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Abstract

We give an introduction to the principles of neutron- and X-ray scattering. After a short layout

of the kinematical complementarity, we discuss in some detail the elementary interaction of

these probes with a sample. Based on the different nature of the coupling of these probes to the

various degrees of freedom in the sample we then emphasize the dynamical complementarity.

1 Introduction

1.1 Historical Development

Since the propagation of light has been recognized to be a form of electromagnetic radiation,

light-scattering is used as a tool to investigate matter and its structure. A gradual sophistication

of the treatment for these scattering processes can be noticed during the last hundred years.

Tyndale and Rayleigh studied scattering of light at dust grains and in a turbid medium of

molecules respectively. The corresponding scattering law they obtained is

dσ

dΩ
∼ 1

λ4
(1 + cos2 ϑ). (1.1)

where λ is the wave length and ϑ the scattering angle of the light. The scattering intensity

1



is given by some contrast difference of the dielectric constant or the refraction index. It was

of course already at that time of great interest to note that (1.1) is valid for visible light for

gaseous O2, H2, N2, CO2 - and hence explains the blue sky - but not for H2O. Einstein and

Smoluchowski with their statistical treatment of the density fluctuations and the corresponding

optical inhomogenuities derived the law

dσ

dΩ
∼ kT

λ4
(1 + cos2 ϑ)χT (1.2)

with the isothermal compression

χT =
1
T

(∂pV )T . (1.3)

For an ideal gas the result of Rayleigh is reproduced. Note that already at this level the scattering

law depends on thermodynamic variables and hence on the equation of state of the scattering

medium.

The next step was introduced by Ornstein and Zernike. They emphasized that correlations

between the fluctuating cells due to their mutual interactions may be of importance. The volume

is subdivided into small cells Vi with the number density of scatteres ni subject to fluctuations

ni =< ni > +∆ni (1.4)

The phase differences between the various cells leads to an average phase of

<| Φ |2>=< ni >2
m∑

i,j

ei(ϕi−ϕj) +
∑

i,j

< ∆ni∆nj > ei(ϕi−ϕj)

The first term is ∼< ni >2 and survives only with ϕi = ϕj - it describes the transmitted beam.

The second depends on self- and pair-correlations between the cells and describes the scattering

due to fluctuations. For an ideal gas it vanishes and hence there is in this model no scattering

for this case. For a spherical correlation function with correlation length ξ = 1/κ one obtains

the scattering law

dσ

dΩ
∼ 1

λ4
(1 + cos2 ϑ)

(
1 +

A

π

λ2

ϑ2

)
(1.5)
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for a correlation function

g(r) = A
e−κr

r
. (1.6)

Note that for ϑ → 0 the law diverges but what is here more important the ”blue dominance”

1/λ4 becomes a ”whitish” 1/λ2. Moreover, since the whole procedure is time-independent it

still describes elastic scattering only.

Todays state of the art is essentially due to L. van Hove [1]. He developed it for neutron

scattering, but it may as well be applied to X-ray scattering (at least in the Thomson regime).

While the very early work dealt with the scattering of visible light and hence resolutions of

the order of a few thousend Angströms, todays work takes advantage from the availability of

probes with wavelength in the region of Angströms. Correspondingly the density fluctuations

are formulated on the level of individual scattering centers j, like atoms and molecules at their

(time-dependent) positions ~Xj

ρ(~x, τ) =
∑

j

δ(~x− ~Xj(τ)). (1.7)

The correlation function we are aiming for, by means of scattering experiments are then of the

form

C(~x, τ) =
1
N

∫
d3x′ < ρ(~x′, τ) · ρ(~x− ~x′, 0) >, (1.8)

where ρ means the mass-, charge- or magnetization density depending on to the sampling probe.

< > stands for the thermal average over a canonical ensemble. In the convolution of (1.8)

translational symmetry of the sample has been assumed (no surface effects). The time dependent

self- and pair-correlation contains the dynamics of the sample and implies inelastic scattering

(spectroscopy).

1.2 Principles of a Scattering Experiment

As an example we show in Fig. 1 the set-up of an inelastic neutron scattering experiment. A

corresponding arrangement may also be imagined for X-rays as probe. The experiment starts

with a monochromatic beam and analyses the final neutron energy after the scattering process.
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If appropriate either of the two crystal selectors may (for neutrons only) be replaced by a time-

of-flight configuration at a pulsed neutron beam. The energy- and momentum-transfer variables

~ω = E0 − E1 (1.9)

~κ = ~k0 − ~k1 (1.10)

are the kinematical variables of the scattering function S(ω,~κ).

Figure 1: Principle of a set up for an inelastic neutron scattering experiment.

(E0,~k0) and (E1,~k1) are the energy and wave vector of the incident and escaping probe respec-

tively. For neutrons we have

λ =
2π

| ~k |
=

h

mv
(1.11)
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and

E =
~2k2

2M
=

h2

2M

1
λ2

(1.12)

where λ is the de Broglie wave length and v the velocity of the neutron. M is the neutron mass.

For X-rays the corresponding relations are

λ =
2π

k
=

2π~c
E

(1.13)

and

E = ~ω = ~kc (1.14)

Fig. 2 shows the kinematical domain (ω, | ~κ |) which can be reached with an incident neutron

beam of energy E. The lower field - indicated by ”Anti-Stokes” - corresponds to an energy

transfer from the sample to the incident probe and is therefore only populated for a sample at

higher temperature. The ingredients and notions of such a scattering experiment are summarized

in Table 1.
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Table 1.1: Notions and ingredients of scattering experiments
Sample - Environment

• pressure
• temperature
• external fields
etc.
Sample normally in thermal equilibrium

Probe
- Neutron

Light (x-ray)

}
beam possibly polarized

- Preparation
• Energy
• Momentum
• Polarization

Observables at probe after Scattering
• Energy → Energy transfer
• Momentum → Momentum transfer
• Polarization → Re-/Depolarization due to

interaction with the sample

Information about the Sample Scattering Function S(ω,~κ)
?

¾

depends on the nature
• nuclear
• electro-magnetic

interaction between probe and sample.

6



Figure 2: Kinematical domain in energy - and momentum transfer for neutron scattering with
incident beam energy E. For the corresponding experiment with X-rays the figure looks similar.
The parabola has just to be replaced by a triangle with its upper corner at the level E0 = ~ωmax.

2 Complementarity

2.1 Two Energy-(Time) Scales in Condensed Matter (Born-Oppenheimer)

Consider, in view of the atomic structure of matter, the potential V (~x, ~X) between the various

particles, where ~x and ~X stand for the set of coordinates of electrons and nuclei respectively.

