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The muon – a probe for Condensed matter 

I. The Muon and its production as an elementary particle [1] 

According to present wisdom the muon is an elementary particle. Together with its neutrino it 
represents the leptonic part of the second generation (out of three generations). It is the 
equivalent of the electron, which belongs to the first generation. Theses particles appear in the 
elementary scheme as indicated in fig. 1. While the electron is stable, the muon decays 
through a weak interaction process. Apart from its bigger mass, the properties of the muon are 
however identical to those of the electron. But unlike the electron, since muons are unstable, 
they have to be produced in high energy reactions. The most abundant reaction channels for 
muon production lead through the production and decay of pions. The corresponding reaction 
chain takes place in the upper atmosphere of the earth, caused by cosmic rays or on laboratory 
targets, bombarded by high energy protons. 

With a proton beam higher energy (E>180 MeV) onto a target of any kind the following 
reactions may proceed: 

 +++→+ πnnnp  (1.1) 

 +++→+ πnppp  (1.2) 

 −++→+ πppnp  (1.3) 

There exists also neutral pion 0π , which may be produced in a similar manner. 

±π -mesons are strongly interacting particles with a mass of 139.6 MeV, which decay via 
weak interaction with a mean lifetime of 2.6 ⋅ 10-8s. These mesons are pseudo-scalar particles 
with spin and parity −0 . Among the various possible decay channels a particular one 
dominates all the others. More then 99.9 % of the ±π -mesons decay through 

 µνµπ +→ ++  (1.4) 

into muons and muonic neutrinos, both possessing a spin of 2
1 . As mass less (or nearly so) 

Dirac-particles the neutrino is of left handed chirality (respectively right handed for the 
antineutrino). Due to momentum conservation the decay geometry is collinear. In order to 
keep angular momentum conserved the decay lepton has to carry its spin opposite to the one 
of the neutrino. This decay configuration is shown for the ( )−+ 0π -decay in Fig. 2. For a mass 
less lepton this configuration would be forbidden. That is, why the decay channel 

ee νπ +→ ++  is – due to the much smaller mass of the positron – highly suppressed (<10-4) in 
spite of the much larger phase space available. 

We recognize that a muon beam produced by means of π-decay should always be highly 
polarized. The following two situations are typical: 
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• Pion decay in flight  
The corresponding muons have an energy of 40-50 MeV and a polarization ≅P  60-
80%. About 15 g/cm2 of material is needed to degrade the kinetic energy of the 
muons. A rather homogeneous stop throughout the sample can be achieved – a quite 
adequate condition for investigation of bulk properties of the sample. 

• Surface beam  
Pion decay takes place within or at the surface of the target. Muon energies ≤  4.1 
MeV and a polarization of ≅  100% are obtained. The range of these muons is about 
170 mg/cm2, providing good chances for investigating surface properties of the 
sample. 

II. Properties of the muon 

The muon has a mass of 

mµ = 105.66 MeV=0.113 mp = 206.8 me. 

It can have charge ± e and has spin 2
1 . As already mentioned in the introduction it is 

elementary and as electron-like Dirac particle has a g-factor near 2; more precisely 

g = 2.0023 

where the last digits are due to radiative corrections. This leads to a magnetic moment of 3.18 
µp, which corresponds to a gyromagnetic ratio of 

 
G

kH z55.13
2

=
π

γ µ  (2.1) 

The mean of life time is sµτ µ 197.2=  with the dominant decay mode 

 µννµ ++→ ++
ee  (2.2) 

 µννµ ++→ −−
ee  (2.3) 

This decay is also due to parity violating weak interaction the decay distribution is hence 
asymmetric – according to Fig. 3 

 ( ) ϑϑ cos1~ AN
e

++  (2.4) 

Here, ϑ  is the angle between the muon spin and the momentum of the ±e . 

A = aP ⋅ ,  with 
 P⋅  as polarization of the muon beam 
 a⋅  as asymmetry parameter, defined by the weak interaction mechanism.   
  For detection of all positrons/electrons irrespective of their energy 3

1=a  
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The properties of the muons are summarized in table I. 

