

Accelerator based facilities as tools for Materials Science

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Kurt N Clausen Condensed Matter Research with Neutrons and Muons Paul Scherrer Institut Switzerland

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Acknowledgement – thanks to:

The ESS project: D Richter, G Bauer, R McGreevy, CPT,

http://neutron.neutron-eu.net/n_documentation/n_reports/n_ess_reports_and_more

SNS – Oak Ridge, USA: T Mason, N Holtkamp, I Anderson, http://www.sns.gov/

J-SNS Japan: M. Arai, ... http://jkj.tokai.jaeri.go.jp/

The UK Neutron Strategy Document: www.neutrons.cclrc.ac.uk/Activity/ScienceCase

PSI: W Wagner, S Janssen, Joachim Kohlbrecher, Thomas Gutberlet, E Lehmann, V. Pomjakushin, Christian Rüegg, Henrik Ronnow, R Bercher, H Luetkens plus LNS and LMU http://www.psi.ch

http://www.psi.ch/forschung/benutzerlabor.shtml

On many slides you will find a text box like this: This signifies that part or all of the information on the slide has been contributed by the named person from the mentioned institution

Name, Institution

The contributions from the above named individuals and reports are gratefully acknowledged.

Neutrons and Neutron Sources

1932

The neutron was discovered in by Chadwick in the UK

1936

Coherent neutron diffraction (Bragg scattering by crystal lattice planes) was first demonstrated by two groups in Europe in order to better understand neutrons themselves

> 1945

The possibility of using the scattering of neutrons as a probe of materials developed with the availability of copious quantities of slow neutrons from reactors. Enrico Fermi's group in Chicago used Bragg scattering to measure nuclear cross-sections.

1994 Nobel Prize in Physics – B Brockhouse and C Shull

The neutron..

Mass	1.674928 · 10 ⁻²⁷ kg
Spin	- ħ/2
Magnetic Moment	-9.6491783 · 10 ⁻²⁷ J/T
Lifetime	885.9 ± 0.9 s
Confinement radius	0.7 fm
Quark structure	udd

 $n \rightarrow p^+ + e^- + v$

Three forms of carbon – very different materials

Graphite

Diamond

Buckyballs

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Superconductors or organic ferromagnets

T Mason, SNS

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Imaging, Microscopy, Diffraction \rightarrow Structure

$$\lambda = \frac{\mathbf{h}}{\mathbf{m} \cdot \mathbf{L}} \cdot \mathbf{t} \qquad \qquad \left| \frac{\mathbf{k}}{\mathbf{k}} \right| = \frac{2 \cdot \pi}{\lambda}$$

Using time of flight

$$\lambda = \frac{h}{m \cdot L} \cdot t \qquad \qquad \left| \underline{k} \right| = \frac{2 \cdot \pi}{\lambda}$$

- 1 W *light bulp* of 2 eV visible light
- 6 kW conventional *X-ray source* of 12 keV radiation
- 100 MW *nuclear reactor* (200 MeV per neutron)

The source size for the reactor is of dimensions m³ for the others mm³.

- 1 W *light bulp* of 2 eV visible light
- 6 kW conventional *X-ray source* of 12 keV radiation
- 100 MW *nuclear reactor* (200 MeV per neutron)

The source size for the reactor is of dimensions m³ for the others mm³.

Why bother about "Candles" when we have synchrotron X-ray sources and soon free electron lasers?

- 1 W *light bulp* of 2 eV visible light
- 6 kW conventional *X-ray source* of 12 keV radiation
- 100 MW *nuclear reactor* (200 MeV per neutron)

The source size for the reactor is of dimensions m³ for the others mm³.

Why bother about "Candles" when we have synchrotron X-ray sources and soon free electron lasers?

A large number of presentations in the following two weeks will demonstrate that neutrons in many areas are complementary, in some areas competitive and in others unique.

- 1 W *light bulp* of 2 eV visible light
- 6 kW conventional *X-ray source* of 12 keV radiation
- 100 MW *nuclear reactor* (200 MeV per neutron)

The source size for the reactor is of dimensions m³ for the others mm³.

