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1 Introduction to Scattering Theory (Various Ap-

proximations)

Let us consider the scattering of a particle (probe) on a target sample consisting of many

bound scattering centers. This problem is described by a manybody hamiltonian

H = Ho + V (1)

where Ho represents the hamiltonian for the situation where the sample and the probe

are separated by a large distance. V describes the interaction between them as they are

brought closer together. Note that the probing particle can be an electron, a photon or a

neutron. V depends of course on the nature of coupling of this particle with the sample.

This determines the kind of information and its complementarity which can be extracted

from the data of these scattering experiments. The basic theoretical framework for the

interpretation of scattering experiments which we are going to present in this chapter is

essentially independent of the type of the incident probing particle.

The initial state before the scattering process — sample and probe being far apart — is

described by the free channel state Φ to an energy E. Hence,

HoΦ = EΦ (2)

The scattering state is an eigenstate of H for the same energy E,

HΨ = EΨ . (3)

If we introduce the Green’s function

G = (E + iε−Ho)
−1 (4)

we can replace (3) by a Lippman-Schwinger equation

Ψ = Φ + GV Ψ. (5)

This guarantees that the state Ψ satisfies naturally the correct boundary conditions for

the scattering problem. The (iε) in the free Green’s function (4) takes care of the proper
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analyticity properties in the upper E-plane. In (5) we can identify

Φ : with the incident wave

GV Ψ : with the scattered wave

It is useful to define the T -matrix by 1)

V Ψ = TΦ (6)

and obtain with

T = V (1−GV )−1 (7)

a formal solution of (5)

Ψ = (1 + GT )Φ (8)

For the T -matrix we have

T = V + TGV (9)

Of course, the equation (9) stands in any specific representation for a system of integral

equations. Formally, at least, we can expand (9) into a so-called Born series

T = V + V GV + V GV GV + . . . (10)

The first-Born approximation is given by

T ∼= V. (11)

Since the sample is a bulk system composed of a very large number of scattering centers

labelled by an index i, we write

V =
∑

i

Vi (12)

We then get for (10)

T =
∑

i

Vi +
∑

i,j

ViGVj +
∑

ijn

ViGVjGVn + . . . (13)
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with i 6= j : interparticle
i = j : intraparticle

}
multiple scattering

Let us now write for the interparticle multiple scattering at the ith constituent

Ti = Vi + TiGVi (14)

Ti defines then the scattering amplitude on the constituents of the sample, e.g.

• atoms, for electron - or light scattering magnetic neutron scattering

• nuclei, for neutron scattering

Vi defines then a phenomenological potential leading to an ”elementary” cross section or

form factor,

Vi = Ti − TiGVi (15)

Vi = Ti − TiGTi + TiGTiGTi − . . . (16)

We then obtain

T =
∑

i

Ti +
∑

i6=j

TiGTj +
∑

i 6=j 6=n

TiGTjGTn + . . . (17)

for the scattering amplitude, where the interparticle multiple scattering is now implicitly

included up to infinite orders.

We interrupt here in order to give two examples from neutron- and electron scattering.

From (14) we have

Ti = Vi(1−GVi)
−1 ' Vi

in first-Born approximation hereafter referred to as the Born approximation. Vi(~x) will

be a phenomenological optical potential.
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i) Neutron as a probe

In this case Vi is a generally complex potential with a range of ∼ 10−12 cm and a

depth of ∼ 40 MeV. The interatomic potential has a range of 10−8 cm and a depth

of the order of 1 eV. Due to the short interaction time of the neutron with a nucleus

we can neglect interatomic forces and an impulse approximation is justified. We

can then define a pseudo-potential, which — for low energy neutrons – contains one

parameter; the scattering length b.

Ti =
2πh̄2

mo

aiδ(~x) =
2πh̄2

m
biδ(~x) (18)

Instead of solving (14), we assume (18) and determine bi from empirical data. Hence

the Born approximation is valid by the definiton of this procedure. (Note that

the Fourier transform of the δ-function is a constant. Therefore the elementary

scattering is isotropic and does not depend on the momentum transfer.)

ii) Electron as a probe

Electrons interact with the atomic charge distribution ρ(~x)

Vi(~x) =
∫

d3x
ρi(~x)

|~x− ~x′| (19)

In Born approximation we then obtain

Ti(~q) =
∫

d3xei~q~xV (~x)

=
2π

q2
F (~q) (20)

with the form factor

F (~q) =
∫

d3xei~q~xρ(~x)

F (o) = Q (21)

where Z is the total charge of the atomic electrons. The square of the amplitude

therefore is given by the Rutherford cross section. A similar treatment for photons

leads to the Thomson cross section for light scattering.
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We now go back to equation (17) and write it in the following form (Ewald equations).

T =
∑

Ti(1 + GZi)

Zi =
∑

j 6=i

Tj(1 + GZj) (22)

These equations become somewhat more transparent if we write them for the states. With

the definition

χi = (1 + GZi)Φ (23)

Ψ = Φ +
∑

i GTiχi

χi = Φ +
∑

j 6=i GTjχj.

(24a)

(24b)

Equation (24a) shows that the scattered wave Ψ consists of

Φ : the incident wave
GTiχi : the sum of scattered waves from each

scattering center in the sample

χi, according to (24b) is the local field at the ith particle and contains

Φ : the incident wave
GTjχj : the scattered contribution from every

other center in the sample

GZi is called the local field correction to the transition operator Ti.

1.1 Kinematical Approximation

This approximation is defined by neglection of the intraparticle multiple-scattering or

equivalently the local field corrections. That is in (22),

T =
∑

i

Ti (25)
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Obviously, this approximation can only be valid for samples, which — related to the

strength of the interaction — are ”small”. The smallness depends on the size and the

texture of the sample. Only if these kind of conditions are fulfilled, does it make sense to

interprete the scattering data within this approximation and usually called the kinemat-

ically approx.

For the investigations of optical phenomena like dispersion, reflection and refraction (espe-

cially of perfect crystals) the kinematical approximation is usually not sufficient. Phenom-

ena like these, and like extinction effects, are explained by multiple scattering processes

and hence call for a dynamical treatment.

However, if the experimental set up permits an interpretation of the data within the

kinematical approximation, its linearity facilitates the procedure. For experiments for

structural research this is almost always the case for neutrons as probing particles, often

for X-rays and almost never for charged particles.

Let us now formulate the scattering problem in a somewhat less formal style. To be more

explicit we write the free hamiltonian

Ho = h + H(s)
o (26)

where

h =
1

2m
~p 2 (27)

describes the incident particle and H(s)
o the unperturbed target sample. The corresponding

states belong to (and form) two different Hilbert spaces H in the following sense

i) Hn : h|~k >= E~k|~k > (28)

ii) Hs : H(s)
o |α >= Ea|α > (29)

< α|α′ >= δαα′

We assume Hs to be complete, that is

∑
α

|α >< α| = 1 (30)
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We then define the channel state as an element of the product space

H = Hn ⊗Hs (31)

and φ as a product wave function

Φ = |~k > |α >= |~k, α > (32)

to the energy

E = E~k + Eα (33)

The channel state Φ develops into the scattering state Ψ by switching on the interaction

potential,

Ψ =
∑

α′
ψαα′|α′ > (34)

with

ψαα′ =< α′|Ψ > εHn

being the (one body) scattering state of the incident particles, corresponding to a transi-

tion in the sample α −→ α′.

