 1.9 Integrated Controls       |                 | 59.6                                         | (0.0)                               | 59.6                       |
| BAC                           |                 | 1,147.9                                      | 13.5                                | 1,161.4                    |
| Total Conf                    | ingency         | 44.8                                         |                                     | 31.3 21.8%*                |
|                               | TEC             | 1,192.7                                      |                                     | 1,192.7                    |
|                               | OPC             | 219.0                                        |                                     | 219.0                      |
|                               | TPC             | 1,411.7                                      |                                     | 1,411.7                    |















# Spring 2004



45

# November 2004





**Challenges of Accelerator for Spallation Source Design** 

SPALLATION NEUTRON SOURCE

- Accelerator physics
  - To ensure small beam loss during acceleration and transport. Typical requirement is <1W/m ( <1ppm at 1GeV)</li>
  - To provide required current from the source
  - To provide reliable stripping foil
- > Operation
  - To provide personnel protection and accelerator protection in case of an accident
  - To provide high reliability and availability of all systems. Typical requirement is >95%
- Economics
  - To optimize construction and operation cost
- > Technical
  - Numerous







# **Uncontrolled Beam Loss**

- Hands-on maintenance: no more than 1 mSv/hour residual activation (4 h cool down, 30 cm from surface)
- 1 Watt/m uncontrolled beam loss
- Less than 10<sup>-6</sup> fractional beam loss per tunnel meter; 10<sup>-4</sup> for ring



## **Beam dynamics simulation codes comparison**







> The SNS Linac is constructed of 5 different types of accelerating cavities.  $\triangleright$  Each is entimized to a cartain range of U beam valuation

 $\succ$  Each is optimized to a certain range of H- beam velocities



# **The SNS Front End layout**





#### lon Source (IS) and Low-Energy Beam Transport (LEBT)

Create ~50 mA pulsed H<sup>-</sup> ion beam 1 ms - 60 Hz

#### Radio-Frequency Quadrupole (RFQ) accelerator

Accelerate beam to 2.5 MeV

#### LEBT/ MEBT

Chop beam into 650 ns mini pulses

#### Medium-Energy Beam transport (MEBT)

Match 38 mA beam into Linac









| lon species                                      | Η·  |
|--------------------------------------------------|-----|
| Extraction Energy (keV)                          | 65  |
| H <sup>-</sup> output current (mA)               | 48  |
| Normalized rms emittance $(\pi \text{ mm mrad})$ | 0.2 |
| Pulse length (ms)                                | 1.2 |
| Duty factor                                      | 6%  |
| Repetition rate (Hz)                             | 60  |





Some magnet orientations are rotated into the viewing plane of this illustration







Plasma glow in the RF discharge chamber Electrodes of the LEBT

### 2MHz RF antenna

October 17-28, 2005

Workshop on Technology and Applications of ADS, - A. Aleksandrov



| -<br>-<br>-<br>-                                |                                       | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | · · · · · ·                           |                     |
|-------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------|
|                                                 | · · · · · · · · · · · · · · · · · · · | руалла                                | -rianta ilania                        | · · ·                                 | · · · ·             |
| •                                               | · · · · · · · ·                       |                                       |                                       | · · · · · · · · · · · · · · · · · · · | lon current         |
| jijini territetetetetetetetetetetetetetetetetet | been men men an                       | /puester-re                           |                                       | ri-u-v-v-v-jevij                      | [25 mA/div]         |
| -+                                              |                                       | ····                                  |                                       |                                       | ┝╅╼╞╌╋╼╞╍╡╼╞╺╡╼╪╼╡╼ |
| -                                               |                                       |                                       | · -                                   | · ·                                   |                     |

 $\succ$  Ion source produce pulse of continues current (DC), not divided on bunches.



