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Ways to produce neutrons: 
the efficiency factor

Global system requirements: contradictory needs of 
neutron scattering instruments

Optimal performance: Peak flux theorem 

Global system requirements: neutron scattering 
needs vs. accelerator-target realities

Long pulse concept: maximize peak and time 
average flux at the same time

Conclusion

Subjects
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Ways to produce neutrons

Energy balance: fast neutrons produced / joule energy 
(heat produced / energy consumed)

Fission reactors:       ~ 109 (in ~ 50 liter volume)

Spallation:       ~ 1010    (in ~ 1 liter volume)

Photo neutrons: ~ 109 (in ~ 0.01 liter volume)

Nuclear reaction (p, Be): ~ 108 (in ~ 0.001 liter volume)

Laser induced fusion: ~ 104 (in ~ 10-9 liter volume)

Also: Nature (Apr 2005): table top fusion by accelerating pyroelectric fields  

Spallation (0.5 – 5 GeV protons): best energetics
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One amazing example: table top neutron source

• Nanoaccelerator by ultrashort, focussed laser pulse on 20 µ D2O 
droplet: relativistic light intensities. Field-strength: 1 MV/µm
1019 W/cm2 power → plasma → deuterons accelerated to MeV → fusion !
Distribution of neutrons reveals plasma formation mechanism
Laser driven µ-size source of (fast) neutrons (~104 neutron/  ~ 0.5 j pulse)
d + D => 3He (0.82 MeV) + n (2.45 MeV):  Neutron – spectroscopy
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Parasitic use of energy research reactors 
Dedicated beam reactors (1958,…. )
Pulsed spallation sources (1970’s,… new 
facilities under construction):

fewer neutrons more efficiently produced and used

Next challenge in optimization:
produce more neutrons and use them more 
efficiently

Development of neutron sources
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5 MW spallation source:
coupled cold moderator flux ~ ILL cold source

Efficiency gain by pulsed nature 
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Part of spectrum used by a diffractometer for large 
structures (e.g. biological membranes) 

continuous source 

2 4 6 8 10 12
0

1x1012

2x1012

3x1012

4x1012

5x1012

6x1012

  Time average flux
 ILL cold source (measured)
 ESS coupled H2 moderator

F
lu

x 
[n

/c
m

2 /s
/s

tr/
Å

]

Wavelength [Å]

Efficiency gain by pulsed nature 



20.10.2005 IAEA 2005,   F. Mezei Page 9

Part of spectrum used by a D22 (ILL) class  instrument 
(Small Angle Neutron Scattering)

continuous source 
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Part of spectrum used by a SANS  instrument

continuous source 50 Hz pulsed source
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Part of spectrum used by a D22 (ILL) class  instrument
16.67 Hz pulsed source

continuous source 50 Hz pulsed source
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Part of spectrum used by a D22 (ILL) class  instrument
16.67 Hz pulsed source

continuous source 50 Hz pulsed source
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Efficiency gain 
by pulsing:       
≈ δλ/λ ~8-100 
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Part of spectrum used by a D22 (ILL) class  instrument
16.67 Hz pulsed source

continuous source 50 Hz pulsed source
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Efficiency gain 
by pulsing:       
≈ δλ/λ ~8-1000 

Substantial overall progress beyond 
continuous sources in cold neutron research 
(soft matter, nanoscience): need to surpass 
their time average flux in low repetition rate
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Part of spectrum used by a D22 (ILL) class  instrument
16.67 Hz pulsed source

continuous source 50 Hz pulsed source
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Efficiency gain 
by pulsing:       
≈ δλ/λ ~8-1000 

Substantial overall progress beyond 
continuous sources in cold neutron research 
(soft matter, nanoscience): need to surpass 
their time average flux in low repetition rate

Large energy per pulse > 300 kj
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Pulse parameters:

Duty factor c ~ resolution δλ/λ
low resolution vs. high resolution (0.1 % - 10 %)

Pulse repetition rates ~ match neutron flight times
(very) cold neutrons vs thermal/hot neutrons

elastic scattering: 5  vs. 100 Hz
inelastic scattering: 30  vs. 1000 Hz 

Contradictory requirements by instruments
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Pulse parameters:

Duty factor c ~ resolution δλ/λ
low resolution vs. high resolution (0.1 % - 10 %)

Pulse repetition rates ~ match neutron flight times
(very) cold neutrons vs thermal/hot neutrons

elastic scattering: 5  vs. 100 Hz
inelastic scattering: 30  vs. 1000 Hz 

Contradictory requirements by instruments

Flight path to determine repetition rate: 30-100 m for time-of-flight diffractometer
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Pulse parameters:

Duty factor c ~ resolution δλ/λ
low resolution vs. high resolution (0.1 % - 10 %)

Pulse repetition rates ~ match neutron flight times
(very) cold neutrons vs thermal/hot neutrons

elastic scattering: 5  vs. 100 Hz
inelastic scattering: 30  vs. 1000 Hz 

Contradictory requirements by instruments

Flight path to determine repetition rate: ~ 3 m for time-of-flight spectrometer
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Ways to make neutrons monochromatic 

Time-of-flight:  velocity v
mv =  h / λ

Crystals: wavelength λ
λ = 2dhkl sinθ

v[m/s] = 3956 / λ[Å]

Continuous vs. pulsed beams
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Ways to make neutrons monochromatic 

Time-of-flight:  velocity v
mv =  h / λ

Crystals: wavelength λ
λ = 2dhkl sinθ

Continuous vs. pulsed beams

Powder Diffractometer

(Continuous source)
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On a continuous neutron source:

The time average (mean) neutron flux at the sample at 
equal wavelength and angular resolution is the same for both 
time-of-flight (TOF) and wavelength selection (crystal) 
monochromatization for reasonable TOF pulse repetition rate

Continuous vs. pulsed beams: Mean flux theorem
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Pulse parameters:

Duty factor c ~ resolution δλ/λ
low resolution vs. high resolution (0.1 % - 10 %)

Pulse repetition rates ~ match neutron flight times
(very) cold neutrons vs thermal/hot neutrons

elastic scattering: 5  vs. 100 Hz
inelastic scattering: 30  vs. 1000 Hz 

TOF monochromatization at continuous source

Flight path to determine repetition rate: 30-100 m for time-of-flight diffractometer

Chopper system
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On a continuous neutron source:

The time average (mean) neutron flux at the sample at 
equal wavelength and angular resolution is the same for both 
time-of-flight (TOF) and wavelength selection (crystal) 
monochromatization for reasonable TOF pulse repetition rate

“narrow band”
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Exercise!

Continuous vs. pulsed beams: Mean flux theorem
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Flux is governed by Liouville theorem:
Phase space density ρ is constant along 
particle trajectories in conservative force fields

ρ(r,v)
No. of particles hitting in unit time a 
surface perpendicular to trajectory 
(local z axis):

N= dx dy dz dvxdvydvz= 

= ρ dx dy v vαx vαy v2dλ m/h ∝

∝ φ(λ) df dΩ dλ

where the brightness

φ(λ) = ρ mv5/h is a constant if the 
neutron velocity is preserved (i.e. 
little acceleration) 

Note: for Maxwellian tail ρ is 
independent of v.

Absolute flux determination:
at any point along the beam

φ(λ) = η φ(λ)source

(absorption) loss factor ≤ 1

Continuous vs. pulsed beams: Mean flux theorem
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On a continuous neutron source:

The time average (mean) neutron flux at the sample at 
equal wavelength and angular resolution is the same for both 
time-of-flight (TOF) and wavelength selection (crystal) 
monochromatization for reasonable TOF pulse repetition rate

Continuous vs. pulsed beams: Mean flux theorem

The brightness of the continuous source only matters,
the pulsed (TOF) and continuous methods of beam 

monochromatization are equivalent!
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In neutron scattering work for a neutron source with 
sufficiently long source pulses the peak flux alone 
matters, independently of any reasonable source time 
structure (continuous or pulsed)

Peak flux theorem
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For an arbitrary source repetition rate f one will choose the instrument length 
L so that to assure the desired band ∆λ:

L = A ∆λ-1 f –1

(A=3956 Åm/s). With this L the pulse length t for the required resolution δλ has 
to be 

t = A-1 L δλ = f -1 (δλ /∆λ)                     Can be as much as 10 % of f-1=T

The neutron flux on the sample will be given in terms of the peak source 
brightness function ΦP(λ), beam divergence δΩ and  the efficiency factor of 
the beam delivery system η

ϕ = η δΩ t f ∫ ΦP(λ) dλ = η δΩ (δλ/∆λ) ∫ ΦP(λ) dλ , Independent of f

The integral is over the wavelength band ∆λ = λmax - λmin.

Peak flux theorem
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What is “sufficiently long pulse tmin ”? 
Irradiation work: ∞
Single (Q,ω) experiments (D3, TAS?): ∞
SANS, NSE: 2 – 4 ms    
Reflectometry: 0.5 – 2 ms
Single Xtal diffraction: 100 – 500 µs
Powder diffraction: 5 – 500 µs
Cold neutron spectroscopy: 50 – 2000 µs
Thermal neutron spectroscopy: 20 – 600 µs
Hot neutron spectroscopy: 10 – 300 µs
Electronvolt spectroscopy: 1 – 10 µs
Backscattering spectroscopy: 10 – 100 µs, …

Rough estimate:  tmin/ T ~ δλ/λ

Peak flux theorem
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Technical preconditions, enabling technologies:
Advanced neutron guides (low loss at any L for λ>1 Å),

Peak flux theorem
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Technical preconditions, enabling technologies:
Advanced neutron guides (low loss at any L for λ>1 Å),
Repetition Rate Multiplication for TOF Spectroscopy: to allow 

“reasonable” repetition rates both in diffraction (elastic scattering) and 
TOF spectroscopy (inelastic scattering) at the same time

Peak flux theorem
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Technical preconditions, enabling technologies:
Advanced neutron guides (low loss at any L for λ>1 Å),
Repetition Rate Multiplication for TOF Spectroscopy: to allow 

“reasonable” repetition rates both in diffraction (elastic scattering) and 
TOF spectroscopy (inelastic scattering) at the same time

Peak flux theorem

choppers
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Technical preconditions, enabling technologies:
Advanced neutron guides (low loss at any L for λ>1 Å)
Repetition Rate Multiplication for TOF Spectroscopy 
Pulse shaping: to allow to choose the best pulse length for 

each application

Peak flux theorem



20.10.2005 IAEA 2005,   F. Mezei Page 32

Technical preconditions, enabling technologies:
Advanced neutron guides (low loss at any L for λ>1 Å),
Repetition Rate Multiplication for TOF Spectroscopy 
Pulse shaping: to allow to choose the best pulse length for 

each application

Peak flux theorem

Mechanical 
neutron beam 
choppers: for 

ms pulses 
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Technical preconditions, enabling technologies:
Advanced neutron guides (low loss at any L for λ>1 Å),
Repetition Rate Multiplication for TOF Spectroscopy 
Pulse shaping: to allow to choose the best pulse length in  

each experiment on the same instrument 
E.g. variable resolution powder diffraction: trade intensity resolution

Peak flux theorem
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Technical preconditions, enabling technologies:
Advanced neutron guides (low loss at any L for λ>1 Å): to 

make the distance L a free parameter
Repetition Rate Multiplication for TOF Spectroscopy: to allow 

“reasonable” repetition rates both in diffraction (elastic scattering) and 
TOF spectroscopy (inelastic scattering) at the same time

Pulse shaping: to allow to choose the best pulse length for 
each application

Peak flux theorem: resolution of contradictory needs

Engineering reality: guides and choppers work with full 
efficiency  for thermal and cold neutrons only
(E < 100 meV)
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Highest peak flux and longest pulses

Ideal solutions are unrealistic:

CW source with infinite brightness

Pulsed source with infinite intensity

Peak flux theorem: optimization criteria
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Neutron moderation time
lower limit on neutron pulse length τ
peak flux: ∝ Ep/ τ
decoupled moderators with shorter moderation time 
are of disproportionately lower efficiency