Why bother about "Candles" when we have synchrotron X-ray sources and soon free electron lasers?

A large number of presentations in the following two weeks will demonstrate that neutrons in many areas are complementary, in some areas competitive and in others unique.

Neutrons : weak source strength – powerful tool for science!

Uniqueness of Neutrons

1. Neutrons see the Nuclei

2. Neutrons see Elementary Magnets

3. Neutrons see light Atoms next to Heavy Ones

4. Neutrons measure the Velocity of Atoms

5. Neutrons penetrate deep into Matter

6. Neutrons are Elementary Particles

 $1 \text{ fm} = 0.1 \text{x} 10^{-12} \text{ cm}$

Neutron Scattering Length [fm]

 $1 \text{ fm} = 0.1 \text{x} 10^{-12} \text{ cm}$

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Isotopic contrasting.

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Small Angle Neutron Scattering

J Kohlbrecher PSI

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

J Kohlbrecher PSI

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Contrast Variation

- A different fraction of hydrogen leads to a different scattering length density
- Solvent contrast variation: H₂O/D₂O mixtures match different material at different D₂O percentage

matching of core

matching of shell

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

PAUL SCHERRER INSTITUT

Poly(D,L-lactide) Nanocapsules

Andrea Rübe¹, Gerd Hause², Karsten Mäder¹, Joachim Kohlbrecher^{3*}

¹Institute of Pharmaceutical Technology and Biopharmacy, Martin-Luther-University Halle-Wittenberg ²Microscopy Unit, Biocenter of the University, Halle/Saale ³Laboratory for Neutron Scattering, Paul Scherrer Institute

Einschluss von lipophilen Wirkstoffen in die innere Ölphase möglich
Tensidschicht umgibt Nanokapseln, um sie im Wasser zu stabilisieren

Drug Targeting: Core-Shell Structure of

Poly(D,L-lactide) Nanocapsules

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Poly(D,L-lactide) Nanocapsules

 σ = 0.394, R_0 = 84 nm, ΔR_{PLA} = 9.8 nm $\Delta R_{Polo-sh}$ =17 nm Poloxamer concentration in outer shell of 7%.

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

J Kohlbrecher PSI

Self assembled polyrotaxanes (polymer complexes)

The cell membrane, showing the location of proteins and other cellular material within the phospholipid bilayer

Schematic representation of Phospholipase A2 interacting with a phospholipid bilayer, derived from neutron reflectometry.

Natural Antibiotics

Schematic representation of Phospholipase A2 interacting with a phospholipid bilayer, derived from neutron reflectometry.

Molecular structure showing the location of an integral membrane protein.

Schematic representation of the proposed mechanism of the MscL channel.

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials

Biomimetics – functional surfaces

Dynamically Controlled Surface Properties (T, pH, Light, V, etc.)

Applications:

- Biosensors
- Microfluidic devices (valves, reservoirs)
- Structural templates for tissue engineering
- Drug delivery
- Study of cell/cell and cell/protein interactions

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

T Gutberlet PSI

Biomembranes and Interfaces

Reflectivity of two interfaces

$$R(Q) = \frac{r_1^2 + r_2^2 + 2r_1r_2\cos(2Q_1d)}{1 + r_1^2r_2^2 + 2r_1r_2\cos(2Q_1d)}$$

with thickness $d = 2\pi/\Delta Q$

in kinematic theory

$$r = \frac{(k_c^2)^2}{Q_0^4} \left| \int \frac{d\rho}{dz} \cdot \exp(iQ_0 z) dz \right|^2$$

reflectivity of two interfaces

$$R(Q) = \frac{(k_c^2)^2}{Q^4} \begin{bmatrix} \Delta \rho_1 \cdot \exp\left(-Q^2 \sigma_1^2\right) + \Delta \rho_2 \cdot \exp\left(-Q^2 \sigma_2^2\right) \\ + \Delta \rho_3 \cdot \exp\left(-Q^2 \left(\sigma_1^2 + \sigma_2^2\right)/2\right) \cdot \cos(Qd) \end{bmatrix}$$

with parameters d, σ , $\Delta \rho$

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

T Gutberlet PSI

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

T Gutberlet PSI

PAUL SCHERRER INSTITUT

Membrane Binding of Lipidated N-ras Peptide

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Biomembranes and Interfaces

Anchoring of Recombinant Proteins to Functionalized Phospholipid Monolayers

Figure 1. Reflectivity data obtained during the adsorption of LuSy to a Ni Chelator covered surface. The lines correspond to the best fits of the neutron reflectivity data sets, plotted over wavelength. The time distance between two sets of data is one hour.