➤ The invention of the RFQ made major improvement in the current limit for ion RF linacs. I.M.Kapchinskiy and V.A.Tepliakov, Prib.Tekh.Eksp. 2,19-22(1970)

 $\succ$  The RFQ RF structure provides rf electric field for bunching (dividing continuous beam on separate bunches), acceleration, and longitudinal and transverse rf focusing.

| The SNS RFQ | Parameters |
|-------------|------------|
|-------------|------------|

| Input energy     | 65 kV                   |
|------------------|-------------------------|
| Output energy    | 2.5MeV                  |
| Beam current     | 15-60mA                 |
| RF frequency     | 402.5MHz                |
| Peak RF power    | 720kW with nominal beam |
| Average RF power | 45kW with nominal beam  |

# **RFQ** principle of operation





Action of RF quadrupole focusing channel is similar to conventional FODO structure

➢Quadrupole configuration of electrical field provides transverse focusing/de-focusing

Focusing strength varies in time not in space
( it is the same from particle point of view )

≻No acceleration yet!



# **RFQ** principle of operation





➤ Longitudinal electric field is created by modulating electrode shape along the longitudinal axis

 When longitudinal RF field is introduced then synchronous phase can be defined.
Bunching and acceleration becomes possible

➢ Configuration and strength of the longitudinal field is defined by geometrical pattern of the modulation, which can be varied along RFQ smoothly and in wide range. That gives powerful control over longitudinal beam dynamics:

Starting from zero at RFQ entrance and slowly increasing the longitudinal field strength (controlled by modulation depth) one can bunch incoming DC beam with high efficiency

Slowly change synchronous particle phase (controlled by modulation period) from bunching to acceleration



# **Beam in RFQ: simulation**





Middle of RFQ. Bunching finished,



### **RFQ** exit. Acceleration finished





Workshop on Technology and Applications of ADS, - A. Aleksandrov





### The SNS RFQ







### Medium Energy Beam Transport line (MEBT) layout

After the RFQ beam is ready to be injected into the linear accelerator but still has to be chopped for lossless ring extraction
MEBT provides place for the chopper and various beam diagnostics





SPALLATION NE

# **MEBT Components**







### Beam pulse structure after the Front End – very complex!









| Input energy:          | 2.5 MeV      |
|------------------------|--------------|
| Output energy:         | 86 MeV       |
| Peak current:          | 38 mA        |
| Number of tanks:       | 6            |
| Total number of cells: | 216          |
| Total length:          | 36 m         |
| <b>RF frequency:</b>   | 402.5 MHz    |
| Synchronous phase:     | -37° to -26° |

Workshop on Technology and Applications of ADS, - A. Aleksandrov





 $\succ$  DTL is a multi-cell cavity obtained by installing drift tubes in a long pillbox cavity operating in a TM010 mode.

> Motivation: When pillbox cavity length >  $\beta\lambda/2$ , acceleration becomes inefficient because Transit-Time factor becomes small.

> The idea is to introduce hollow drift tubes to shield the beam from the decelerating fields, dividing cavity into cells of length  $\beta\lambda$ . As  $\beta$  increases, cell lengths increase.

Designed for fixed velocity profile.

## The SNS DTL layout






# **DTL design steps**



Physics design of representative cells

- aperture, peak surface fields, efficiency
- Engineering design studies
  - thermal and structural analysis
- Beam dynamics study
  - particle tracking in design fields
- ➢ Integrated tank design
  - cooling, vacuum system, RF input, ....
  - mechanical drawings





IAEA/ICTP

73

# **Cold model**







- Accuracy of calculations and computer
- simulations is still not sufficient to build tank from "paper" design
- ➤ "Cold model" is build to verify calculations and make final adjustments
  - resonant frequency
  - field distribution
  - tuning procedures



# **Building the DTL**





Workshop on Technology and Applications of ADS, - A. Aleksandrov



# Mishaps happen !





Standard electron beam welding didn't work in the presence of the magnetic strong magnetic field

➢Plan ahead but be prepared for unplanned



76

# Assembly, alignment and tuning











Workshop on Technology and Applications of ADS, - A. Aleksandrov

#### **Final field profile measurements** E<sub>o</sub>/E<sub>design</sub> Tilt Sensitivity E0/Design E0 Tilt sensitivity, Slope - 0.01203 et-is-2001\_00.12.1 End-to-end (HE-LE) df = 930.9 and -681.6 kHz 1.19 NU-21-2011 01:12:2 1.08 1.06 1.04 Filt Senstivity (%/MHz) SU/Design E0 1.02 1.08 .98 .96 .94 . 92 .90 -10 10 15 20 25 30 10 15 20 25 30 Cell Number Cell Number 1.4pt, 2-06-1000 10-00-06 of an 0.0, molecular Headard 2-11-2004 Divisions of ann-20.11, molecular 3-11-2014 Q<sub>o</sub>=48,300 Q<sub>l</sub>=17,700 f<sub>o</sub>=402.5 MHz at 28.8 C