Let Tn and Te be the kinetic energies of the nuclei and electrons. The system is then described

by the Schrödinger equation

[Tn + Te + V (~x, ~X)]Ψ(~x, ~X) = EtotΨ(~x, ~X) (2.1)
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While it is of course impossible to solve this problem, it is remarkable to note that the existence

of a solution has been proved under rather general conditions [2]. In other words it has been

shown that for a system with N ions of charge Z

lim
N→∞

E(N)/N exists (2.2)

that is, there exists a finite lower bound of the energy Etot - hence matter is stable. Crucial

ingredients for this are the Pauli-principle and the uncertainty relation. Related to the

extremely different masses of the ions and electrons the system tends to split up (under ”normal”

conditions) into two energy scales and connected with this two different time-scales. Let us write

the wave function in the following form:

Ψ(~x, ~X) =
∑
n

Φn( ~X)φn(~x, ~X) (2.3)

where | n > are the electronic eigenstates for a static nuclear background. Equation (2.1) then

splits up into two sets of equations, describing the ionic - and electronic - degrees of freedoms

of the system. The hamiltonian for the ions is

Heff = − 1
2M

∑

k

(δmk
~∇ ~X − iAmk( ~X))2 + δmnεn( ~X) (2.4)

where

Amk( ~X) =< ϕm | ~∇ ~Xϕk >

εn are the energy eigenvalues of the electronic problem for a particular ionic configuration ~X.

The Amk’s act as electronically screened ionpotentials. If the ionic and electronic degrees of

freedom couple only weakly, we may neglect the non-diagonal terms of Amk. This is called the

Born-Oppenheimer approximation. In this approximation the electrons can then be described

as Bloch-waves, perturbed in first order by electron-phonon interactions. In this spectroscopic

picture the electronic and ionic degrees of freedom are to a large extend decoupled. Due to their

different energy scale, they also define two different time scales. Already at this point one may

expect the neutrons to be well adapted probes to investigate the slow ionic motions, the X-rays,

however, to be more suitable for the fast electronic modes.

Of course the Born-Oppenheimer approximation is not always valid. It’s break down is indeed

of particular interest. For instance, the energy gap of a Cooper-pair being of the same order
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of magnitude like phonon modes in the lattice, clearly indicates such a break down at phase

transitions.

2.2 Kinematical Complementarity

Due to the different relationship between energy and wave length of various probes, their range

of access in reciprocal space of the sample is different. It follows immediately from (1.11) -

(1.14) that photons used in optical spectroscopy and energetically well matched to investigate

excitations, have too low momentum to cover the whole Brioullin zone.

On the other hand X-rays possessing this momentum (λ ' 1.24 Å) have to high an energy (E0

= 10 keV) in order to scale properly to the lower lying excitations in a solid. Thermal neutrons

(λ = 1.28 Å) are nearly ideal for this purpose (E0 = 50 meV).

As will be discussed further on, the scattering function is the spatial and temporal Fourier

transform of a correlation function (1.8) in space and time [1]. This leads to the following

correspondence:

Excitations of internal degrees
of freedom

←→ Fluctuations in space and
time

Energy
Momentum

}
-transfer

Life time, relaxation time,
spatial resolution, coherence
length

This correspondence between momentum transfer and correlation lengths on the one

hand and energy transfer and relaxation times on the other hand, is indicated by the two

scales on the axes of Fig. 3. Various experimental methods are indicated in the kinematical

field which they can cover. This demonstrates their kinematical complementarity. The methods

stated along the left (energy-correl. time) axis are restricted to low momentum and hence probe a

small region around the center of the Brillouin zone. These are particularly powerful methods to

investigate the temporal correlations and therefore the energetic scale of the excitation spectrum

of the sample.
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The momentum, carried by neutrons and X-rays as probes allows the exploration of essentially

the whole relevant region of ~k-space in the sample. This corresponds to spatial correlations

within 10−5 - 10−8 cm. Simultaneously — by means of inelastic scattering experiments — it is

possible to investigate the energy scale of the excitations of internal degrees of freedom. This

is particularly true for the use of neutrons as probes. As a matter of fact with neutrons the

investigation of the whole first Brillouin-zone of almost all practical materials is possible. As

a guide to the eye we have drawn schematically into this field the dispersive behaviour of the

acoustic and optical branches of phonon excitations in a lattice. We recognize from Fig. 3 that

the region for hard phonon branches is within reach of hot neutrons as well as of soft X-rays as

probe. A spectrometer with extremely high resolution at a synchrotron light source with high

brilliance is however needed for the latter method.

Also from Fig. 3 we reckon how well suited X-rays may be to obtain a clear picture about the

electronic dynamics in the sample. As a complement the same is true for the neutrons and

the lattice dynamics. Using both methods on the same sample might be appropriate for the

interesting cases, where the Born-Oppenheimer approximation ist not valid.

2.3 Dynamical Complementarity

The various probes couple differently to the degrees of freedom in the sample. While the coupling

of the neutron to the nuclear scattering density probes the fluctuations of the mass density, X-

rays - via their coupling to the electric charge - probe the charge density fluctuations. Although

both - X-rays and neutrons - couple to magnetization (albeit much weaker for X-rays) the two

probes are again complementary, since their elementary coupling law differ.

We shall present these elementary interactions in more detail in chapter 4. An important remark

about the coupling strength of probes has to be mentioned here.

For weakly coupling probes - (like neutrons and X-rays, at least in the Thomson

regime) - Born approximation and linear response theory is valid. Perturbation of

the sample in the presence of the probe is marginal. Straightforward interpretation of

the data in terms of a scattering function, characterizing the unperturbed sample is
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Figure 3: Range of access in energy and momentum by various experimental methods. The
correspondance to correlation-time and -length is also indicated.

possible. Kinematical approximation, neglecting all multiscattering effects, is valid.

Probes with strong coupling (usually charged particles) perturb (e.g. polarize)

the sample up to the extent that Born approximation and in particular the linear

response approach breaks down. A model input to describe the scattering process

is generally necessary to interpret the data. Furthermore corrections for multiple

scattering effects have often to be applied.

In the following we deal with weakly interacting probes only. In this case the whole information
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of the experiment about the sample is contained in the scattering function.

3 Description of the Free Probes

3.1 The Neutron

The neutron has a mass of MN = 939.6 MeV and the quantum numbers

T (JP ) = 1
2

(
1
2

+
)

It’s mass is 1.3 MeV bigger than that of the proton. Hence it decays into the latter by weak

interaction with a mean lifetime of 887 s. However, for our purpose the neutron is stable.