Figure 4. Model of multilayers to fit the data of biotin Lusy adsorbed to a streptavidin interface

M. Tristl et al., LLB Scientific Report 1999-2000, 100

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Uniqueness of Neutrons

2. Neutrons see Elementary Magnets

. Neutrons see Light Atoms next to Heavy Ones

Neutrons measure the Velocity of Atoms

5. Neutrons penetrate deep into Matter

6. Neutrons are Elementary Particles

Neutrons see Elementary Magnets

Nearly all what we know about magnetic structures comes from neutrons.

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Magnetic and crystal structures

Sr₂MnGaO₅

Pomjakushin,V.Yu., Balagurov,A.M., Elzhov,T.V., Sheptyakov,D.V., Fischer,P., Khomskii,D.I., Yushankhai,V.Yu., Abakumov,A.M., Rozova,M.G., Antipov,E.V., Lobanov,M.V., Billinge,S. "Atomic and magnetic structures, disorder effects, and unconventional superexchange interactions in A2GaMnO5+x (A=Sr,Ca) oxides of layered brownmillerite-type structure", Phys. Rev. B 66, 184412 (2002)

From the classical to the quantum world

From the classical to the quantum world

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Classical phase transitions

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Our quantum model system

Dimer spin system TlCuCl₃

- antiferromagnetic
- fluctuating moments
- no magnetic order
- "singlet" ground state

SPIN LIQUID

Our quantum model system

Dimer spin system TlCuCl₃

- antiferromagnetic
- fluctuating moments
- no magnetic order
- "singlet" ground state

SPIN LIQUID

Our quantum model system

Dimer spin system TlCuCl₃

- antiferromagnetic
- fluctuating moments
- no magnetic order
- "singlet" ground state

SPIN LIQUID

Understanding the ground state

Christian Rüegg PSI/UCL

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Kurt Clausen, Trieste 17.10.2005

Understanding the ground state

Christian Rüegg PSI/UCL

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Kurt Clausen, Trieste 17.10.2005

Understanding the ground state

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Kurt Clausen, Trieste 17.10.2005

Christian Rüegg PSI/UCL

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Kurt Clausen, Trieste 17.10.2005

Magnetic excitations

• N. Cavadini et al., J. Phys.: Condens. Matter 12, 5463 (2000)

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Magnetic excitations

• N. Cavadini et *al.*, J. Phys.: Condens. Matter **12**, 5463 (2000)

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Magnetic excitations

• N. Cavadini et *al.*, J. Phys.: Condens. Matter **12**, 5463 (2000)

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Magnetic excitations

• N. Cavadini et *al.*, J. Phys.: Condens. Matter **12**, 5463 (2000)

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Magnetic excitations

• N. Cavadini et al., J. Phys.: Condens. Matter 12, 5463 (2000)

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Above the quantum phase transition

BOSE-EINSTEIN CONDENSATE

The first time observed in a magnetic system

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

• Ch. Rüegg et al., Phys. Rev. Lett. 93, 037207 (2004)

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Quantum phase transition with pressure

• Ch. Rüegg et al., submitted to Phys. Rev. Lett.

Christian Rüegg PSI/UCL

Quantum phase transition with pressure

• Ch. Rüegg et al., submitted to Phys. Rev. Lett.

Christian Rüegg PSI/UCL

Quantum phase transition with pressure

• Ch. Rüegg et al., submitted to Phys. Rev. Lett.