III. Interaction of the Muon with its Environment in a Sample [2] 

If a sample is exposed to a muon beam, the muons will be moderated to lower energy through 
multiple Coulomb scattering and become ultimately thermalized. During this process they 
keep their polarization. Negative muons will then usually be captured by an atom or a 
molecule of the sample, forming a so called muonic atom or molecule, where they replace an 
electron. In spite of the rich physics provided by such systems, we do not consider them any 
further. We restrict ourself to the case of implantation of positively charged muons. They may 
come to a halt in an interstitional position and interact with their environments in the lattice in 
various ways. By means of their charge they may polarize the sample. In isolators or 
semiconductors the muon may catch an electron into a bound state, forming a hydrogen like 
atom, the so called muonium. Its hyperfine structure and its distortion by the lattice can serve 
as a diagnostic tool for the latter. Due to the screening of the charge of the muon by itinerant 
conduction electrons, muonium seems not to be formed in metals. 

In the following we shall concentrate ourself to the case, where a bare +µ  interacts with his 
magnetic moment with the local magnetic field. 

The corresponding interaction Hamiltonian is 

 ococ BSBH ll

rr
h

rr
µµ γµ −=⋅−=  (3.1) 

where the local field B
r

 consists of various different contributions as we shall see. The 
classical equation of motion of the expectation value of the magnetic moment of the muon is 
then 

 ocBl

rr&r ∧= µµ  (3.2) 

which describes a precession of the moment around the direction of ocBl  with a frequency, 
proportional to the field strength and independent of the angle between µr  and ocBl

r
. This is 

the Larmor frequency 

 ocBlγω =  (3.3) 

(3.3) tells us that by measuring ω  we can determine the local magnetic field within the 
sample at the location of the mission. This local field consists of a number of contributions; 
like 

• an external field extB
r

 

• Lorentz field LB
r

 

• Demagnetization field demB
r
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as discussed in classical phenomenology on magnetization. Furthermore – and that is our 
interest here – we have these interactions of the muon with the electronic degrees of freedom 
which are also present in absence of an external field. These are 

• Dipolar field dB
r

 and 

• Contact hyperfine interaction cB
r

 

All this implies that the frequency ω  in (3.3) is not the Larmor frequency of the free muon in 

extB
r

 but as already indicated the one which corresponds to the local field ocBl

r
. Furthermore, 

we recognize that the equation of motion (3.1) is not yet complete. Due to these microscopic 
interaction the local field is subject to temporal fluctuations, that is 

 ocococ BBB lll

rrr
δ+=  (3.4) 

where the first term contributes even without an external field if the sample is in an ordered 
state. The fluctuation term is driving the relaxation of the muon spin ensemble. In order to 
gather some ideas what we can learn by means of µSR-experiments let us look at the 
interaction Hamiltonian between the muon and the electrons of the sample. 

 ocBH l

rr
⋅−= µµ  (3.5) 

where ocBl

r
 - in absence of an external field – is the magnetic field due to the electronic 

moments. It consists of a dipole – and a hyperfine-interaction. For one electron we have the 
vector potential 

 ( )
xx

xxA e
e

e r
rr

r

r
rr 1

3 ∇∧−=
∧

= µµ  (3.6) 

The magnetic field is then 

 ( )
xxx eee r

r
r

rrr
r

rrr 111
∆+∇∇⋅=∇∧∧∇ µµµ  (3.7) 

For the second term we can write ( )xe
rr δµπ4 , which can be understood as 

 ( ) ( )2

3
8 xx ee

rrr
ψηµπ  (3.8) 

The factor ( )xrη  introduced here should describe in a phenomenological way the local lattice 
distortion by the positive muon charge. For many electrons the contributions of (3.7) can be 
expressed in the following way 

 ( ) ( ) ( ) ( ) ( )i
i

eii
i

ei xxxHxxxxD
rrrrrrr

∑∑ +⋅− α
µµ

β
µ

αβ µηπµ
3

8  (3.9) 

where 
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 ( ) ( ) ( )
53

3

µ

β
µ

α
µ

µ

αβ

µ
αβ δ

xx

xxxx

xx
xxD

i

ii

i

i rrrr
rr

−

−−
−

−
=−  (3.10) 

With βααβ DD =  and 0=TrD  clearly expresses the dipole-dipole coupling. H represents an 
effective exchange coupling of the RKKY-type (Ruderman-Kittel-Kasoya-Ysida [3, 6]). It 
depends on the  

• electron density (localized and unpaired) at the muon site 

• exchange interaction of this electron with the conduction electrons 

• electron density at the Fermi-surface 

This sketch of the interaction of the muon with the electronic environment in the sample may 
give an idea, how fluctuations of the local field components transverse to the initial 
polarization cause spin flip transitions and therefore the spin lattice relaxation. The 
fluctuations reflect the dynamics of the electronic spins at the magnetic atom positions. 