> DTL is designed to work with fixed electrical field particle velocity profile

• Typical tolerance < 1%

> Sensitivity to perturbations is as important









| Input energy:          | 86 MeV       |
|------------------------|--------------|
| Output energy:         | 186 MeV      |
| Peak current:          | 38 mA        |
| Number of tanks:       | 4            |
| Total number of cells: | 386          |
| Total length:          | 55 m         |
| <b>RF frequency:</b>   | 805 MHz      |
| Synchronous phase:     | -30° to -28° |

# **Coupled-Cavity Linac (CCL)**





> At higher  $\beta$  drift tubes in DTL become too long and large part of accelerator length is "wasted" for drifting in the tube. Need more efficient structure

If use separate cavities than field in adjacent cells does not need to be in phase
The coupled-cavity linac (CCL) consists of an array of single-gap cavities or cells, that are electromagnetically coupled together to form a multi-cell accelerating structure.
Main motivation for coupling: we want long multi-cell accelerating structures that can be driven by a single high power generator.



# **CCL structure**





# **Building the CCL**







➤8 cells of the segment are identical

≻48 segments are all different

Many measurement/tuning steps in the process of manufacturing: cell, segment, module

Workshop on Technology and Applications of ADS, - A. Aleksandrov

# **Tuning the CCL**



Price to pay for having single RF source in a coupled cavity structure:

- Elaborate tuning of many individual cells by hand
- High price of error: can't have a spare cell or segment – they are unique

# ➤ Advantage:

• Field strength and mutual phase between cells is fixed after tuning. Only 2 settable parameters (RF phase and amplitude) instead of 96 in case of individually powered cavities







- > Uniform electric field strength within segment
- > Can ramped electric field from segment to segment
- $\succ$  All cells, segments resonate at the same frequency



Coupling=0.618+0.612=1.220, f<sub>o</sub>=805.100 at 20C, Q<sub>o</sub>=16,000

> CCL is designed to work with fixed electrical field particle velocity profile

• Typical tolerance < 1%

> Sensitivity to perturbations is as important

# The SNS CCL in the tunnel





IAEA/ICTP



- CCL accelerating structure is suitable for acceleration up to relativistic energies. Why need another one?
- Disadvantages of copper (normal temperature or warm) linacs:
  - Large rf power dissipation results in
    - 1) High cost of RF system
    - 2) High operating costs for AC power
    - 3) Cooling requirement can limit accelerating gradient
- ► Example: RF power budget for the SNS CCL module

$$P_{generator} = P_{wall} + P_{beam} = 2.2MW + .52MW$$

➢ Significant reduction of resistive losses due to use of superconducting material for cavity walls eliminates warm linac disadvantages.

 $\succ$  There is price to pay:

➤ Must operate linac at cryogenic temperature (2-4 K)

➤ Must maintain ultra clean environment during cavity manufacture, handling and operation

# The SNS superconducting cavity





## Material:

Operating frequency805MHzNumber of cells per cavity6Operating temperature:2.1KNumber of cavities33 (V=.61)Total length157 mTotal energy gain814 MeV

niobium (NB) 805MHz 6 2.1K 33 (V=.61) + 48 (V=.81) 157 m 814 MeV

October 17-28, 2005



➤ Two cavity types cover energy range from 200MeV to 1000MeV



# Deep drawing & **Dumb-bells** Frequency adjust. machining Tuning

Welding

SNS β=0.61



October 17-28, 2005

91



# **Cavity Cleaning**



Surface cleanness is the major factor in final cavity performance





# Assembly in clean room (class 100)



92







- RF power produces radiation pressures :  $P = (\mu_0 H^2 \epsilon_0 E^2)/4$
- Pressures deform the cavity wall:



- Deformations produce a frequency shift :  $\Delta f = KL^* E_{acc}^2$
- SNS Lorentz force coefficient (KL) specification, less than [-3]
- Pulsed RF causes time varying deformations that can be significantly different from a continuous RF system







- SNS RF pulse has a 1ms flat-top and is cycled at 60 Hz.
- Capable of exciting relatively high mechanical modes.