The electromagnetic properties of the neutron are characterized by it’s vanishing charge but a

magnetic moment. This moment has its origin in an electromagnetic form factor which is due

to the strong interaction ”dressing” by e.g. pion clouds. As a particle with spin 1/2 we describe

the neutron by a two component spinor quantized along the z-axis

ψ = a1χ1 + a2χ2 =
(

a1

a2

)
(3.1)

in the basis

χ1 =
(

1
0

)
χ2 =

(
0
1

)
(3.2)

and with norm

| a1 |2 + | a2 |2= 1 (3.3)

For an arbitrary spin direction with polar angles (ϑ, ϕ)

a1 = cos
ϑ

2
eiϕ/2 a2 = sin

ϑ

2
e−iϕ/2 (3.4)

The spin density matrix (a vector in the space of 2 x 2 hermitian matrices) is ψ ⊗ ψ+:

ρ =
(

a1a
∗
1 a1a

∗
2

a2a
∗
1 a2a

∗
2

)
Sp(ρ) = 1 (3.5)
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The polarizations are given by the components of this matrix with respect to the basis 1I, ~σ (~σ

: Pauli matrices) that is

ρ =
1
2
(1I + ~P~σ) (3.6)

The components are

Pi = Sp(ρσi) =





2Re(a∗1a2) i = 1
2Im(a∗1a2) i = 2
| a1 |2 − | a2 |2 i = 3

(3.7)

With (3.4) we obtain e.g. for P1:

P1 = sin ϑ cosϕ (3.8)

and for polarization along the 1-axis we have

ϑ = π
2 , ϕ = 0 P1 = 1 ψ = 1√

2

(
1
1

)

ϑ = π
2 , ϕ = π P1 = −1 ψ = 1√

2

(
1

−1

)
.

(3.9)

The density matrix (3.6) is idempotent that is

ρ2 = ρ (3.10)

and describes therefore as a projector pure states. For the description of a partially polarized

neutron beam we need the generalization for an ensemble of an incoherent mix of polarization

states.
~P =

1
N

∑

i

~Pi (3.11)

ρ has still the form (3.6)

ρ =
1
2
(1I + ~P · ~σ) but with 0 ≤| ~P |≤ 1 (3.12)

The expectation value of ρ is

< ρ >= Sp(ρρ) =
1
2
(1+ | ~P |2)

=
{

1/2 unpolarized
1 completely polarized

(3.13)
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Due to it’s magnetic moment a neutron at rest is a source of a magnetic field. The electrical

field for a neutron in flight - induced by Lorentz kinematics is of the order of v/c. In view of

the low velocities of thermal neutrons this effect will not be of any concern in our context.

The magnetic moment is given by

~µn = γµN~σ

(
~s =

~σ

2

)
(3.14)

where ~s is the spin operator for spin 1/2,

µN =
e~

2Mc
(3.15)

is the nucleon magneton and γ = -1.91 the neutron renormalization factor.

The vector potential for this moment is

~A(~x) =
~µN ∧ ~x

| ~x |3 = −~µN ∧ ~∇ 1
| ~x | . (3.16)

Since the magnetic field for this potential is

~B(~x) = ~∇∧A(~x) (3.17)

we obtain with
~∇∧ ~µN ∧ ~∇ 1

| ~x | = −(~µN · ~∇)~∇ 1
| ~x | + ~µN ·∆ 1

| ~x | (3.18)

~B(~x) = ~∇(~µN · ~∇ 1
| ~x |) + 4π~µNδ(~x) (3.19)

Hence apart from its strong interaction with the nuclei of the sample, the neutron induces also

a magnetic perturbation and therefore may also probe the magnetization density.

The average of a general observable Ô over the spins is given by

< Ô >= χ+Ôχ = Sp(ρÔ) . (3.20)

The spatial part of the neutron wave function is described by a usual propagating wave-package.
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3.2 Free Photons (Electro-Magn. Field)

The characterization of the photons as vector particles with vanishing mass is somewhat more

involved than the simple spinor case of the neutron. In order to make things clear we start with a

covariant relativistic formulation. This is a natural procedure - after all photons are relativistic

objects. Let us start with the description of the electro-magnetic field as an antisymmetric

tensor expressed by a vector field.

Fµν = ∂µAν − ∂νAµ (3.21)

The indices run over the time-space components (0,1,2,3). The diagonal metric used is (+,-,-,-).

The inhomogeneous Maxwell equations are then

∂µFµν = jν (3.22)

In vacuum jν = 0, and (3.22) becomes equivalent to

2Aν − ∂ν(∂µAµ) = 0 (3.23)

It is well known and obvious from (3.21) that the field Fµν is not unambigously determined by

the vector potential Aµ. The ambiguity is

Aµ −→ Aµ′ + ∂µΛ(x). (3.24)

As a first gauge condition, we chose Λ such that

Λ = −∂µAµ (3.25)

The resulting condition is the Lorentz gauge

∂µAµ = 0 (3.26)

This condition reduces the number of independent components of Aµ from four to three and the

vacuum field equation becomes

2Aµ = 0 (3.27)
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However (3.26) does not yet make Aµ unique. If Aµ satisfies the Lorentz conditions, so will Aµ′

as long as 2Λ(x) = 0 . By choosing

∂tΛ = A0 (3.28)

(3.26) becomes
~∇ · ~A = 0 (3.29)

This is called the Coulomb gauge - a name which in view of the subsequent equation

∆A0 = 0 (static) (3.30)

is fairly obvious. Herewith ~A becomes a vector field with two independent transversal compo-

nents. For a propagating field with wave vector ~k we obtain from (3.29)

~k~ε (λ)(~k) = 0 (3.31)

where ~ε (λ)(~k)(λ = 1, 2) are two normed base vectors perpendicular to ~k.

~ε (λ)(~k)~ε λ′(~k) = δλλ′ . (3.32)

The Coulomb gauge has the advantage that the two-state helicity for a zero mass, spin 1 - particle

becomes evident. The disadvantage is that the description of the photon field is not anymore

manifestly covariant. However, since we finally are going to use a nonrelativistic description of

the sample, this does not matter in our context.

Note that in a polarizable medium (wave guide or a plasma) condition (3.29) can not be fulfilled

and the field picks up a longitudinal component.