Contrary to NMR and Mössbauer spectroscopy the relaxation due to the dipolar field in µSR 
can be considerable. 

IV. The Principle of a µSR-Experiment [2] 

Fig. 4 shows the principle of an experimental set up. The polarized muon beam enters the 
apparatus from the left and triggers in the muon detector a signal to start a clock. After having 
penetrated the target sample it comes to a rest and precesses there in the local B

r
-field with its 

Larmor-frequency. This frequency is determined by 

• a possible external field and 

• the internal field at the stopping location within the sample. 

The decay positron of the muon decay triggers the stop signal for the clock. Due to the 
precession of the asymmetric decay pattern (2.4) we observe a modulation of the decay law 
on the positron detector as indicated by the histogram at the lower left of Fig. 4. This counting 
rate can be parametrized by 

 ( ) ( ) ( )
( ) ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

−

oP
oPtPAeN

dt
tdN t

e r

rr

11
0

µτ

µτ
 (4.1) 

After transforming away the exponential decay factor of the muon we obtain (lower mid of 
Fig. 4) what we call the µSR-signal. It shows an attenuated Larmor precession oscillation and 
is defined by 

 ( ) ( ) ( )
( )

( ) ( )oPtC
oP

oPtPtP == 2r

rr

 (4.2) 
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where the correlation function C  is given by the time average 

 ( )
( ) ( )

( )oS

oStS
tC 2

rr

=  (4.3) 

with S
r

 being the muon spin operator. The Fourier transform of the µSR-signal is shown at 
the lower right. Note that for different non-equivalent stopping sites of the muon more then 
one precession line may appear. The attenuation of the µSR-signal is due to polarization 
relaxing interaction of the magnetic moment with the lattice of the sample. 

An essential parameter for µSR-experiments is the external static magnetic field. Various 
options as part of the set-up are available: 

• No external field - ( )tP  is then solely determined by the internal field 

• External field, transverse to ( )oP
r

 

• External field, longitudinal to ( )oP
r

 

Let ( )( )oPBext

rr
=<ϑ  be the angle between the external field and the initial polarization. Then in 

the general case we have 

 ( ) ( ) ( )[ ]tesimeoPtP TtTt ωϑϑ coscos 21 /2/2 −− +=
r

 (4.4) 

If 1cos =ϑ  we have the longitudinal case. The relaxation is then described by 
1

1
1
T=λ . Since 

( )oP
r

 defines the quantization axis of the muon spin, this relaxation is caused by an energy 
exchange between probe (muon) and sample. This energy exchange has been discussed in the 
previous chapter as an interaction between the two parts of the total system By its means the 
probe is driven into thermal equilibrium with the sample within time 1T . The sample hence 
serves as a heat-bath and 1T  is called spin lattice relaxation. 

In the case 1sin =ϑ , no energy is transferred from the muon to the sample. The transverse rate 
of decay conserves energy in the static field. The decay of polarisation with 

2
2

1
T=λ  arises 

from the spread of precession rates produced by inhomogenity of the local field at the location 
of the muon. This dephasing is therefore taking place within a time roughly given by 

eoiBT γ
1~2 . 

A few remarks are in order: 

1. The result (4.4) is essentially a solution of the semi-classical Bloch equations. The 
exponential form of relaxation is a very useful postulate to describe most of the 
phenomena, but must not be taken too literally.  
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2. For several inequivalent stopping locations i  the Fourier-transform of ( )tP  contains 
different lines at internal fields iB

r
 not necessarily the same in strength and direction at 

different locations, that is each having its own iϑ  and Larmor frequency ( )i
µω . 

Let us finally summarize the parameters to be determined experimentally in a µSR-
experiment. 

1. The precession frequency µω .   
It differs from the Larmor frequency of a free muon in an external magnetic field 
(Knight-shift). The difference determines the internal field at the corresponding 
location. 

2. Longitudinal relaxation time 1T   
This is determined by the interaction of the muon with the magnetic degrees of 
freedom of the sample and their temporal fluctuations. 