According to (8) we have,

ψαα′ = < α′|(1 + GT )|~k, α >

=

{
< α′|α > +

∑

α′′
< α′|G|α′′ >< α′′|T |α >

}
|~k > (35)

and

G =
(
E~k + Eα + iε− h−H(s)

o

)−1
. (36)

For the matrix element of G we obtain

< α′|G|α′′ > = g′δα′α′′

g′ =
(
E~k′ + iε− h

)−1
(37)
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with

E~k′ = E~k + Eα − Eα′ .

Here, ~k′ is the wave vector of the scattered neutron.

Finally,

ψαα′ = {δαα′ + g′ < α′|T |α >} |~k > . (38)

We now write T as

T = t + δT (39)

where t =< T > is the average of the scatt. matrix e.g. for neutrons given by

V (~x) =<
∑

j

2πh̄2

m
bjδ

(
~x− ~Xj

)
> (40)

The variation δT describes a range of processes, including:

i) bj may fluctuate about an average due to random distributions of isotopes in the

sample (remember that different isotopes have different scattering cross sections).

A similar argument is valid for nuclei with spins (spin exchange scattering).

ii) The positions of the nuclei fluctuate, due to thermal motion in the sample.

For the T -matrix element we then write

< α′|T |α >= tδαα′+ < α′|δT |α > (41)

and obtain for (38)

ψαα′ = ψδα′α + δψαα′ (42)

with

ψ = (1 + gt)|~k >; g =
(
E~k + iε− h

)−1
(43)
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and

δψα′α = g′ < α′|δT |α > |~k > (44)

where g′ is given by (37).

The first term of (42) describes the strictly elastically scattered wave. It is coherent

in the absolute sense, that is there is interference between the incident wave and the

scattered wave. δψαα′ (sometimes called diffuse scattering) is incoherent in the abso-

lute sense. It does not interfere with the incident wave. It might be coherent in the

relative sense, that is there may by interference among the scattered contributions from

the different scattering centers (coherent inelastic). Usually δψαα′ has also a contribution,

which is incoherent.

2 Cross Section and Scattering Function

2.1 Coherence and Incoherence

The measured cross section of the inelastic scattering process is defined as the ratio of

the number of scattered particles with momentum ~k1 within the solid angle dΩ and an

energy resolution ∆E, to the incident flux with momentum ~ko. Note that ~k1 determines

the direction Ω and the energy E1 of the scattered particles.

~κ = ~ko − ~k1, h̄ω = Eo − E1 (45)

are the momentum — and the energy transfer in the scattering process. The partial

differential cross section is then

d2σ

dΩdE
=

k1

ko

x2
1dΩ

∑

∆E

|ψs|2 (46)

x1 is the distance from the sample to the detector; it has to be large compared to the

dimensions of the sample. It then finally drops out of the final expression since |ψs|2 turns

out to be proportional to x−2
1 . The sum runs over the number of terms in the resolution

range ∆E.
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Hence, all we have to do is to calculate |ψs|2 — the scattered wave — in the appropriate

approximations. We have

i) Born approximation T ' V

ii) kinematical approximation with

V (t) =
∑

j

2πh̄2

m
bjδ

(
~x− ~Xj(t)

)
(47)

for neutron scattering.

The ~Xj(t) are the positions of the scattering centers in the sample.

For the incident wave (channel state) we take

< ~x|~k >= ei(~ko~x−ωot) (48)

The time-dependent version of the scattered wave written out explicitly is,

ψs(~x
′, t) =

∫
d3x

∫
dt′G(~x− ~x′; t− t′) ·∑

j

bjδ
(
~x− ~Xj(t

′)
)
· ei(~ko~x−ωot′). (49)

where the Green’s function G satisfies

(
∆ +

2mi

h̄
∂t

)
G

(
~x− ~x′j; t− t′

)
= 4πδ (~x− ~x′, t− t′) . (50)

We do not have the time here to go through the full procedure to obtain |ψs|2. Although

the job is somewhat tedious, every student should however have seen it once. I shall

therefore distribute a hand-written version of this calculation – including (hopefully)

every i and π. The final result is

d2σ

dΩdE
=

k1

ko

1

2πh̄

∫ +∞

−∞
dτe−iωτ

∑

ij

b∗i bjei~κ ~Xi(τ)e−i~κ ~Xj(0) . (51)
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The bar over the exponentials indicates a time average of the type

lim
T→∞

1

T

∫ T

o
dt′ (52)

The scattering lengths bi are assumed to be (exclude compound unclear states) constant

in time; we may take them therefore in front of the integral. On the other hand they

may be different for different indices (e.g. different isotopes as scattering centers). For

the average over the sample we write

b∗i bj = b̄∗i b̄j = |b̄|2 for i 6= j (53)

assuming random distribution of isotopes (hence no correlation between i 6= j). Further-

more

b∗i bj = |bj|2 = |b|2 for i = j. (54)

For the double sum we get then

∑

i6=j

b∗i bj = N(N − 1)|b̄|2 (55)

∑

i=j

b∗i bj = N |b|2 (56)

All together,

∑

ij

b∗i bj = N2|b̄|2 + N
(
|b|2 − |b̄|2

)

= N2|b̄|2 + N(δb)2

The second term is the average of the squared fluctuation. It is proportional to the number

of scattering centers (∼ N) and describes therefore incoherent scattering

(δb)2 = b2
inc (57)

The first term — proportional to N2 — describes the coherent scattering; in the absolute

sense for elastic (τ →∞), in the relative sense for inelastic scattering.

|b̄|2 = b2
c (58)
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The exponentials in (51) form a time correlation function, whose variables are the posi-

tion operators of the scattering centers. Assuming the ergodic principle (in the sense of

Birkhoff) for the sample, we may replace the time average by an average over a canonical

statistical ensemble.

< ei~κ ~Xi(τ)e−i~κ ~Xj(o) >T = Sp
(
ρei~κ ~Xi(τ)e−i~κ ~Xj(0)

)
(59)

where ρ is the density operator of the canonical ensemble

ρ =
e−βH

(s)
o

Sp
(
e−βH

(s)
o

) (60)

for the temperature T (β = 1
kT

) of the sample. Note that H(s)
o is the hamiltonian of the

sample to be investigated.

The partition function

Z = Sp
(
e−βH

)
= e−βF (61)

where

F = −kT lnZ (62)

is the free energy of the sample. (We write from now on H instead of H(s)
o for its hamil-

tonian). The expectation value of an operator Ô which represents an observable of the

sample in thermal equilibrium at temperature T is

< Ô >T = Sp (ρÔ) =
Sp

(
e−βHÔ

)

Sp (e−βH)
=

Sp
(
e−βHÔ

)

Z
(63)

and explicitly in terms of energy eigenvalues and eigenvectors,

< Ô >T =
∑

i

e−βEi

Z
< i|Ô|i > . (64)

We now use this development to define the coherent and incoherent differential cross

section and write

d2σ

dΩdE

∣∣∣∣∣
coh

=
k1

ko

σc

4π

1

2πh̄

∫ +∞

−∞
dτe−iωτ

∑

ij

< ei~κ ~Xi(τ)e−i~κ ~Xj(0) >T (65)
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d2σ

dΩdE

∣∣∣∣∣
incoh

=
k1

ko

σi

4π

1

2πh̄

∫ +∞

−∞
dτe−iωτ

∑

j

< ei~κ ~Xj(τ)e−i~κ ~Xj(0) >T (66)

where we have introduced,

σc = 4π|b̄|2, σi = 4π|δb|2. (67)

Coherent and incoherent cross sections are then time-Fourier transforms of a correlation

function

Yij(κ, τ) =< e+i~κ ~Xi(τ)e−i~κ ~Xj(o) >T (68)

We now show that this corresponds to a density correlation function in space and time

Cij(~x, τ) =
(

1

2π

)3 ∫
d3κe−i~κ~xYij(κτ). (69)

With the exponential representation of the δ-function e.g.