In quantized form our free field can now be written as

~A(~x, t) =
(

1
2π

)3 ∫
d3k

2k0

∑

λ=1,2

~ε (λ)
[
a(λ)(~k)e−ikx + aλ+(~k)eikx

]
(3.33)

with

kx = ωt− ~k~x, k2 = 0, k0 =| ~k | . (3.34)

which is equivalent to (1.13) and (1.14). The commutation relations for the field operators are

[a(λ)(~k)aλ′+(~k′)] = 2k0(2π)3δλλ′δ(~k − ~k′) (3.35)
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[a(λ)(~k)aλ′+(~k′)] = [aλ+(~k)aλ(~k′)] = 0 (3.36)

The electro-magnetic fields are determined by

~E = −1
c
∂t

~A (3.37)

~B = ~∇∧ ~A (3.38)

With (3.37), (3.38) we conclude

~E ∼ ~ε (λ), ⊥ ~k (3.39)

~B ∼ ~k ∧ ~ε (λ), ⊥ ~k, ~E (3.40)

Let us now choose the transversal unit vectors ~ε (1) and ~ε (2) as a base to describe the polarization

direction

~ε = a1~ε
(1) + a2~ε

(2) (3.41)

with

| a1 |2 + | a2 |2= 1 (3.42)

(3.41) can then be written

~ε = ~ε (1) cosα + ~ε (2) sinα eiβ (3.43)

For the choice of α = π/4 and β = ± π/2 we get

~ε± = ~ε (1) ± i~ε (2) (3.44)

With (3.33) and (3.37) we recognize that for this case the field vector ~E is rotating around ~k

on a circle. This describes right- resp. left handed circular polarization. For an arbitrary α

but β = 0, linear polarization along the α-direction is described. Arbitrary (α, β) describe the

elliptical polarizations. The spin density matrix for the photon field has to be something like

the direct product of the ~ε (λ) that is

ρik ∼ ~ε ∗i ⊗ ~εk (3.45)

As a hermition (2x2)-matrix this can be written as
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ρ = 1
2

(
1 + ξ3 ξ1 − iξ2

ξ1 + iξ2 1− ξ3

)

= 1
2(1I + ~ξ · ~τ)

(3.46)

with τ being the Pauli-matrices. Note that any three-vector can in this way be represented by

a hermitian (2x2)-matrix.

As for the case of spinors in the previous chapter we can project out the components

ξj = Sp(ρτj) (3.47)

The ξj are called Stokes-parameters. For the two field components

E1(t) = a1e
i(ϕ1(t)−ωt)

E2(t) = a2e
i(ϕ2(t)−ωt) (3.48)

we obtain for the Stokes parameters

ξ1 = 2a1a2 cos(ϕ2 − ϕ1) (3.49)

ξ2 = 2a1a2 sin(ϕ2 − ϕ1) (3.50)

ξ3 =| a1 |2 − | a2 |2 . (3.51)

Recall that ρ in (3.46) is normalized to Spρ = 1; otherwise we would get here also a

ξ0 =| a1 |2 + | a2 |2 (3.52)

as the intensity of the beam. ξ3 represents the degree of linear polarization, where as the

nondiagonal elements measure the degree of circular polarization. What has been said about

partial polarization in the last chapter (following equation (3.10)) can be repeated here as well.

3.3 The Polarization Analysis

In both cases, for neutrons and X-rays, the spin density matrix which describes the polarization

states has formally the same structure. The deeper reason behind is the homomorphism between
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the SU (2) and SO (3) groups. We do not want to discuss this point here, but rather sketch

shortly the principles of how to deal with polarization states in connection with cross-sections.

We just present the general framework common to both cases here. For every particular exper-

imental set up this has to be done carefully and in an explicite way - a job which may well be

rather tedious.

Let be

χin : a pure spin state of the probe before scattering with momentum ~p
χout : a pure spin state after scattering and with momentum ~p ′

An initial state with partial polarization is then described by the mixture

ρin =
∑

i

wi | χ(in)
i >< χ

(in)
i | (3.53)

χin and χout are connected by the scattering amplitude

χout = F (~p → ~p ′)χin. (3.54)

For ρout we then get

ρout =
∑

i

wi | χ(out)
i >< χ

(out)
i |=

∑

i

wiF | χ(in)
i >< χ

(in)
i | F+. (3.55)

This corresponds to an average over the initial states. Hence we obtain

ρout = F (~p → ~p ′)ρ inF+(~p → ~p ′) . (3.56)

The trace over ρout corresponds to the sum over all final states and hence, to the cross section

dσ

dΩ
= Sp(ρout). (3.57)

We have seen in the previous chapters that ρ has in either case (neutrons or X-rays) the form

ρ

Spρ
=

1
2
(1I + ~σ · ~P ). (3.58)

The observables like polarizations or Stokes-parameters are then, normalized to the cross-section

given by the projections

Pi = Sp(σiρ
out) (3.59)
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4 Interaction with the Scattering Centers

4.1 Nuclear Interaction of Neutrons

If we do not express the isospin dependence of the nuclear interaction of neutrons on nuclei

explicitly, we can write for the phenomenological amplitude of neutron-nucleus scattering at

very low energies

A + B~sn · ~I (4.1)

where ~sn = 1
2(~σx, ~σy, ~σz) is the neutron spin operator expressed by Pauli spin-matrices and ~I

the spin operator for the nucleus. The restriction to the simple form (4.1) is a consequence of

the invariance of strong interaction under

i) rotational transformation (conservation of angular momentum)
ii) parity transformation and (conversation of parity)
iii) time reversal

A and B are determined by the strong interaction between the neutron and the nucleus and can

- at very low energy - usually be represented by a pseudo-potential (scattering length). Let us

consider the partial wave expansion of the spin independent scattering amplitude of (4.1).

A(ϑ) =
1

2ik

∑

l

(2l + 1)(e2iδl − 1)Pl(cosϑ) (4.2)

Apart from exceptional resonance conditions the phase shifts δl behave as

tgδl −→ const. k2l+1as k −→ 0 (4.3)

For very low energies we can restrict (4.2) to the contribution from the S-wave only. (There are

exceptions like nuclei with high absorption at threshold). δ0, according to (4.3) is odd in k. We

can hence write an even expansion

ctgδ0 = −1
a

+
1
2

r2
0 k2 + O(k4) (4.4)

with a being the scattering length and r0 the effective range of the interaction. For the scattering

amplitude we then get

A(ϑ) = [ctgδ0 − ik]−1 = −a + ika2 + O(k2) (4.5)
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and therefore a total cross section of

σ = 4πa2 (4.6)

For the application of neutron scattering in the investigation of structure and dynamics of

condensed matter, the neutrons are scattered at nuclei bound in molecules or in a lattice. The

amplitude of their thermal motion (e.g. vibrations) is very large compared to the range of

the strong interaction. Therefore an impulse approximation is by far sufficient to describe the

scattering amplitude of the neutron with a bound nucleus and its excitation into the nth-state

in the lattice, that is

−M + m

M
a

∫
ψ∗n(~x)ψ0(~x)ei~κ~xd3x (4.7)

m and M are the masses of the neutron and the nucleus respectively. ~~κ is the momentum

transfer to the target. We can write the same amplitude formally in Born approximation as:

−2πm

~2

∫
V (~x ′)ei~κ~x ′

d3x′
∫

ψ∗n(~x)ψ0(~x)ei~κ~xd3x (4.8)

(4.7) and (4.8) become identical if we chose for the potential

V (~x) = 2π~2 M + m

Mm
aδ(~x) =

2π~2

m
bδ(~x) (4.9)

This is the pseudopotential used as “elementary” interaction in the description of scattering

processes of low energy (thermal) neutrons in condensed matter.