3. Transverse relaxation time 2T .  
Inhomogeneities of the local magnetic field and their fluctuations are the cause of 
transverse dephasing of the muon precession and the corresponding depolarization  

V. Quantum-mechanical Treatment of the Depolarization Process 
[3] [4] 

The interstitional muon is a two-state system interacting with the environment via the 
magnetic field. We write for the two eigenstates 

 
2
1,

2
1

2
1,

2
1

=−= mandm  

Let their population be −N  and +N  respectively. We designate the transition probabilities 
between the two states, which is induced by the fluctuating field in the sample, with +−W  and 

−+W . They are related by  

 kTeWW /ωh−
+−−+ =  (5.1) 

where ωh  is the energy split of the two levels and T is the temperature of the sample. For the 
total numer of muons we write  

 −+ += NNN  (5.2) 

and for the population difference 

 −+ −= NNn  (5.3) 

The rate equation for the population is  
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dt

dNWNWN
dt
dN −

−+++−− −=−=  (5.4) 

which can also be written as 

 ( )−+−+ −= WNNW
dt
dn 2  (5.5) 

with +−= WW  and reduces to 

 Wnn 2−=&  (5.6) 

if we assume that kT<<ωh . Since n  is proportional to the polarisation we can put 

 W2=λ  (5.7) 

Hence (5.7) relates the relaxation to the transition rate between the two levels.  

We consider now the following Hamiltonian structure for our system: 

0H : unperturbed Hamiltonian of sample and probe; ( ) ( )Ts HHH +=0  

1H : interaction between the two systems; ( ) ( )tBIgtH
rr

⋅−= µµ1  

( )tB
r

 is the fluctuating internal magnetic field in the sample. In absence of an external field 

and at temperatures ( )cTT >  above possible ordering we have 0=B
r

. 

The state population in the sample is assumed to be canonical 

 ∑ == −

ν
ν

ν
ν 1;1 / pe

Q
p kTE  (5.9) 

where νE  are energy eigenvalues of ( )SH  

The transition rate is then (golden rule) 

 ( )
2

''11lim
2

0
1

',
2

λνττν
νν

ν == ∫∑
∞→

t

t
mdHmp

t
W

h
 (5.10) 

In the quantization system of the muon the matrix elements of the angular momentum are 

 

0'
2
1'

2
1'

3 =

−=

=

mIm

mIm

mIm

y

x

 (5.11) 

Rotated into the crystal system (see Fig. 5) we obtain 



 10 

 

( ) ( )

( ) ( )

( ) ϑϕϑζ

ϕϑϕϕϑη

ϕϑϕϕϑξ

sin
2

,
2
1'

sincoscos
2
1,

2
1'

coscossin
2
1,

2
1'

imIm

imIm

imIm

c

b

a

==

+−==

−==

 (5.12) 

From (5.8) we now obtain 

 
( )

( ) ( ) ( ){ }ννζννηννξµ

νν
µω

µµ tBtBtBeg

mtHm

cba
ti '''

'' 1

++−

=
−  (5.13) 

with the components of B
r

 in the crystal system expressed by those in the magnetic system 

 
ϑϑ

ϕϑϕϑϕ
ϕϑϕϑϕ

cossin
sinsinsincoscos
cossincoscossin

zyc

zzxb

zyxa

BBB
BBBB
BBBB

+−=
++−=
++=

 (5.14) 

The time dependence of B
r

 is given by  

 ( )
( )

( )
( )tHittHi eBetB
3

0
3

0 // 0 h
rr −=  (5.15) 

Note that (5.15) neglects the influence of the charge of the muon on the sample. In this sense 
it is an approximation. 

Inserting (5.13) into (5.10) we obtain 

 ( ) ( )ττ
µ τωµ µ OoOed

g
W i ˆˆ

2

2
+

+∞

∞−

−∫⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

h
 (5.16) 

( ) ( )τOoO ˆˆ +  as thermal average is the van Hove correlation function, known from inelastic 

neutron scattering, weighted by a geometrical factor from the curly bracket in (5.13). This 
factor is determined by the nature of the magnetic interaction in the sample as discussed in 
chapter 3. As an example consider a polycrystal or a crystal with cubic symmetry. Then the 
average over muon polarisation with respect to the crystal axises gives 

 
3

2
0

===
===

ζζηηξξ
ζηξζξη all

  

Then the relaxation rate is just the Fourier transform of the correlation function of the 
fluctuating magnetic field at the site of the implanted muon. 

 ( ) ( )ττ
µ

λ τωµ µ BBedgW i rr

h
0

3
12

2
−

+∞

∞−
∫⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==  (5.17) 

We shall see that this kind of correlation functions will also be addressed by inelastic neutron 
scattering. Furthermore the information we can extract from µSR-experiments has very much 
in common with what we may learn from NMR-experiments (nuclear magnetic resonance). 
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An advantage of µSR is that by the observation of the direct decay signal no rf-field is needed 
in order to observe the precession. Due to the skin-effect an rf-field may not penetrate into the 
bulk of certain kind of samples (e.g. superconductors). 