(
1

2π

)3 ∫
d3κe−i~κ(~x−~x′+ ~Xj(o)) = δ(3)

(
~x− ~x′ + ~Xj(0)

)
(70)

we obtain

Cij(~x, τ) =
∫

d3x′ < δ
(
~x′ − ~Xi(τ)

)
δ

(
~x− ~x′ + ~Xj(0)

)
>T . (71)

For the double sum

C(~x, τ) =
∑

ij

Cij(~x, τ) =
1

N

∫
d3x′ < ρ (~x′, τ) · ρ (~x− ~x′, 0) >T

with

ρ (~x, τ) =
∑

j

δ
(
~x− ~Xj(τ)

)

(72)

(73)

According to (65) and (66) we define two different correlation functions, depending on

the summation procedure over the scattering centers, namely the
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i) sum over all i and j gives the general coherent correlation function C(~x, τ). It

defines pair correlation in space and time.

ii) the sum over i = j only, gives the correlation function which determines the inco-

herent scattering CS(~x, τ). It defines a one particle (self)-correlation in space and

time.

This point of view to interpret such scattering experiment has been introduced by Leon

van Hove 2). In a somewhat popular language these experiments answer the question:

”Where are the positions of the atoms and how do they move.”

It is evident that the correlation function C(~x, τ) contains information about collective

excitations in dependence of the temperature of the sample. The incoherent correlation

function Cs(~x, τ) (among others) describes diffusion processes in the sample.

Note that in principle a similar approach is also possible for magnetic neutron scattering

and also for X-ray and electron-scattering experiments. Due to the different coupling of

these probes to the scattering centers, the information obtained is complementary. The

various probes are sensitive to different kind of correlations (fluctuations) in the sample;

namely:

Neutrons





nuclear mass-density

magnetic density of magnetization

X-rays electric charge density and
to order

(
v
c

)
also density of

spin and orbital magnetiza-
tions

Electrons (like x-rays)

We shall discuss this point further, later on. Following van Hove, let us define here the
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scattering function:

S(~κ, ω) =
1

N

1

2πh̄

∫ +∞

−∞
dτe−iωτ

∑

ij

Yij(~κ, τ) (74)

which has the dimension of (y energy). For the cross sections we then have

d2σ

dΩdE

∣∣∣∣∣
coh

= N
k1

ko

σc

4π
S(~κ, ω)

d2σ

dΩdE

∣∣∣∣∣
incoh

= N
k1

ko

σin

4π
Si(~κ, ω)

(75)

(76)

where Si contains only the sum of the diagonal terms of Yij. The structure function is

the spatial and temporal Fourier transform of the correlation function C(~x, τ).

2.2 Elastic- and Inelastic Scattering 3)

From (73) we write for the microscopic particle density, which has dimension (y volume),

ρ(~x, τ) =
∑

j

δ
(
~x− ~Xj(τ)

)
=

1

V

∑

~κ

ρ~κe
i~κ~x, (77)

with the Fourier components,

ρ~κ =
∑

j

e−i~κ ~Xj(τ), (78)

and then for the scattering function according to (68) and (74)

S (~κ, ω) =
1

2πh̄

1

N

∫ +∞

−∞
dτe−iωτ < ρ~κ(τ)ρ+

~κ (0) >T . (79)

For very large times ρ~κ(τ) and ρ+
~κ (0) can be considered as uncorrelated, hence

lim
τ→∞ < ρ~κ(τ)ρ+

~κ (0) >T =< ρκ(τ) >< ρ+
κ (0) > (80)
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Accordingly we split the correlation function (the coherent as well as the incoherent) into

two parts.

C (~x, τ) = C(~x,∞) + C ′(~x, τ) (81)

with

lim
τ→∞C ′(~x, τ) = 0. (82)

The first term describes the sustainable part of the structure (e.g. crystal structure),

the second part is given by the actual fluctuations. We now show, that the first term is

described by elastic scattering and the second by inelastic scattering phenomena. For the

coherent correlation function this is exactly in the spirit of the interpretation of equations

(41 – 44).

The cross section related to C(x,∞) is

d2σ

dΩdE
= N

σc

4π
δ(h̄ω)

∫
d3xei~κ~xC(~x,∞)

=
σc

4π
δ(h̄ω)

∣∣∣∣
∫

d3xei~κ~x < ρ(~x) >

∣∣∣∣
2

. (83)

For a static (rigid) Bravais Lattice defined by vectors {1},

ρ(~x) =
∑

l

δ(~x−~l) (84)

we have

(
dσ

dΩ

)

coh
=

σc

4π

∣∣∣∣∣∣
∑

~l

ei~κ~l

∣∣∣∣∣∣

2

(85)

There is no inelastic scattering from, a static lattice. Similarly, for the self-correlation

CS(~x,∞) we obtain

(
dσ

dΩ

)

inc
=

σi

4π

∑

j

∣∣∣ei~κ ~Xj

∣∣∣
2

= N
σi

4π
, (86)

an isotropic diffuse scattering.
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Note in (85) we can use the identify
∣∣∣∣∣∣
∑

~l

ei~κ~l

∣∣∣∣∣∣

2

= N
(2π)3

Vo

∑
τ

δ (~κ− ~τ) , (87)

where Vo is the volume of the unit cell, and {~τ} the lattice vectors of the reciprocal lattice

defined from {1}. (87) shows the Bragg peaks i.e. the elastic scattering is zero at all wave

vectors except k = τ ..

For a non rigid lattice we assume the positions of the scattering centers to be given by

~Xj = ~lj + ~uj

(
~lj

)
(88)

This represents a Bravais lattice with average positions ~lj and (time dependent) deviations

from these positions ~uj(~lj) (e.g. due to thermal motion).

< uj

(
~lj

)
>T = 0 (89)

With (88) we can write for the average particle density

< ρ(~x) > =
∑

j

< δ
(
~x− ~Xj

)
>T =

=
(

1

2π

)3 ∫
d3κ

∑

j

ei~κ(~x−~l) < e−i~κ~u(~l) >T (90)

By means of the Bloch relation, valid for harmonic vibrations,

< eQ̂ >= e
1
2
<Q̂2> (91)

we rewrite the last term under the integral (90) as

< e−i~κ~u(~l) >= e−
1
2
<(~κ~u(l))2>T = e−W (~κ) (92)

in (92),

2W (~κ) =< (~κ~u(~l))2 >T (93)

is the famous Debye-Waller factor. Note that (91) is an identity for a quantum mechanical

observable which is a linear combination of annihilation and creation phonon operators.

We have to deal with ~u(~l) accordingly.
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We do not give here the prove of Bloch’s relation; it can be found in the literature 3).

It contains basically the quantum mechanical treatment of the degrees of freedom of the

sample. Accordingly, due to zero point motions the Debye-Waller factor does not vanish

at T = 0.

For ` the special case of the three cubic Bravais lattices we can write

W (~κ) =
1

2
< (~κ~u)2 >=

1

6
κ2 < ~u2 > (94)

and according to (90)

< ρ(~κ) >=
(

3

2π < u2 >

) 3
2 ∑

l

e
− |~x−~l|2

2<u2> (95)

is a Gaussian form-factor centered at the equilibrium position of the scattering centers.