A few remarks are in order:

i) While the strong interaction is charge independent, the electromagnetic contribution to

the interaction potential violates this internal symmetry. Hence the scattering length b

has a specific value for every isotope of the nucleus of the particular element.

ii) The strong interaction being spin dependent (4.1) leads to different scattering lengths for

the two amplitudes A and B.

iii) Since amplitudes of different origin according to i) and ii) do not interfere with each other

they lead to a contribution of incoherent scattering at a many body system consisting of

nuclei with In 6= 0 and their isotopes with different isospins.
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iv) Due to the local nature of the interaction potential (∼ δ(~x)), there appears no form factor

for the elementary scattering, that is the differential cross section does not decrease for

large momentum transfer (large scattering angles).

4.2 The Electromagnetic Interaction

As stated in the previous chapters the photons and neutrons are electromagnetic probes for

the electronic degrees of freedom in a sample. We describe here both probes as external vector

potentials coupled to either charge - or magnetization density in the sample. The hamiltonian

of the perturbation is then

H1 = −e

c

∫
d3x ~A(~x)~j(~x) (4.10)

for the coupling to the charge carriers forming the current ~j:

~j(~x) =
∑

j

1
2m

(~pjδ(~x− ~xj) + δ(~x− ~xj)~pj) . (4.11)

~xi and ~pi are the positions and the momenta of the electrons.

4.2.1 Photon-Electron Coupling

In order to express this hamiltonian explicitly we start with a relativistically covariant treatment

of electrons as Dirac-particles with spin 1/2 in an external electromagnetic field. Notice that

electromagnetism is a relativistic business - and indeed the magnetic coupling of photons turns

out to be a relativistic effect.

The Dirac equation in momentum representation and usual notation for an electron with mass

m is

(γµpµ −m)ψ(x) = 0. (4.12)

We introduce it’s coupling to an external field

pµ −→ pµ − e

c
Aµ (4.13)
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Using the representation

γ0 =
(

1 0
0 −1

)
~γ =

(
0 ~σ

−~σ 0

)
(4.14)

we obtain with

ψ =
(

ϕ
χ

)
ei(mc2)t (4.15)

the Pauli spinor-equations

i∂tϕ = c~σ
(
~p− e

c
~A
)

χ + eA0ϕ (4.16)

i∂tχ = c~σ
(
~p− e

c
~A
)

ϕ + eA0χ− 2mc2χ (4.17)

As a first approximation we write χ as

χ =
1

2mc
~σ(~p− e

c
~A)ϕ (4.18)

which leads us to a Schrödinger type of equation for ϕ

i∂tϕ = Heffϕ (4.19)

with an effective hamiltonian

Heff =
1

2m
(~p− e

c
~A)2 + eA0 − e~

2mc
~σ ~B (4.20)

Heff is valid up to O(v/c). It contains (since s = 1
2σ) the correct magnetic moment for the

electron with g = 2

~µ = gµB~s µB =
e~

2mc
(4.21)

Higher order radiative corrections give a deviation from g = 2 of less than 1%. A coupling due

to the charge between the field and electrical current from the first term and a Zeeman like term

between magnetic field and magnetic moment is evident in (4.20). For a spin-orbit coupling we

have to approach the next approximation

χ =
1

2mc

[
~σ~p +

eA0

2mc2
(~σ~p) +

i

2mc2
(~σ~p)∂t

]
ϕ. (4.22)
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In order to still interpret ϕ as a wave function we have to transform it

ϕ −→ φ = Oϕ (4.23)

such that the norm keeps its significance, that is
∫

d3x(| ϕ |2 + | χ |2) =
∫

d3x | φ |2 . (4.24)

Then accordingly H transforms into

H −→ Heff = OH O−1. (4.25)

This is fulfilled by

O = 1I +
~p 2

8m2c2
(4.26)

In this higher approximation we obtain again

i∂tφ = Heffφ (4.27)

with

Heff =
1

2m
(~p− e

c
~A)2 +

p4
8m2c2

+ eA0 − e~
2mc

~σ ~B +
e

8m2c2
∆A0

− e~
4m2c2

~σ ·
(

~E ∧ (~p− e

c
~A)

) . (4.28)

The new additional terms compared to (4.20) are

• a relativistic velocity correction to the kinetic energy. It will be neglected in the following.

• the socalled Darwin term ∼ ∆A0. It has its origin in the positional fluctuation of the

charge and will not be considered either

• The last term in (4.28) consists of four different contributions

1.
e~

(2mc)2
~σ · ( ~E ∧ ~p) spin orbit coupling

2.
e~

(2mc)2
~σ

(
− e

c2

)
∂t

~A ∧ ~A magnetic Thomson scattering

This is the magnetic ”analog” to the ~A2-term of (4.28).

3. Two terms linear in ~A or ∂t
~A.
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4.2.2 Neutron-Electron Coupling

In principle the neutron may be treated the same way as the electrons in the previous chapter.

There are however some important modifications:

• Its charge vanishes - hence the corresponding terms prop. to ~A do not appear.

• Its mass is three orders of magnitude larger than the mass of the electron - hence at thermal

energy the velocities are so small that terms like ~E ∧ ~p (spin-orbit) can be neglected (first

approximation 4.20 is sufficient).

• Due to strong interaction, the magnetic moment is so highly renormalized (note, even

the sign has changed) indicating that the g-factor is dominated by completely different

physical effects. In this sense the neutron is not a Dirac-particle.