Accelerator / target realities vs. instruments
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Neutron moderation time
lower limit on neutron pulse length τ
peak flux: ∝ Ep/ τ
decoupled moderators with shorter moderation time 
are of disproportionately lower efficiency

Accelerator / target realities vs. instruments

Proton beam energy per pulse EP technologically limited
to < 50 – 100 kj (?) for µs short proton pulses (from 
rings): Winstant > 50 GW
to < 500 – 2000 kj (?) for ms pulses (from linacs)
Winstant > 0.5 GW
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Neutron moderation time
lower limit on neutron pulse length τ
peak flux: ∝ Ep/ τ
decoupled moderators with shorter moderation time 
are of disproportionately lower efficiency

Accelerator / target realities vs. instruments

Proton beam energy per pulse EP technologically limited
to < 50 – 100 kj (?) for µs short proton pulses (from 
rings): Winstant > 50 GW
to < 500 – 2000 kj (?) for ms pulses (from linacs)
Winstant > 0.5 GW

highest time average flux requires long pulses
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Neutron moderation time
lower limit on neutron pulse length τ
peak flux: ∝ Ep/ τ
decoupled moderators with shorter moderation time 
are of disproportionately lower efficiency

Accelerator / target realities vs. instruments

Proton beam energy per pulse EP technologically limited
to < 50 – 100 kj (?) for µs short proton pulses (from 
rings): Winstant > 50 GW
to < 500 – 2000 kj (?) for ms pulses (from linacs)
Winstant > 0.5 GW

highest time average flux requires long pulses
highest peak flux is achieved by long pulses for     

moderation times > 50 – 100 µs (thermal & cold neutrons)
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Optimized spallation neutron source:

Maximum peak proton beam power in ms pulses

Possible (optimistic?) parameters for H+ only linear accelerator:
3 GeV, 150 mA proton beam
2 ms pulses
20 Hz repetition rate 18 MW beam power

Long pulse approach 
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Optimized spallation neutron source:

Maximum peak proton beam power in ms pulses

Possible (optimistic?) parameters for H+ only linear accelerator:
3 GeV, 150 mA proton beam
2 ms pulses
20 Hz repetition rate 18 MW beam power

Compromise options to lower power:
shorter pulses: lower performance for low resolution, cold 

neutron work
lower repetition rate: lower thermal neutron performance
lower peak power: all applications affected

Long pulse approach 
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Optimized long pulse sources can produce not only higher time 
average, but also higher peak flux than short pulses in the cold and 
thermal neutron range (above 3 and 6 times higher energy/pulse, 
respectively). 

Example: 450 kj/pulse long pulses, vs 23 kj/pulse short pulse (SNS at 1.4 MW): 
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Long pulses: highest cold and thermal neutron peak flux at 
given costs

Long pulse approach 
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Long pulses: optimum for thermal and cold neutrons (~90 % of 
condensed matter research)

Short pulses: superior for  λ < 0.4 – 0.9 Å.

Long (enough) pulses: performance scales with peak flux
Short pulses: performance ≤ peak flux
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Long pulses: optimum for thermal and cold neutrons (~90 % of 
condensed matter research)

Short pulses: superior for  λ < 0.4 – 0.9 Å.

European Spallation Source
project: combine both capabili-
ties

Optimized approach 
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Long pulses: optimum for thermal and cold neutrons (~90 % of 
condensed matter research)

Short pulses: superior for  λ < 0.4 – 0.9 Å.

European Spallation Source
staged realization plan:
(Sweden, UK, Hungary,..??)

Long pulse only: 
- much simpler technically  
- easier to operate 
- most cost effective

Later upgrade options:
- add short pulse station, if there
still worldwide need (SNS,
J-PARC, ILL)
- enhance long pulse power

Optimized approach 
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ESS SAC workshop, 0ct 
2002 for ESFRI report

Source strength benchmarked against SNS (1.4 MW)
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Optimized spallation sources: orders of magnitude  enhanced 
research opportunities in condensed matter research by 
neutron scattering.

Conclusion