The elastic cross sections are now

(
dσ

dΩ

)el

coh
=

Nσc

4π

(2π)3

Vo

∑

~τ

δ (~κ− ~τ) e−2W (~κ) (96)

and,

(
dσ

dΩ

)el

incoh
=

Nσi

4π
e−2W (~κ). (97)

We recognize that the Debye-Waller factor reduces the elastic cross sections. Indeed, it is

a measure of the probability for the reaction being elastic. Furthermore, the incoherent

scattering — due to the ~κ-dependence of the Debye-Waller factor — in general, is not

isotropic anymore.

The correlations in the sample described by C ′(~x, τ) in a nonrigid lattice are responsible

for inelastic scattering processes. Energy carried by the internal degrees of freedom can

be transferred to the probe. The reversed process is also possible. The probability of

these two processes are intimately related with each other, as we shall see.

We do not intend in this lecture to discuss the inelastic cross sections in detail. I just

would like to emphasize a few points, which will turn out to be of importance for the
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discussion of general properties of the correlation function and the approach of ”Linear

Response”.

We start according to (81) with

C ′(~x, τ) = C(~x, τ)− C(~x,∞). (98)

With (88) and a similar procedure as above we obtain

C ′(~x, τ) =
(

1

2π

)3 ∑

ik

∫
d3κe−i~κ~xe−i~κ(~lj−~lk)e−2W (~κ)

·
{
exp

[
< ~κ~u

(
~lj

)
· ~κ~u

(
~lk, τ

)
>T

]
− 1

}
. (99)

The deviation of the position of an atom from its equilibrium position can be represented

as a linear combination of the eigenmodes of the crystal oscillations,

~u(~l) =
∑

j,~q

(
h̄

3NMωj(~q)

)1/2 [
~α(j)(~q)ei~q~laj(~q, t) + ~α(j)∗(~q)e−i~q~la+

j

]
. (100)

The dynamics of the oscillations is governed by the equation

ih̄∂taj = [aj,H] (101)

where H is the hamiltonian of the lattice oscillations. In the harmonic approximation

(101) reduces to ih̄∂taj = h̄ωiaj and describes 3N independent harmonic oscillations

aj(~q, t) = aj(~q)e
−iωj(~q)t (102a)

a+
j (~q, t) = a+

j (~q)eiωj(~q)t (102b)

The aj and a+
j are the usual annihilation and creation operators, fulfilling the well-known

commutation relations of the linear oscillator. Furthermore the following averages over

the canonical partition are obtained

< a+
j (~q)ak(~q

′) >T = δjkδqq′nj(~q) (103a)

< aj(~q)a
+
k (~q ′) >T = δjkδqq′(nj(~q) + 1), (103b)
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in which nj(~q) describes the population of the mode j

nj(~q) = (eβh̄ωj(~q) − 1)−1 (104)

The exponent in the Debye-Waller factor then becomes

<
[
~κ~u(~l)

]2
>T∼

∑

j,~q

∣∣∣~κ~α(j)(~q)
∣∣∣
2

ωj(~q)
(2nj(~q) + 1) (105)

which demonstrates, how this factor depends on the population of the lattice excitations.

For the time-dependent exponent in (99) we get

< ~κ~u(~li) · ~κ~u(~lk, τ) >T =

∑

j,~q

|~κ~αj(~q)|2
ωj(~q)

[
ei~q(~lk−~lj)eiωj(~q)τ (1 + nj(~q)) + e−i~q(~lk−~lj)e−iωj(~q)τ · nj(~q)

]
(106)

Expansion of exp[< >T ] in (99) and keeping the linear term only, leads — using (106)

— to a scattering function and hence an inelastic coherent cross-section which contains

typical terms proportional to

1) nj(~q)δ(ω + ωj(~q))δ(~κ + ~q − ~K) (107)

2) (nj(~q) + 1)δ(ω − ωj(~q))δ(~κ− ~q − ~K). (108)

The first term represents to a process of phonon annihilation (absorption) (ωj(~q), ~q) by the

probing incident particle. The second term is the corresponding phonon creation term.

Energy- and momentum conservation for these inelastic processes are,

E ′ = E ± h̄ωj(~q) (109)

~k′ = ~k ± ~q − ~K (110)

where ~K is a reciprocal lattice vector.
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3 Properties of the Scattering - and the Correlation-

Function3)

With the help of (77) and (78) we write the scattering function in the following form

S(~κ, ω) =
1

2πh̄

+∞∫

−∞
dte−iωt < ρ~κ(0)ρ−~κ(t) >T . (111)

Since the position- and momentum operators are self-adjoint (observables), the Fourier-

component of the density operator has the property

ρ−~κ = ρ+
~κ (112)

where + stands for hermitian conjugation.

ρ−~κ(t) with t 6= 0 and ρ~κ(0) do not usually commute - therefore, instead of the relation

eA · eB = eA+B (113)

which is for classical number, A and B, when A and B are quantum operators we have to

use,

eA · eB = eA+B+C (114)

when the operator C can be expressed as an expansion of nested commutators,

C =
1

2
[A,B] +

1

12
[[A,B], B] +

1

12
[[B, A], A] + .... (115)

This is easily verified by expanding the exponents for

A = −iκ ~Xi(0), B = i~κ ~Xj(t). (116)

Returning to (112) we can show that

< ρ~κ(0)ρ+
~κ (t) >∗

T =< ρ~κ(t)ρ
+
κ (0) >T (117)

where * stands for conjugate complex.
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The average for <>T describes the many-body system in thermal equilibrium. In this

stationary state, it is therefore invariant under a translation operation in time, and

< ρ~κ(−t)ρ+
~κ (0) >T =< ρ~κ(0)ρ+

~κ (t) >T (118)

Note that these relations are generally only true for the thermal average and not as proper

operator relations.

These two symmetry relations guarantee that the Fourier transform (111) is a purely real

function. The scattering function S(~κ, ω) is therefore real - as it has to be the case for an

experimentally accessible cross section.

The correlation function C(~x, t) is generally not purely real. Under the conditions men-

tioned above, the following relationship is obtained

C(~x, t) = C∗(−~x,−t) (119)

Let us express ReC and ImC in the form of anticommutator and commutator

ReC(~x, t) =
1

2

∫
d3x′ < {ρ(~x ′, t), ρ(~x ′ − ~x, 0)} >T (120)

and

ImC(~x, t) =
i

2

∫
d3x′ < [ρ(~x ′, t), ρ(~x ′ − ~x, 0)] >T (121)

Since the density operators do not commute for t 6= 0 the imaginary part of C (121) does

not vanish. This condition - not valid generally - would be equivalent to

< ρ~κ(t)ρ
+
~κ (0) >T =< ρ+

~κ (0)ρ~κ(t) >T (122)

That (122) is not valid can be demonstrated by an analytical extension to imaginary time.

< ρ~κ(t)ρ
+
~κ (0) >T =

1

Z
Sp

[
e−βHei/h̄Htρ~κe

−i/h̄Htρ+
~κ

]

=
1

Z
Sp

[
e−βHρ+

κ e−βH+i/h̄Htρ~κe
βH−i/h̄Ht

]

=
1

Z
Sp

[
e−βHρ+

~κ ρκ(t + ih̄β)
]

=< ρ+
~κ (0)ρ~κ(t + ih̄β) >T .