In view of this, we consider a neutron traversing a sample, to plough its magnetic field (3.19)

through the lattice interacting with the electronic magnetic moments and currents. Using (4.11)

for the currents, (3.16) for the vector potential we get from (4.10)

H1 = −γµN
e

2mec

∑

j

(
~pj

~σn ∧ ~xj

| ~xj |3 +
~σn ∧ ~xj

| ~xj |3 ~pj

)
. (4.29)

For the interaction with electronic moments we write

H1 = −
∫

~µe
~Bn(~x)d3x (4.30)

with

~µe(~x) = −2µB

∑

j

~sjδ(~x− ~xj) (4.31)

and obtain with the help of (3.19)

H1 = γµN2µB~σn ·
∑

j

~∇~sj ∧ ~xj

| ~xj |3 (4.32)

Look at the expression (3.19) of the magnetic field, and you recognize that (4.32) contains the

dipol-dipol - as well as the hyperfine interaction. In both expressions for H1 the sum runs over

those charge carriers in the sample which are active for the magnetization.
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4.3 The Matrix Elements

4.3.1 Neutron-Nuclear Interaction

For a whole set of scattering centers at the positions ~Xi we obtain from (4.9)

V (~x) =
2π~
m

∑

j

bjδ(~x− ~Xj(t)). (4.33)

The normalization has been taken such, that the elastic cross section is

dσ

dΩ
=|< ~k1 | V | ~k0 >|2 (4.34)

with

< ~k1 | V | ~k0 > =
∑

j

bj

∫
d3xe−i~k1~xδ(~x− ~Xj(t))ei~k0~x

=
∑

j

bje
i~κ ~Xj(t) ~κ = ~k0 − ~k1

(4.35)

4.3.2 Neutron-Magnetic Interaction

This matrix element is obtained from (4.28) and (4.32), by using the following Fourier represen-

tations
~x

| ~x |3 = −~∇ 1
| ~x | = − 1

2π2
~∇

∫
d3q

1
q2

ei~q~x (4.36)

By means of these expressions and for a momentum transfer ~κ = ~k0 − ~k1 we obtain for the

matrix elements between < ~k0 | and | ~k1 >

4π
∑

j

ei~κ~xj~σn[~̂κ ∧ ~sj ∧ ~̂κ] (4.37)

for the spin part and

4πi
∑

j

ei~κ~xj

~ | ~κ |~σn[~̂κ ∧ ~pj ] (4.38)

where ~̂κ = ~κ
|~κ| .
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Note that both terms are proportional to κ−2. Furthermore the sum over j runs over the

magnetically active electrons, hence a formfactor for the magnetization has to be expected.

Therefore, contrary to the case of nuclear scattering (pseudo-potential), the magnetic scattering

will be damped for large momentum transfers. We now define the transvers part of a vector

with respect to ~κ by
~Q⊥ = ~̂κ ∧ ~Q ∧ ~̂κ (4.39)

Hence, the sum of (4.37) and (4.38) is the transverse part (to ~κ) of the operator

Q = 4π
∑

j

ei~κ~xj [~sj − i

~κ2
(~κ ∧ ~pj)] . (4.40)

4.3.3 Photon-Charge Interaction

The coupling to the charge is described by the first term of (4.28). Apart from ~p 2
j which just

describes the kinetic enery, we have the terms prop. to ~pj
~A(~xj) and ~A 2(~xj). According to

(3.33) the first term is linear in the creation and destruction operators of the photon. Therefore

it cannot contribute in first order to scattering states with initial and final photons. In first

order they describe photo-emission and -absorption.

The corresponding matrix elements are for

• photoabsorption

| n0
~k0 >−→| n1 >; < n1 |

∑

j

ei~k0~xj~ε (λ)(~k0)~pj | n0
~k0 > (4.41)

• photoemission

| n0 >−→| n1
~k1 >; < n1

~k1 |
∑

j

e−i~k1~xj~ε (λ)∗(~k1)~pj | n0 > (4.42)

n0 and n1 describe an initial and final state of an atom or molecule. The sum j runs over the

electrons of these scattering centers. Since these processes are localized to e.g. an atom the

wave length is usually larger than this active object (> 1 Å, say ...). In this case the dipol

approximation is valid and the exp-function may be replaced by 1I.
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For photonic frequencies in the vicinity of an internal excitation with energy Ei, that is ~ω '
En0 − Ei the corresponding resonance denominator of the second order contribution to

scattering may amplify its contribution up to domination of the scattering process. (4.41) and

(4.42) are then the vertex functions.

The term quadratic in ~A describes a scattering process in first order perturbation

| n0
~k0 >−→| n1

~k1 >; < n1
~k1 |

∑

j

ei~κ~xj | n0k0 > ~ελ
i · ~ελ′

f (4.43)

This is the ”Thomson-scattering”, which dominates the whole scattering process in absence of

any excitations of the scatterers, that is for ~ω À En0 − Ei.

4.3.4 Photon-Magnetic Scattering

In an analogous way the linear ”Zeeman”-term contributes to scattering processes only in second

order of the perturbation (4.46).

The first order term, prop. to ~̇A ~A - we call it here the magnetic ”Thomson scattering” has the

matrix element

− i~ω
mc2

< n1
~k1 |

∑

j

ei~κ~xj · ~sj | n0k0 > ~ε
(λ)
f ∧ ~ε λ′

i . (4.44)

4.3.5 Second Order Contributions

These terms contain a denominator of the form
(
En0 − Ei + ~ωk − iΓ

2

)−1. If ~ωk is near to the

energy difference between the initial and the intermediate state (En0 − Ei), these terms clearly

dominate the cross section. Moreover this is the regime of ”anomalous” dispersion.

Away from this regime, when the frequency of the incident and emitted radiation (ωk and ω′k)

is not too different and larger than the energy differences between levels in the sample, that is

ωk ∼ ω′k À
1
~
(En0 −Ec) (4.45)
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The resonance denominators become proportional to 1/~ω. After summation over intermediate

states using closure we obtain the two terms

−i
~ω
mc2

< n1
~k1 |

∑

j

ei~κ~xj (i
~κ ∧ ~pj

~κ2
(~εf ∧ ~εi) | n0k0 >

−i
~ω
mc2

< n1
~k1 |

∑

j

ei~κ~xj · ~sj · ~B | n0k0 >

(4.46)

~B is a vector function depending on the initial and final polarization of the radiation field. It is

explicitely given in the fourth line of the following table.

4.3.6 Summary

Taking all these terms into consideration leads to the rather complicated cross section formula

as given by M. Blume [3]. Instead of writing it down in its full glory (see Altarelli’s lecture), we

prefer for our qualitative discussion to present a summary of the most relevant terms.