# **Tuner Assembly w/ Piezo Actuator**





# Dynamic Lorentz force detuning and compensation



2 kHz oscillation











October 17-28, 2005

# The SNS SCL in the tunnel





Quadrupole magnets for transverse focusing are between the cryomodules (warm sections)

Beam diagnostics are in the warm sections

October 17-28, 2005

# **Cryogenic plant and He transmission line**





All cryomodules are cooled by liquid He from the cryo-plant (huge helium liquefaction station; ~2.4kW at 2.1K)
1W at 2.1K is approximately equivalent to 1kW at 300K





 $\succ$  There is large scattering in maximum field strength of the individual cavities due to manufacturing process

 $\succ$  Use conservative beam dynamics design and set cavities in accordance to the design. Sacrifice some efficiency

Set cavity field individually for each cavity. Maximizes efficiency but requires flexible beam dynamics design

 $\succ$  Immunity to failures of one or several cavities. Unlike DTL or CCL where accelerator is inoperable in case of failure of a single cell



# **High Power RF Generators**





## Warm linac: 7 – 2.5MW, 4 – 5MW klystrons

Super Conducting Linac: 81 - .5MW klystrons

October 17-28, 2005



# **Effect of beam loading in the Linac**

# ► Low Level RF system keeps field in the cavity constant



Cavity field and phase droop with feedback alone (left) and feedback + feedforward (right) beam loading compensation.



Phase width of the bunch along the pulse with feedback alone (left) and feedback + feedforward (right)

# LLRF performance in SCL



Compensates for Lorentz force detuning, microphones, beam loading, klystron power supply droop

# **The SNS Accumulator Ring**









# The SNS Ring in the tunnel

![](_page_107_Picture_1.jpeg)

![](_page_107_Picture_2.jpeg)

Dipole Magnet (bends the beam)

![](_page_107_Picture_4.jpeg)

![](_page_107_Picture_8.jpeg)
# **Mercury Spallation Target is Beam Final Destination**









> Adequate beam diagnostics is of paramount importance for successful beam commissioning:

- beam current
- beam position; transverse (trajectory) and longitudinal (phase)
- beam size (profile); transverse and longitudinal
- beam energy
- beam emittance
- beam loss



# **Beam Current Monitor (BCM)**





## **Fast measurements with BCMs**



### **Beam Position Monitor (BPM)**





$$x = \frac{a-c}{a+c}, \quad y = \frac{b-d}{b+d}$$

- > Matched strip-line electrodes allow large bandwidth
- Phase measurements
- ➢ Non − interceptive





## **Use of Beam Position Monitors**





Beam trajectory in the warm linac

Time of flight energy measurement using a pair of BPMs

### Wire scanner system



SPALLATION NEUTRON SOURCE

➢ 32 um carbon or tungsten wires mounted on movable fork intercept beam

➢ Measures horizontal, vertical and diagonal transverse beam profile in one pass

≻ Can take limited beam power : 50us,1Hz

➢ Not suitable for Super Conducting Linac because of risk of contamination if wire is broken



## Laser wire in the SCL





➤ Laser pulse knocks off one electron from each H-

Electrons are separated in magnetic field and measured

> Non -interceptive



## **Beam Loss Monitors**

SPALLATION NEUTRON SOURCE

- > Detectors:
  - Argon ion chambers (primary system)
  - Neutron detectors
  - Fast photomultipliers







## **Use of Beam Loss Monitors**



#### Beam loss monitors provide input for Machine Protection System

• the fastest way to shut off the beam in case of an accident



 We will ramp up beam power, reliability and operational hours gradually







# The SNS is the first pulsed spallation source of megawatt class and the first pulsed superconducting linac ever build will provide many lessons to learn