(123)
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As a reminder - we have made use of cyclic exchange of noncommuting operators, which

is allowed under the trace operation. We recognize from (123) that (122) becomes valid

in the limit h̄ → 0. Hence, the classical correlation function is real, and ImC 6= 0 is

a quantum mechanical effect. Particularly for fluids (however not “quantum” fluids like

liquid He) the classical, real correlation function is normally sufficient for the description

of its structure. The same is obviously true for gaseous systems.

The correlation functions for short time τ −→ 0 in liquids and gases are

Cs(~x, 0) = δ(~x) (124)

C(~x, 0) = δ(~x) +
∑

i6=0

< δ(~x + ~X0(0)−Xi(0)) >T (125)

whereas for long times τ −→∞

Cs(~x,∞) = 0 (126)

C(~x,∞) = ρ (127)

where ρ is the bulk density of the sample. The long range spatial correlations for short

time are

Cs(∞, 0) = 0 (128)

C(∞, 0) = ρ (129)

(126) and (127) are a consequence of random motion of the scattering centers which

smooth out any correlation. Although (128) and (129) is also true for glasses, this is not

the case for (126) and (127). For solids short- and long-ranged correlations remain, even

for long times. In a crystal they are given by the lattice and somewhat smoothed out at

higher temperature by thermal motion (Debye-Waller factor as a form factor).
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4 Linear Response

In this chapter we investigate the scattering process of a probe on the target sample from

the point of view of a perturbative response. The incident particle acts to the target

as a perturbation to which the latter responds. The response function - a generalized

susceptibility - is related to the correlation function discussed in the last chapter and

contains the information about the scatterer.

4.1 The perturbative interaction

A scattering process corresponds to a change in the condition of the beam radiation

incident on the sample to a possibly different condition of the secondary beam, e.g. the

incident beam is deflected by the scattering event. The change in condition of the beam

is related to changes induced in the sample, which is the information to be extracted.

We summarize the perturbative part of the hamiltonians causing the scattering process.

Generally the perturbative hamiltonian has the form

H1(t) = B(t) · h(t) (130)

where h(t) describes the perturbing external field induced by the probe. B(t) expresses

the coupling of this external field to the dynamical degrees of freedom of the sample.

We assume that for t −→ −∞ the sample is undisturbed and is described by a hamiltonian

H0. Any time dependent perturbation is in its Fourier transform described by a set of

monochromatic components and is hence proportional to eiωt. In its explicite expression

H1 is switched on adiabatically, that is the sample stays always in thermal equilibrium.

This can be accomplished by the choice

h(t) ∼ eiωt+εt; ε −→ 0+ (131)

Normally H1 contains the sum of couplings to individual particles in the system, usually

expressed by a space-integration. Guided by the representation of the various interactions

we therefore write for H1
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i) electromagnetic interaction (e.g. X-rays)

H1 =
e

c

∫
d3x ~A(~x, t)~j(~x) (132)

with the current densities of the charge carriers

~j(~x) =
∑

i

1

2m
(~pjδ(~x− ~xj) + δ(~x− ~xj)~pj)

and ~A(~x, t) the electromagnetic potential of the incident field and m is the mass of

an electron with change −e.

ii) magnetic interaction of neutrons

H1 =
∫

d3x ~A(~x, t) · ~m(~x) (133)

with the magnetization density either given by magnetic moments of the electrons

in the sample

~m = 2µB

∑

j

∫
d3x~σeδ(~x− ~xj) (134)

or by their orbital currents

~M =
e

m

∑

j

∫
d3x(~pjδ(~x− ~xj) + δ(~x− ~xj)~pj) (135)

~A(~x, t) is here the electromagnetic potential due to the magnetic moment of the

neutron

~A(~x, t) = µN~σN ∧ ~∇ 1

| ~x | (136)

iii) nuclear interaction with neutrons

H1 =
∫

d3xei(ωt−~κ~x)ρ(~x) (137)

with a weighted nuclear scattering density

ρ(~x) =
∑

j

bjδ(~x− ~xj) (138)
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4.2 The Dynamics of the Density Operator

We define the hamiltonian, split into two parts

H0 this part describes the unperturbed sample to be investigated

H1(t) describes the time-dependent perturbation produced by an external probe in-
teracting with the sample.

Hence the composite system of the radiation and sample is describe on the Hamiltonian,

H = H0 + H1(t) (139)

The expectation value of an operator Ô of the system is

< Ô >= Sp(Ôρ(t)) (140)

where ρ(t) is the density operator of the system, governed by the equation of motion

ih̄∂tρ = [H, ρ]. (141)

We now work in the interaction-picture (Dirac) where the time development of operators

is governed by the unperturbed hamiltonian H0

Ô(t) = e(i/h̄)H0tÔe−(i/h̄)H0t. (142)

The dynamics of the system is then described by

ih̄∂tρI = [HI
1 (t), ρI(t)] (143)

with

HI
1 (t) = e(i/h̄)H0tH1(t)e

−(i/h̄)H0t (144)

A formal solution of (143) can be represented by the series

ρI(t) = ρ(0)− i

h̄

t∫

−∞
dτ [HI

1 (τ), ρ0]− 1

h̄2

t∫

−∞
dτ

τ∫

−∞
dτ ′[HI

1 (τ ′), [HI
1 (τ), ρ0]] + ..... (145)
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If we are allowed to neglect the higher order terms in (145) we can express the expectation

value of any observable by means of (140) as

< Ô >= Sp(OI(t)ρ0)− i

h̄

t∫

−∞
dτSp(OI(t)[H

I
1 (τ), ρ0]) (146)

where ρ0 is the equilibrium density operator. The traces in (146) give the average over the

canonical ensemble of the enclosed quantities and we may write for the expected response

of the observable

< δÔ >T =< Ô.− Sp(OI(t)ρ0) = − i

h̄

t∫

−∞
dτ < [ÔI(t), H

I
1 (τ)] >T (147)

We now introduce the perturbation hamiltonian in its general form. For elegance and con-

venience - after all, electromagnetic fields are relativistic objects - we chose the relativistic

covariant form (see appendix A).

HI
1 (τ) =

∫
d3xJµ(x)Aµ(x) (148)

where Aµ
is the four-vector potential of the external field. Using (148) we obtain for the

response of the current operator according to (147)

< δJβ >T = − i

h̄

t∫

−∞
dτ < [J+

p (~x, t)
∫

d3x′Jµ(x′)Aµ(x′)] >T

= − i

h̄

∫
d4x′θ(x0 − x′0) < [Jβ(x′), Jµ(x′)] >T Aµ(x′)

(149)

We write this in the following form

< δJβ >T =
∫

d4x′Kβµ(x− x′)Aµ(x′) (150)

with a kernel

Kβµ(x− x′) = − i

h̄
θ(x0 − x′0) < [J+

β (x), Jµ(x′)] >T (151)
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The tensor K admits an interpretation as a generalized susceptibility. In the following it

will be one of our tasks to establish the relationship of K with the scattering function or

the correlation function.

From now on we call K the response function or the response kernel. (150) and (151)

may serve as a starting point for a field theoretical approach for treatment of many-body

problems since K is closely related to the polarization tensor and to the field-theoretical

four-point functions.

Before proceeding along that line, let us however first discuss the tensor character of K

for the electromagnetic case and its relationship to phenomenological electrodynamics.

4.3 The Tensor Character of Kµν

We are interested here in the general tensor properties of K in a homogeneous and isotropic

medium.