Table 4.2: Relevant terms of the X-ray scattering cross section
e2

mc2
<|

∑

j

ei~κ~xj Ô |> f(~εf ,~εi)

Ô MAGNITUDE f(~εf ,~εi) PERTURB.
ORDER

~A2 1I 1 (THOMSON) ~εf · ~εi FIRST

~p ~A i
~κ ∧ ~pj

~κ2
−i
~ω
mc2

~εf ∧ ~εi SECOND

~̇A ~A ~sj −i
~ω
mc2

~εf ∧ ~εi FIRST

(~∇∧ ~A ~sj −i
~ω
mc2

(~̂k1 ∧ ~εf )(~̂k1~ε)−
(~̂k0 ∧ ~εi)(~̂k0~εf )− SECOND

(~̂k1 ∧ ~εf ) ∧ (~̂k0 ∧ ~εi)

Table 2 shows the relevant terms for X-ray scattering at an energy which is large compared to

the energy level of the scattering constituents. In column 4 we also give the explicit dependence

on incident- and final-proton polarization. A few remarks are in order here:
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1. Neutron Scattering

From (4.32) and (4.40) we expect the following order of magnitudes for the cross sections

(a) nuclear: 4π | b |2

(b) magnetic:
(

e2

mc2

)2
γ2µ2

N

For small momentum transfer these two interactions are of the same order of mag-

nitude. The ratio depends on the momentum transfer since nuclear scattering has, in

contrast to magnetic scattering, no elementary form factor. That is, the magnetic contri-

bution fades off with increasing momentum transfer.

2. X-ray Scattering

From Table 2 we recognize cross sections of the following order of magnitude

• Charge (Thomson)
(

e2

mc2

)2
N2

• magnetic
(

e2

mc2

)2 ( ~ω
mc2

)2
N2

m

where Nm is the number of ”magnetically active” electrons, Nm ∼ 1
10N . Assuming the

magnetic form factor to be roughly the same as for the charge distribution and an X-

ray energy of 10 keV, the ratio between charge - and magnetic scattering is 4 ·
10−6. The magnetic scattering is hence a small (relativistic) contribution to the scattering

at charge fluctuations. Its observation is, however, not hopeless, since there exists the

possibility to ”switch off” the otherwise dominant Thomson scattering by an adequate

choice of the initial and final polarization geometry in the scattering process (~εi · ~εf = 0).

Furthermore it is possible to isolate the interference term between charge- and magnetic

scattering by using circular polarization. This can be seen in the following way. We use

(3.56) for this interference contribution and obtain

iSp{ρin[M+
mMc]} = Pc(1− α)2Re(b) (4.47)

where

Mc = F (~κ)
(

1 0
0 cos2 ϑ

)
=

(
1 0
0 α

)
(4.48)

and

Mm =
(

a b
b∗ c

)
(4.49)
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represent the scattering matrices for charge- and magnetic-scattering. ρin is the polariza-

tion matrix (3.46) of the incident beam.

ρin =
(

1− P‖ −iPc

iPc 1 + P‖

)
(4.50)

(4.47) shows that a circularly polarized beam picks out the interference term which is pro-

poritonal to ~ω
mc2

only. X-ray cross sections with polarized beam and polarization analysis

are further discussed in [4] and [5].

3. Comparison between X-rays and Neutrons

The relevant interactions for structural investigations are (4.35) and (4.43). The cross

sections are of the same order of magnitude for light elements. While the Thom-

son cross section increases with Z2 for heavier atoms, the nuclear cross sections show a

non-systematic variation with the atomic numbers. They may be very different even for

different isotopes of the same element. Obviously this property can be used - by special

preparation of the sample - for contrast variation. This is an opportunity which is unique

for neutron scattering.

The ratio between the two probes for magnetic scattering is of the order 104 in favor of the

neutrons. The kinematic properties of the neutrons together with their relatively strong

magnetic interaction give them their favorite position as samples to probe the magnetic

dynamical properties of the sample. These kind of investigations will hardly ever be

possible with X-rays.

In the investigation of magnetic structures certain informations can however be obtained

with X-rays, which are not accessible with neutrons. From (4.39, 4.40) we observe that

neutrons ”see” only the transversal part of the magnetization density, in contrast to X-

rays (see table 2). In order to measure the ”other” component of the magnetization with

neutrons, a second experiment with the sample crystal rotated correspondingly has to be

made. Furthermore it can be shown [4] that the matrix elements for magnetic scattering

can be represented by

Mm =
1
2
~L(~κ) · ~A+ S(~κ) ~B (4.51)

for X-rays; and

Mm =
[
1
2
~L(~κ) + ~S(~κ)

]
~κ ∧ (~σ ∧ ~κ) (4.52)
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for neutrons.

~L(~κ) and ~S(~κ) are the Fourier transforms of magnetization densities from atomic orbitals

and electron-moments respectively. ~A and ~B are two (different!) vector functions of the

photon momenta and polarizations. Hence it is in principle possible to obtain separate

information about orbital- and spin-contribution to the magnetization with X-rays. Ac-

cording to (4.52) this is obviously not possible with neutron scattering.

5 Cross Section and Correlation Function

5.1 The Form Factor

The operators (4.35, 4.40) are all the form
∑

j

ei~κ~Zj Ô (5.1)

~Zj are the positions of the particles which scatter the probe:

either the positions of the nuclei ~Xj

or the positions of electrons ~xj .

Assuming the ~Xj to be the lattice sites, we decompose

~xj = ~Xj + ~ξ
(j)
k k = 1, .....Z (5.2)

and define the electronic form factor

Fj(~κ) =
Z∑

k=1

∫
d3ξϕ∗(~ξ)δ(~ξ − ξ

(j)
k )ϕ(~ξ)ei~κ~ξ

=
∫

d3ξρ(~ξ)ei~κ~ξ

(5.3)

where ρ(~ξ) is the charge density. For magnetic scattering the sum runs only over those electrons

(unpaired) which contribute to the magnetization. For simplicity we consider a Bravais Lattice.

Otherwise an additional sum over the sites within the cell has to be introduced. We define now

the operator

A~κ( ~Xj) = F (~κ)ei~κ ~Xj Ô . (5.4)

Note that F (~κ) = 1 for the neutron nuclear scattering.
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5.2 The Differential Cross-Section

The measured cross section of an inelastic process is defined as the ratio of the number of

scattered particles with momentum ~k1 within the solid angle dΩ and an energy resolution ∆E,

to the incident flux with momentum ~k0. Note that ~k1 determines the direction Ω and the energy

E1 of the scattered particles.

~κ = ~k0 − ~k1 ≡ ki − kf ; ~ω = E0 −E1 ≡ Ei − Ef (5.5)

are the momentum and the energy transfer in the scattering process. (We change notation here.)