Christian Rüegg PSI/UCL

PAUL SCHERRER INSTITUT

Magnetic Architecture

Two dimensions: border between classical and quantum world Henrik Rönnow ETH/PSI

Uniqueness of Neutrons

2. Neutrons see Elementary Magnets

Neutrons see Light Atoms next to Heavy Ones

- **Neutrons measure the Velocity of Atoms**
- **5. Neutrons penetrate deep into Matter**

Coherent Neutron Scattering Length [fm]

Coherent Neutron Scattering Length [fm]

PAUL SCHERRER INSTITUT

Neutrons see Light Atoms next to Heavy Ones

Crucial oxygen positions revealed by neutrons

High temperature superconductors for the technology of tomorrow.

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Kurt Clausen, Trieste 17.10.2005

Order-Disorder phase transition due to reorientation of BD₄⁻ tetrahedra in **NaBD**₄

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Kurt Clausen, Trieste 17.10.2005

Density maps showing the positions of hydrogen atoms in protein crystals as determined by neutron crystallography

Density maps from neutron high-angle fibre diffraction reveal the hydrogen bonding network in cellulose.

- Hydrogen storage materials.
- Fuel cell components; oxide ion conductors.
- Clathrate hydrates for energy sources.
- Light, high energy density batteries.
- Energy efficient transport; superalloys, ceramics, fuel additives.

In situ studies of functioning H storage or Battery.

In-situ neutron diffraction during charging of a Ni-MH battery

The crystal structure of Mg₂FeH₆

2. Neutrons see Elementary Magnets

. Neutrons see Light Atoms next to Heavy Ones

4. Neutrons measure the Velocity of Atoms

5. Neutrons penetrate deep into Matter

6. Neutrons are Elementary Particles

T Mason, SNS

Ionic Conducting Materials: SOFCs, Ceramic Membranes

PAUL SCHERRER INSTITUT

Diffusion in Zeolites – Quasielastic Neutron Scattering (QNS)

Benzene motion in a zeolite based catalyst

Neutrons follow catalysts in action.

Mechanism of proton pumping

Transport through a biological membrane.

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Neutrons measure Motion of Elementary Magnets

The motions of elementary magnets tell us on the origins of magnetic properties.

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Uniqueness of Neutrons

- 1. Neutrons see the Nuclei
- 2. Neutrons see Elementary Magnets

3. Neutrons see Light Atoms next to Heavy Ones

- 4. Neutrons measure the Velocity of Atoms
- 5. Neutrons penetrate deep into Matter

6. Neutrons are Elementary Particles

Lattice distortion and magnetic structure in NiO under high pressures (up to 130kbar)

Sample environment – Magnetic fields

The neutron is highly penetrating -

enabling studies of samples in containers and complex sample environment...

Proton Exchange Membrane fuel cell ~ 80 C, polymer electrolyte - thin permeable sheet.

The reaction product is water

Today's electrolyts require water for high conductance

Under low stochiometries the saturation pressure is easily reached and liquid blocks the gas supply

Kurt Clausen, Trieste 17.10.2005

D Kramer, **PSI**

CCD-camera detector

neutrons are hitting the scintillator and the emitted light will be detected by the high sensitive camera.

Li⁶ doped ZnS (better yield and less gamma sensitive)

or Gd oxy sulfide (for simultanous neutrons and gamma/x-ray measurements.

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Kurt Clausen, Trieste 17.10.2005

E Lehmann, PSI

rel. neutron intensity

$$\frac{I_B}{I_A} = \exp\left\{-\Delta\right\}$$

Present practical sensitivity 10 μm of water

rel. neutron intensity

$$\frac{I_B}{I_A} = \exp\left\{-\Delta\right\}$$

Present practical sensitivity 10 μm of water

FC at OCV $I_A = I_0 \cdot \exp\left\{-\sum a_{cell}\right\}$

OCV = Open Cell Voltage – the cell is at temperature but dry – reference measurement

FC under load $I_B = I_0 \cdot \exp\left\{-\left(\sum a_{cell} + \Delta\right)\right\}$