Let ~k be the wave vector of an electromagnetic excitation in this medium. We now choose

three basic orthogonal unit vectors e(λ)
µ (λ = 1,2,3) in the following way

λ = 1, 2 e(T )
µ (k, λ) orthogonal to ~k

and

λ = 3 e(L)
µ (k, λ) parallel to ~k

where k is the four-vector (ω,~k) with the property

k2 = ω2 − ~k 2 (152)

(k2 = 0 in vacuum only).

For the longitudinal vector we write

e(L)
µ (~k, ω) =

1√
k2


| ~k |, ω~k

| ~k |


 (153)
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which leads to the longitudinal projection operator

P (L)
µν = e(L)

µ · e(L)
ν =





| ~k |2
k2

for µ = ν = 0

ω

k2
kj for µ or ν = 0

ω2

k2

kikj

| ~k |2 otherwise

(154)

For the transvers projection operator we obtain

P (T )
µν =

∑

λ=1,2

e(T )
µ (k, λ)e(T )

ν (k, λ) =





0 for µ = ν = 0

0 for µ or ν = 0

δij − kikj

| ~k |2 otherwise

(155)

Both operators are obviously projections and fulfill

{P (L)}2 = P (L); {P (T )}2 = P (T ) (156)

and furthermore

P (L)P (T ) = 0. (157)

Hence, in a homogeneous and isotropic medium there exist two independent tensor com-

ponents - a transvers and a longitudinal ones. Note that for real photons (k2 = 0) P (L) is

not defined.

Our response tensor can now be written in the following form

K00 = K(L) · |
~k |2
k2

(158a)

K0j = K(L) · ω

k2
· kj (158b)

Kij = K(L) · kikj

| ~k |2
ω2

k2
+ K(T )

(
δij − kikj

| ~k |2
)

(158c)
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In order to gain some insight to the significance of (150) we express the zero-zero compo-

nent for the longitudinal dielectric response

δ < ρ >= − i

h̄

∫
d3x′

∫
dt′θ(t− t′) < [ρ+(~x, t), ρ(~x ′, t′)] > ϕext(~x

′, t′) (159)

where ϕext is the external scalar potential of A = (ϕ, ~A). δ < ρ > is the source term for

the internal induced potential

∆ϕint = −4πδ < ρ > (160)

or time Fourier-transformed

ϕint(~k, ω) =
4π

k2
δ < ρ(~k, ω) > . (161)

With the phenomenological equations of macroscopic electrodynamics

~D = ε ~E, ~E = −~∇ϕint

~D = −~∇ϕext

(162)

and considering

ϕtot = ϕext + ϕint (163)

we obtain for the longitudinal part of the dielectric function

1

ε(L)(~k, ω)
=

ϕtot

ϕext

= 1− 4πδ < ρ >

ϕext

= 1− 4π

k2
χ(~k, ω) (164)

where the susceptibility is defined, analogous to (150) and in particular (159) by

δ < ρ(~k, ω) >= χ(~k, ω)ϕext(~k, ω) (165)

ε(L)(~k, ω) describes the response of the charge carriers in the system to an impurity charge.

In particular, the screening mechanism to a static test charge is determined by εL(~k, 0)

or χ(~k, 0) for small k.
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From the experimental point of view a possible route to ε(L)(~k, ω) (actually its imaginary

part) is the measurement of the stopping power for a charged particle in the system.

For the case of coherent or incoherent nuclear neutron scattering as perturbative action

(150) is a scalar equation. The relevant operator is given by the nuclear scattering density

B(~x, t) =
∑

j

bjδ(~x− ~Xj(t)) (166)

or its spatial Fourier transform

ρ~κ(t) =
∑

j

e−i~κ ~Xj(t) (167)

The generalized “susceptibility” is then given by

− i

h̄
θ(t) < [ρκ(t), ρ

+
κ (0)] >T = − i

h̄
θ(t)

∑

i,j

< [ei~κ ~Xj(t), e−i~κ ~Xi(0)] >T (168)

as a response function for a coherent perturbation. The corresponding expression for

incoherent perturbation is

− i

h̄
θ(t)

∑

j

< [e−i~κ ~Xj(t), e+i~κ ~Xj(0)] >T (169)

4.4 Response Kernel and Scattering Function

We shall assume translational invariance in both space and time coordinates and simplify

(151)

Kαβ(x) = − i

h̄
θ(x0) < [J+

α (x), Jβ(0)] >T . (170)

We are interested in the Fourier transform of Kαβ

K̃αβ(k) = K̃αβ(ω,~k) =

(
h̄

2π

)2 ∫
d4xeikxKαβ(x). (171)

In order to prepare Kαβ so we can evaluate this transform we first reformulate the second

term of the commutator in (170),
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J+
a (x)Jβ(0)− Jβ(0)J+

α (x) (172)

We use the translation invariance in time and space

J+
α (x) = e(i/h̄)pxJ+

α (0)e−(i/h̄)px (173)

and the fact that cyclic interchange of operators is allowed under the trace operation. We

can then write

Sp(e−βHJβ(0)e(i/h̄)HtJ+
α (0, ~x)e−(i/h̄)Ht) = Sp(e−βHJ+

α (t− ih̄β, ~x)Jβ(0)) (174)

extending the expression analytically into the domain of complex time coordinate. If

we now use the spatial part of translation symmetry of (173), as well and take matrix

elements in a complete set of eigenstates of H, we obtain for K(x).

Kαβ(x) =

− i
h̄
θ(x0)

∑
n,m e−β(h̄ωn−F )[< n | J+

α (t, 0) | m >< m | Jβ(0) | n > −

− < n | J+
α (t− ih̄β, 0) | m >< m | Jβ(0) | n > e−i(~kn−~km)~x

(175)

Let us now introduce an integral-representation of the step function θ(x0) (B.1)

θ(x0) = − 1

2πi

+∞∫

−∞
dp0

eip0x0

p0 + iη
= − 1

2πi

+∞∫

−∞
dω′

e−iω′·t

ω′ + iε
(176)

and take the Fourier transform in space and time. The transformed kernel becomes then

K̃αβ(k) = K̃αβ(ω,~k) =

1

2πh̄

(
1

2π

)2 ∫
d3xei(~k+~kn−~km)~x

+∞∫

−∞
dω′

+∞∫

−∞
dt

ei(ω−ω′)t

ω′ + iε

∑
n,m

e−β(h̄ωn−F )[ ]

(177)

33



with

[ ] =< n | J+
α (t, 0) | m >< m | Jβ(0) | n > − < n | J+

α (t− ih̄β, 0) | m >< m | Jβ(0) | n >(178)

By means of (173) we take the t-dependence out of the matrix elements of (178) and

obtain

[ ] = ei(ωn−ωm)t[1− eh̄β(ωn−ωm)] < n | J+
α (0) | m >< m | Jβ(0) | n > (179)

With (179) we can now write for K̃ - after a trivial ~x-integration

K̃αβ(ω,~k) =

1

h̄

∑
n,m

e−β(h̄ωn−F )δ(3)(~k + ~kn − ~km)

+∞∫

−∞
dω′

+∞∫

−∞
dt

ei(ω−ω′+ωn−ωm)t

ω′ + iε

·[1− eh̄β(ωn−ωm)] < n | J+
α (0) | m >< m | Jβ(0) | n >

(180)

With the substitution ω′ −→ ω − ω′ we get for the ω′-integral

−
+∞∫

−∞
dω′

ei(ω′+ωn−ωm)t

(ω − ω′) + iε
= −P

+∞∫

−∞
dω′

ei(ω′+ωn−ωm)t

ω − ω′
+ iπ

+∞∫

−∞
dω′δ(ω − ω′)ei(ω′+ωn−ωm)t(181)

where we have made use of (B.8). P stands for the principal value of the integral. (181)

separates K̃αβ into its real and imaginary part. We now concentrate on to the imaginary

part of K̃αβ. Using the second integral of (181) we obtain from (180)

ImK̃αβ =

2π2

h̄

∑
n,m

δ(3)(~k + ~kn − ~km)δ(ω + ωn − ωm)e−β(h̄ωn−F )

· < n | J+
α (0) | m >< m | Jβ(0) | n > (1− e−h̄βω)

(182)

With the help of the integral representation (B.3) of the δ-functions and the transla-

tion relation (173) we transform the kinematical variables back into the current matrix

elements. This leads to

ImK̃αβ =

(
1

2π

)2 1

2h̄
·∑

n

e−β(h̄ωn−F )· < n | J̃+
α (ω,~k)J̃β(0) | n > (1− e−h̄βω)

(183)
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Apart from the factor (1−e−h̄βω) (183) has the same structure like the scattering function

S(~k, ω).