In Born approximation (linear response) we obtain

d2σ

dΩdE
= C | F (~κ) |2

∑

i,f

pi

∑

l,k

< i | A+
~κ ( ~X`) | f >< f | A~κ( ~Xk) | i > ·δ(~ω + Ei − Ef ) (5.6)

We now introduce the integral representation of the δ-function and represent the scattering

operators as time dependent Heisenberg operators

< f | ei/~Ef tAκ( ~Xj)e−i/~Eit | i > =< f | ei/~HstAκ( ~Xj(0))e−i/~Hst | i >

=< f | A~κ( ~Xj(t)) | i >
(5.7)

where Hs is the hamiltonian of the sample. Using the property of completeness of the final

states (closure) we obtain

d2σ

dΩdE
= C | F (~κ) |2

∫ +∞

−∞
dte−iωt

∑

i

pi

∑

l,k

< i | A+
~κ ( ~Xk(0))A~κ( ~X`(t)) | i >

= C | F (~κ) |2 S( ~κ, ω)

(5.8)

S(~κ, ω) =
1

2π~N

∫ +∞

−∞
dte−iωt

∑

i

pi

∑

l,k

< i | A+
~κ ( ~Xk(0))A~κ( ~X`(t)) | i > (5.9)

S is the general scattering function for unpolarized beams and no polarization analysis at the

probe. C is a characteristic constant which describes the coupling strength between probe and

sample. According to our previous considerations we have for C:
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i) neutron-nuclear scattering

C = N
kf

ki
| b |2= N

kf

ki

σ

4π
(5.10)

σ is the elementary coherent or incoherent total cross section of the neutron on the nuclei

of the sample. Since the scattering lengths for neutron scattering are sensitive on various

isotopes and nuclear spins (4.1) the coherence phase relations may be lost. This leads to

a contribution of incoherent scattering which is typical for neutrons. In the double sum

of (5.6) bk and b` may be different in a random way for a stochastic distribution of the

isotopes in the sample. For the average over the sample we write

b∗kb` = b
∗
kb` =| b |2 for k 6= ` (5.11)

For ` = k

b∗kb` = | bk |2 = | b |2 (5.12)

is obvious. For the double sum we then get

∑

k 6=`

b∗kb` = N(N − 1) | b |2 (5.13)

∑

k=`

b∗kb` = N | b |2 (5.14)

and hence all together
∑

k,`

b∗kb` = N2 | b |2 +N(| b |2− | b |2)

= N2 | b |2 +N(δb)2
(5.15)

The first term - proportional to N2 - describes the coherent scattering, whereas the second

term is responsible for the incoherent part. Note that the incoherent part contains in the

matrix element of (5.9) only self-correlation terms with ` = k.

Hence we have two scattering function Sc and Sinc, one being proportional to

C ∼ σc = 4π | b |2 and C ∼ σin = 4π(δb)2 (5.16)

A similar phenomenon may appear in X-ray scattering at an alloy.
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ii) magnetic neutron scattering

C =
kf

ki
γ2r2

0

{
1
2
gF (~κ)

}2

(5.17)

r0 = e2

mc2
is the classical electron radius and γ the gyro-factor of the neutron. g is a Lande

factor taking into consideration the contributions of orbital - and spin-magnetization [6].

iii) X-ray - Thomson scattering

C =
ωf

ωi
r2
0(~εi · ~εf )2 | F (~κ) |2 (5.18)

with F (~κ) as atomic form factor. The multiplicative split of an atomic form factor is

obviously only allowed for the cases where the Born-Oppenheimer approximation is valid.

iv) X-ray magnetic scattering

Even for pure magnetic scattering we cannot write the cross section in the simple form

(5.8). As indicated by (4.52) we have to introduce two form factors - one for orbital, the

other for spin-contributions. We hence refrain from writing down a closed expression at

this place (see Ref. [4]).

With reference to (5.9) a few remarks are in order concerning the averaging procedure over the

initial states of the sample. This is where the temperature dependence of the scattering process

enters. The scattering function has the general form

∑

i

pi < i | Q̂ | i > (5.19)

which represents the statistical expectation value of the observable Q̂ of the sample. For a many

body system the probabilities of the populations depend on its temperature. If we assume the

sample to be in thermal equilibrium this population is given by the canonical ensemble.

The density operator of the sample is given by its hamiltonian Hs

ρ =
1

Sp(e−βHs)
· e−βHs (5.20)

and its temperature β = 1/kT
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The trace (spur) represents the canonical partition function

Z = Sp(e−βHs) = e−βFs (5.21)

where Fs is the free energy

Fs = −kT lnZ (5.22)

We can then write for (5.19)

< Q >T = Sp(ρQ̂) =
1
Z

Sp(e−βHsQ̂) (5.23)

By this procedure we assume that the scattering is an isentropic (adiabatic) process, that is

the perturbation of the sample by the probe is efficiently dissipated over the sample by the

corresponding degrees of freedom. This is an important condition, which has to be fulfilled in

order to guarantee the applicability of a linear response approach.

5.3 The Correleation Function

The A~κ( ~Xj) are Fourier transforms of spatial operator functions. For example

∑

j

e−i~κ~xj~sj =
∫

d3xei~κ~x
∑

j

~sjδ(~x− ~xj)

=
1

2µB

∫
d3xei~κ~x ~Ms(~x)

(5.24)

with
~Ms(~x) = −2µB

∑

j

~sjδ(~x− ~xj) (5.25)

or for the mass density

∑

j

e−i~κ ~Xj =
∫

d3xei~κ~x
∑

j

δ(~x− ~Xj) =
∫

d3xei~κ~xρ(~x) (5.26)

with

ρ(~x) =
∑

j

δ(~x− ~Xj) (5.27)
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The product of Fourier transforms in reciprocal space corresponds to a Fourier transform of

a convolution in real space. We can therefore write for the back-transform of the scattering

function

C(~x, t) =
1
N

∫
d3x′ < Ã(~x ′, t)Ã(~x− x ′, 0) >T (5.28)

which is - for neutron scattering nothing else than (1.8). The product contains a sum over ` and

k - the scattering centers. According to (5.15) we distinguish

i) sum over all ` and k - coherent correlation function
ii) sum over ` = k only - self correlation for incoherent scattering

The correlation function contains the information about structure and collective excitations in

dependence of the temperature of the sample. The incoherent correlation function describes

among others diffusion processes in the sample. For very large times we can assume that the

time dependent correlations have faded, that is

lim
t→∞ < A+

~κ (0)A~κ(t) >=< A+
~κ >< Aκ > (5.29)

Accordingly we may split C into

C(~x, t) = C(~x,∞) + C ′(~x, t) (5.30)

with

lim
t→∞C ′(~x, t) = 0 (5.31)

C(~x,∞) is then related to the persistent structure of the sample (e.g. crystal structure) and

is hence determined by elastic scattering. C ′(~x, t) - as a consequence of its time dependence

introduces other frequency components into the wave of the scattered particles then the incident

one. Therefore C ′ is determined by the inelastic scattering events.

The general properties of the scattering - and the correlation function, as well as their connection

to a linear response theory are presented in the literature [6] and have been discussed on an

earlier occasion [7] at this sequence of schools.
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