FC at OCV
$$I_A = I_0 \cdot \exp\left\{-\sum a_{cell}\right\}$$

OCV = Open Cell Voltage – the cell is at temperature but dry – reference measurement

rel. neutron intensity

$$\frac{I_B}{I_A} = \exp\left\{-\Delta\right\}$$

Present practical sensitivity 10 μm of water

Gas flow rate up to 10 m/s i.e down to \approx 10 ms from side to side i.e. temporal average

OCV = Open Cell Voltage – the cell is at temperature but dry – reference measurement

Present practical sensitivity 10 μm of water

Gas flow rate up to 10 m/s i.e down to \approx 10 ms from side to side i.e. temporal average

PEFC flooding – Total amount of Oxygen in the inlet gas / Amount of Oxygen

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Kurt Clausen, Trieste 17.10.2005

Experiment

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

PAUL SCHERRER INSTITUT

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Future perspectives

Spatial resolution:

today ≈ 250-400 µm

Sensitivity:

today \approx 10 μ m water layer

Temporal resolution:

7.5 frames/s

If we want 1 frame to integrate over max 1 mm then this corresponds to

0.0075 m/s

Future perspectives

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Spatial resolution:	GDL and electrode layers
today ≈ 250-400 µm	
Sensitivity:	
today ≈ 10 µm water layer	
Temporal resolution:	
7.5 frames/s	
If we want 1 frame to integrate over max 1 mm then this corresponds to	
0.0075 m/s	

Spatial resolution:	GDL and electrode layers
today ≈ 250-400 μm	Wanted spatial resolution
Sensitivity:	
today ≈ 10 µm water layer	
Temporal resolution:	
7.5 frames/s	
If we want 1 frame to integrate over max 1 mm then this corresponds to	
0.0075 m/s	

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Spatial resolution:

today ≈ 250-400 µm

Sensitivity:

today \approx 10 μ m water layer

Temporal resolution:

7.5 frames/s

If we want 1 frame to integrate over max 1 mm then this corresponds to

0.0075 m/s

GDL and electrode layers ..

Wanted spatial resolution

 \rightarrow 50 µm \rightarrow 10 µm \rightarrow

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Spatial resolution:

today ≈ 250-400 µm

Sensitivity:

today \approx 10 μ m water layer

Temporal resolution:

7.5 frames/s

If we want 1 frame to integrate over max 1 mm then this corresponds to

0.0075 m/s

GDL and electrode layers ..

Wanted spatial resolution

 \rightarrow 50 μ m \rightarrow 10 μ m \rightarrow

Wanted sensitivity

E Lehmann, PSI

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Spatial resolution:

today ≈ 250-400 µm

Sensitivity:

today \approx 10 μ m water layer

Temporal resolution:

7.5 frames/s

If we want 1 frame to integrate over max 1 mm then this corresponds to

0.0075 m/s

GDL and electrode layers ..

Wanted spatial resolution

 \rightarrow 50 μ m \rightarrow 10 μ m \rightarrow

Wanted sensitivity

 \rightarrow 1 μ m water layer Gas flow rate in cell \rightarrow 10 m/s

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

Spatial resolution:	GDL and electrode layers
today ≈ 250-400 μm	Wanted spatial resolution
Sensitivity:	\rightarrow 50 μ m \rightarrow 10 μ m \rightarrow
today \approx 10 μ m water layer	Wanted sensitivity
Temporal resolution: 7.5 frames/s	\rightarrow 1 µm water layer Gas flow rate in cell \rightarrow 10 m/s
If we want 1 frame to integrate over max 1 mm then this corresponds to	Droplet flow rate expected to be much smaller – but how much?
0.0075 m/s	

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

A burned fuse!

E Lehmann, PSI

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

The aircraft of tomorrow: welding instead of rivets.

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

2. Neutrons see Elementary Magnets

Neutrons see Light Atoms next to Heavy Ones

u

- Neutrons measure the Velocity of Atoms
- **5. Neutrons penetrate deep into Matter**

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

PAUL SCHERRER INSTITUT

Useful Neutrons

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science

The key web-site for information on and links to neutron and muon sources Worldwide is:

http://www.neutron-eu.net/

This site also contains information on how to get access to the European Facilities

IAEA School on Pulsed Neutron Sources: Enhancing the Capacity for Materials Science