With n(ω) as statistical population of states at temperature T (β = 1/kBT )

n(ω) = (eβh̄ω − 1)−1 (184)

we can write for the factor in (183)

(1− e−βh̄ω) = [1 + n(ω)]−1 (185)

Since K̃αβ has the tensor structure of (158), the imaginary parts of K̃T and K̃L are

according to (183) intrinsically related to the scattering amplitude S(~k, ω).

4π[1 + n(ω)]ImK̃(ω,~k) = S(~k, ω) . (186)

4.5 Kramers-Kronig relations / Lehmann representation

We have seen that the Fourier transformed expressions of

− i

h̄
Θ(x0) < [J+

α (0), Jρ(x)] >T or − i

h̄
Θ(τ) < [ρκ(0), ρ+

κ (τ)] >T

correspond to generalized susceptibilities, or more precisely to their imaginary part. Ac-

cording to (186) these (response) functions are, apart from a thermal detailed-balance

factor, proportional to the scattering function S(ω,~κ) and are therefore directly mea-

sured by the differential cross section for inelastic scattering. Our aim is now to find the

real part of the generalized susceptibility, which is connected to the imaginary part by

a causality condition on the scattering process. In order to establish this connection we

must first verify a few analytic properties of the response function.

With (183) we can write

φκ(τ) = (−i)

−∞∫

−∞
dωeiωτ [1− e−h̄ωβ]S(~κ, ω) (187)
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The response function is then given by

K̃(R)(ω) =
1√
2π

+∞∫

−∞
dτe−iωτΘ(τ)φκ(τ) (188)

S(~κ, ω) has (as a cross section) the following properties

i) S(~κ, ω) ≥ 0 since it is proportional to a cross section

ii) S(~κ, ω) = eh̄ωβS(−~κ,−ω), so-called condition of detailed balance.

iii) ∃ωmax : S(ω) = 0 for ∀ω > ωmax due to a minimal interatomic distance.

Using these properties and applying them to (187) we obtain the following behaviour for

small times

φκ(τ)τ −→ 0 >0 (189)

∂τφκ(τ)τ=0 = const ≥ 0 (190)

K̃(R)(ω) is the Laplace transform of φκ(τ) due to the presence of Θ(τ) in the integrand

of (188), which takes care of the causal property of the response function.

We extend K̃(R)(ω) into the complex ω-plane and write1

K̃(R)(p) =

∞∫

0

dτe−pτφ/(τ) (191)

with

p = σ + iω

(188) and (189) determine the behaviour for large ω of K(R)(p) in the half-plane with

σ > 0. Using one of the Abelian theorems 4) we obtain

K̃(R)(p) ∼ O(1/p2) (192)

1Since we are in the following interested only in the conjugate variables ω and τ we suppress the
variable (index) ~κ
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for large p′s in any direction of the above mentioned half-plane.

(117) and (118) imply

φ∗(τ) = −φ(−τ) (193)

that is

Reφ(τ) = −Reφ(−τ) (194a)

Imφ(τ) = Imφ(−τ) (194b)

With

φ̃(ω) =
1√
2π

+∞∫

−∞
dτe−iωτφ(τ) (195)

we get the symmetry relation for φ̃

φ̃∗(ω) = −φ̃(ω∗) (196)

Reφ(ω) = Reφ(−ω∗) (197a)

Imφ(ω) = Imφ(−ω∗) (197b)

which means that φ̃(ω) is purely imaginary for real ω.

This can also be put into evidence by the relation

φ̃(ω) =
1√
2π

+∞∫

−∞
dτe−iωτφ(τ) =

√
2

π
iIm

∞∫

0

dτe−iωτφ(τ)

=

√
2

π
iIm

+∞∫

−∞
dτe−iωτΘ(τ)φ(τ) =

√
2

π
iImK̃R(ω)

(198)

For the expressions of φ̃ and K̃ as Laplace transforms we have to rotate the complex plane

by the angle π/2 and the symmetry relation (196) becomes

φ̃∗(p) = −φ̃(p∗) (199)
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Reφ̃(p) = Reφ̃(p∗) (200)

Imφ̃(p) = Imφ̃(p∗) (201)

hence Imφ̃(p) vanishes on the real p-axis and φ̃(p) is then purely real.

We now show that

K̃(p) =

∞∫

0

dτe−pτφ(τ) (202)

decreases monotonically on the real p-axis in the inteval (0,∞)5).

The properties of φ(τ) and (202) guarantee the holomorphy (analyticity) of K̃(p) in the

half-plane σ > 0. Let us now consider the function

K̃(p)− a = f(p) (203)

where a is a real constant. f(p) is obviously also holomorphic and we therefore apply the

following theorem for analytic functions:

1

2πi

∮

C

f ′(p)

f(p)
dp = N − P =

1

2πi

∮

C

dK̃(p)

dp

dp

K̃(p)− a
(204)

where N is the number of zeros and P the number of poles of f(p) within C, the closed

integration circuit along the imaginary axis and closing on a circle C∞ around the left

half-plane. Mapping (204) onto the complex K-plane we can write

1

2πi

∮

C′

dK̃R

K̃R − a
= N (205)

C ′ is now a path which cuts the real K-axis exactly twice - namely at

K̃ = (0, 0) which is the picture of C∞ of the p-plane

and

K̃ = (K0, 0) which is the picture of (0,0) of the p-plane.
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In between C ′ might be arbitrarily complicated, (even curling up) but never cuts the real

K-axis again. Hence C ′ circumvents aεRe either once or not at all. For the integral in

(205) we write

∮

C

dK̃

K̃ − a
= ln|K̃ − a| |C′= ln|K̃ − a|+ i arg(K̃ − a) (206)

where for a closed path C ′

ln|K̃ − a| = 0

i arg(K̃ − a) = 2πi.

Hence the integral (205) has the values

N =





1 for 0 < a < K0

0 otherwise
(207)

This shows that K̃(p) takes on the real axis any value between K0 (which might be ∞)

and zero once and only once; hence K̃(p) decreases monotonically.

