

# The Physics of Spallation Processes Theory and Experiments

### Frank Goldenbaum

- > What is spallation?
- > Why are spallation reactions of interest? (applications, fund. physics)
- > Theoretical models describing spallation reactions (INC and evap. model)
  - Limits and constraints
  - validation
- > Experimental investigations (here: PISA & NESSI at COSY)
- Comparison between models and experiments
- Conclusion

# PISA @ COSY Proton Induced SpAllation



>measurement of double differential spectra of emitted pre-equilibrium and evaporation ejectiles for pinduced reactions up to 2.5 GeV

>syst. investigation of production cross sections in spallation reactions

> benchmark data bank for validation/ improvement and development of computer-simulation models and codes

- 2 arms equipped with 2 Multichannel plates, Bragg curve detector, 3 silicons detectors and phoswich (15° & 120°)
- Cooled silicon detector telescopes (35°, 50°, 65° & 100°)
- Phoswich det.: all 8 arms

#### Atomic number identification with BCD p (1.9 Gev)+Ni



05.April 2005

Frank Goldenbaum The Physics of Spallation Processes --- Experiment and Theory

# Double differential cross sections ( $Z_{projectile}, \Theta_{lab}$ )

#### for He-isotopes



Reasonable agreement with INCL+ GEM Model in the Evaporation part
INCL+GEM can not describe the high energy part of the spectra





#### Fit of two Maxwell-like functions (two moving sources model) to experimental data p (2.5 GeV)+ <sup>197</sup>Au









17





|                  | 1              | T              |                | 0      | <b>T</b>     | _              | 0                   |                  |
|------------------|----------------|----------------|----------------|--------|--------------|----------------|---------------------|------------------|
| Particle         | κ <sub>0</sub> | $T_1$          | σ <sub>l</sub> | βı     | $T_2$        | $\sigma_2$     | β <sub>2</sub>      | σ <sub>GEM</sub> |
| type             |                | [MeV]          | [mb]           |        | [MeV]        | [ <b>m</b> b]  |                     | [mb]             |
| <sup>3</sup> He  | 0.25           | 8.3            | 240            | 0.0036 | 26.9         | 510            | 0.064               | 166.72           |
| <sup>4</sup> He  | 0.45           | 8.6±0.3        | 1830±80        | 0.0036 | 26.7±1.2     | 350±30         | $0.059 {\pm} 0.004$ | 1725.36          |
| <sup>6</sup> He  | 0.23           | -              | _              | -      | 15.8±0.6     | $30.2 \pm 1.8$ | $0.028 \pm 0.002$   | 29.59            |
| <sup>6</sup> Li  | 0.60           | 9.6±0.7        | 32.4±2.3       | 0.0036 | 29.5±1.8     | 9.9±1.4        | $0.048 {\pm} 0.006$ | 54.67            |
| <sup>7</sup> Li  | 0.65           | 9.6±0.6        | 48.5±3.0       | 0.0036 | 27.3±2.0     | $10.7 \pm 2.0$ | $0.029 {\pm} 0.005$ | 43.86            |
| <sup>8</sup> Li  | 0.74           | $11.3 \pm 0.8$ | 10.7±0.6       | 0.0036 | -            | -              | -                   | 13.58            |
| <sup>7</sup> Be  | 0.5            | 8.0            | 2.9            | 0.0036 | 18.6         | 8.3            | 0.023               | 5.69             |
| <sup>9</sup> Be  | 0.53           | 8.0            | 4.2            | 0.0036 | 15.6         | 9.4            | 0.0175              | 9.37             |
| <sup>10</sup> Be | 0.53           | 8.0            | 2.2            | 0.0036 | 15.0         | 9.5            | 0.017               | 10.57            |
| <sup>10</sup> B  | 0.53           | 8.0            | 1.5            | 0.0036 | 16.5         | 4.2            | 0.018               | 5.78             |
| <sup>11</sup> B  | 0.65           | 8.0            | 4.5            | 0.0036 | 12.8         | 11.2           | 0.016               | 4.48             |
| <sup>12</sup> B  | 0.72           |                | -              | -      | 12.8         | 3.5            | 0.010               | 2.64             |
| C                | 0.71           | -              | -              | -      | 13.1±0.8     | $16.2 \pm 1.3$ | $0.012 \pm 0.002$   | 4.6              |
| N                | 0.76           | . –            | -              | -      | 12.6±0.9     | 8.2±0.8        | 0.012±0.002         | 1.95             |
| 0                | 0.84           |                | -              | -      | $11.8 \pm 1$ | 3.8±0.4        | $0.012 \pm 0.002$   | 0.84             |
| total            |                |                | 2187           |        |              | 957            |                     | 2080             |





# Summary

- PISA provides precise measurement of double differential cross section for <sup>3,4,6</sup> He, <sup>6,7,8,9</sup> Li, <sup>7,9,10</sup> Be, <sup>10,11,12</sup> B and C, N, and O ejectiles (for Si.det.)
- isotope (up to N) and element (up to Mg) identification (BCD)
- Important benchmark data for model improvement and development in particular for the emission of composite particles during the pre-equilibrium processes(emission of p,n during INC and evaporation phase is essentially understood)
- Two contributions were observed in the spectra: evaporation from the compound nucleus and isotropic emission from fast, hot source using the moving source method