Due to the holomorphy of K̃(p) in the right half-plane (σ ≥ 0) we can write for a closed

path

∮

C

K̃R(p)

p− p0

dp = 2πiK̃(p0) (208)

where C consists of a part along the complex axis (−i∞, +i∞) and closes along a circle

at infinity in the positive half-plane. Following a procedure analogous to (B5 - B10) gives

P
∫ K̃R(p)

p− p0

dp = iπK̃(p0) (209)

for p0 on the imaginary axis. P means the principal value at p0. Transforming back to

the coordinate system with the variable ω along the real axis (209) becomes equivalent to
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− 1

π
P

∫ ReK̃R(ω)

ω − ω0

dω = ImK̃R(ω0) (210a)

1

π
P

∫ ImK̃(ω)

ω − ω0

dω = ReK̃R(ω0) (210b)

These relations - called Kramers-Kronig - or dispersion relations are a consequence of

the causal behaviour of the response functions (no output before input), which leads to

the holomorphy of K̃R in the upper half-plane. On the other half plane K̃R contains

usually singularities and its behaviour at infinity is not regular. These relations show

that the whole response function K̃R(ω) is determined by the scattering experiment in

spite of the relationship (186) which connects only the imaginary part of K̃R with the

scattering function S(~κ, ω). This is a simple consequence of the causal relation of the

applied perturbation on the response observed.

From the dispersion relation and (183) we can find a general representation of the retarded

response function K̃R(ω)

K̃R(ω) =
1

π

+∞∫

−∞

dω′ρ(ω′)
(ω′ − ω)− iε

(211)

with the spectral function ρ(ω)

ρ(ω) =
∑
n,m

e−β(h̄ωn−F )Anmδ(ω − ωmn)(1− eβh̄ωmn) (212)

with

ωmn = ωm − ωn (213)

and

Anm =





< n|ρ~κ|m >< m|ρ+
~κ |n >

< n|Jα(~κ)|m >< m|J+
β (~κ)|n >

(214)
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where the first expression is for neutron - the second for light scattering. (211) is called

the Lehmann representation.

Let us now look a bit closer to the spectral function ρ(ω).

The term

e−β(h̄ωn−F )

is the population probability Pn of the state |n >.

e−β(h̄ωn−F )e−βh̄ωmn

with (213) stands for the propability of populating state |m >. The product of matrix

elements Anm expresses the transition probability wn→m between the states |n > and

|m >. Therefore, the sum

∑
m

(Pn − Pm)wn→m (215)

admits an interpretation as the transition rate from state |n > into any other (excited)

state of the system during the scattering process. The total rate of energy dissipated by

the sample is then given by the following master equation

∂tĖ =
∑
n,m

h̄ωnm(Pn − Pm)wn→m (216)

Considering (186) this relationship is intimitely related to the time deriviative at τ = 0

of (187)

+∞∫

−∞
dωω(1− e−h̄ωβ)S(~κ, ω) = ∂τφx(τ) |τ=0 (217)

with

φκ(t) =< [ρκ(τ), ρ+
κ (0)] >T

The relationship (216) shows that the spectral function ρ(ω) aquires its contributions

from the excited states (dynamical degrees of freedom) of the system and hence from the

variety of possibilities of energy transfer from the neutron to the sample.
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Due to the detailed balance factor in (216) the range of integration contributing to the

integral of (208) is restricted to the positive ω-axis for T = 0(β → ∞). For higher

temperatures this range extends into the negative axis. Using (B8) it can be shown that

K̃R(ω) is holomorphic (regular) in the cut complex ω-plane - the cut being along the

real axis, starting at some ω < 0 which depends on the temperature of the sample. The

discontinuouity between the lower and the upper bord of the cut is

K̃R(ω + iε)− K̃R(ω − iε) = 2iρ(ω) = 2iImK̃R(ω) (218)

According to (212) the contribution to (218) are the residues of a sequence of poles at

ωnm.
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A Appendix

For four-dimensioned covariant notation we choose the following convention. The metric

tensor is given by the matrix

gµ
ν =




1

−1

−1

−1




(A.1)

and the scalar prodct is defined by

x · x = ~xµx
µ = gµ

ν xνxµ

in particular for a product of a four-momentum with a space-time vector

pµx
µ = px = p0x0 − ~p · ~x (A.2)

where

x = (x0, ~x) = (ct, ~x) (A.3)

and

p = (p0, ~p ) = (E/c, ~p) (A.4)

The energy and the momentum for a mass less particle can be expressed in wave numbers

E = h̄ω, ~p = h̄~k (A.5)

such that

ei/h̄(px) = ei(ωt−~k~x) (A.6)
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B Appendix

In this appendix we summarize some expressions on generalized functions, which are

useful in the mathematical developments of scattering theory.

With theorem of residues the step function can be shown to have the following integral

represenation

θ(τ) =
−1

2πi
lim
ε→0

+∞∫

−∞
dξ

eiξτ

ξ − iε
=

1

2πi
lim
ε→0

+∞∫

−∞
dξ

e−iξτ

ξ + iε
(B.1)

The formal derivative of (B.1) leads to the δ-function

θ′(τ) =
1

2πi

+∞∫

−∞
dξ

iξ

ξ − iε
eiξτ

ε → 0
>

1

2π

+∞∫

−∞
eiξτdξ = δ(τ) (B.2)

By means of (B.1) the δ-function can also be represented differently. Consider

+∞∫

0

eikxdk =

+∞∫

−∞
θ(k)eikxdk =

=
1

2πi

+∞∫

−∞
dξ

+∞∫

−∞
dk

eik(ξ+x)

ξ − iε
= −i

+∞∫

−∞
dξ

δ(x + ξ)

ξ − iε

and similarly
0∫

−∞
eikxdk = −i

+∞∫

−∞
dξ

δ(x− ξ)

ξ + iε

Summing up gives

1

2π

+∞∫

−∞
eikxdk = δ(x) =

1

2πi

[
1

x− iε
− 1

x + iε

]
(B.3)

and therefore

πδ(x) = lim
ε→0

ε

x2 + ε2
(B.4)
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Let f(ζ) be a regular function in the complex ζ-plane. We assume f(ζ) to decrease

sufficiently fast for large arguments | ζ |→ ∞. The value of the function f at a point ω

within a certain region R is then given by the values on the boundary δR, that is

f(ω) =
1

2πi

∮ f(ζ)

ζ − ω
dζ (B.5)

If ω1εRe and f(ζ) → 0 for | ζ |→ ∞ we can write for (B.5)

lim
ω→ω1+iε

f(ω1) =
1

2πi

+∞∫

−∞

f(ζ)

ζ − ω1 − iε
dζ =

1

2πi
lim
ε→0




ω1−ε∫

−∞

f(ζ)

ζ − ω1

dζ +

∞∫

ω1+ε

f(ζ)

ζ − ω1

dζ


 (B.6)

where the third term stems from the integration on the (ε → 0) semi-circle round the

pole on the real axis. The integral in bracket is by definition the Cauchy-principal value.

Hence

lim
ω→ω1

2πif(ω) = P

+∞∫

∞

f(ζ)

ζ − ω1

dζ + πf(ω1) (B.7)

From (B.6) and (B.7) we can read off the formal relationship (Plemelij)

lim
ε→0

1

ζ − ζ0 ± iε
= P

1

ζ − ζ0

+iπδ(ζ − ζ0) (B.8)

Looking at (B.7) as

f(ω) =
1

iπ
P

+∞∫

−∞

f(ζ)

ζ − ω
dζ (B.9)

we obtain by separation of real and imaginary parts the relationships

Ref(ω) =
1

π
P

∫ Imf(ζ)

ζ − ω
dξ (B.10a)

Imf(ω) = − 1

π
P

∫ Ref(ζ)

ζ − ω
dζ (B.10b)
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that is, a relation between real and imaginary part of the function f as a consequence of

its analyticity properties.

We must emphasize that the derivations in this appendix should be considered as formal

heuristic procedures at best - proper mathematical proofs need the concept of distribu-

tions.
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