On the other side the question about the stopping site of the muon remains sometimes as an 
uncertainty. With some additional experimental effects this question can often be answered. 
The electric charge of the muon, giving rise to a local lattice distortion (expressed by ( )xrη  in 
(3.8)) may cause some uncertainty in the interpretation of the data. 

VI. Low Energy – MuSR [5] 

While the muon charge may – as just mentioned – cause some complications, it opens up on 
the other hand a great opportunity to the experimental control of the beam. By means of 
electrostatic lenses we can achieve a geometrical control of the beam spot on the sample. 
Furthermore by control of the beam energy we may determine the penetration depth of the 
muons into the sample. 

Fig. 6 shows the set-up of such a facility. The muon originates from the surface of a primary 
target with muon energy around 4 MeV. The muon polarization is practically 100%. In a 
moderator cell consisting of solid N2 or Ar the muons are slowed down to an energy of 
approximately E~15 eV (Fig. 7). Thereby the polarization is conserved. This low energy 
beam is then reflected by ninety degrees on an electro static mirror. The resulting muons with 
now transverse polarization are then guided by means of an electrostatic lense system towards 
the sample. The sample containment is electrostatically biased (± 12.5 keV) and the extraction 
potential at the moderator is 12-20 keV. This allows for an implantation energy of the muons 
within the range of 0.5 – 30 keV in order to control the penetration depth into the sample. The 
whole system is in a UHV of 10-9 – 10-10 mbar. Let us finally show an example of a profile 
measurement using this facility. 

It is well known that a superconductor, apart from showing zero resistivity, is also an ideal 
diamagnet. That is, below transition temperature a magnetic field is ejected from the sample 
(Meissner-effect) [6]. Indeed the London equation  

 ( ) ( )xA
mc

nexJ
rrrr 2

−=  (6.1) 

relating the current and the vector potential of the magnetic field yields – with Maxwells 
equations – the magnetic field dependence (Fig. 8) 

 λ/3
0

−= eBB
rr

 (6.2) 

with a penetration depth 

 2

2

ne
mc

ωπ
λ =  (6.3) 

This assumes that the superconducting wave function is unaffected by the magnetic field. 
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However, we also know that the superconductive state is destroyed by the application of a 
sufficiently high field cB . To gain some insight we write the Fourier-transform of a 
generalized (6.1) as 

 ( ) ( )qAqJq
rrrr

r Γ~  (6.4) 

( )qrΓ  = const. corresponds to ( ) ( )ox δ~r
Γ  and leads directly to the London equation (6.1). 

Large qr ’s involve however large energies and hence to destruction of the Cooper pairs. 
Therefore ( ) 0→Γ qr  for large cqq >> , where cq  is the correlation length (actually the size of 
the Cooper pairs). The relation (6.1) has then to be replaced by 

 ( ) ( ) ( ) ''' 3xdxAxxxJ rrrrrr
−Γ= ∫  (6.5) 

hence a non-local relation. This then leads to a penetration law of the magnetic field which is 
not exponential. 

Penetration controlled µSR offers now the experimental method to investigate this situation as 
is demonstrated in Fig. 9. 

Table I: 

Property Values 

Mass (mµ) 206.768 mc
= 0.1126 mp
= 105.6595 MeV/c2 

Charge +e, -e 

Spin 
h

2
1  

Magnetic Moment (µµ) 
(in units µp) 

3.1833 

Gyromagnetic Ratio πγ µ 2/  13.5539 kHz G-1 

g-factor 2.0023 

Lifetime 2.1970 µs 
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Is the muon just a heavy electron  ? 

 

Figure 1: the position of the muon within the scheme of the standard model of elementary 
particles 

 

 

 

Figure 2: Penetration of π-mesons and their decay 

 

 

Discovered in cosmic rays by  
Neddermeyer and Anderson (1936) 

 
Appears identical to electron but is 

200 times as heavy. (1/9 mass of proton)
 

S=1/2, Magnetic moment µm ≈ 3 µp  
very sensitive magnetic probe 

 
Charge  +e 

Positive muons are repelled by the nuclei.  
They probe magnetic fields in the 

interstitial regions between the atoms 

‘Who ordered that?’ - I I Rabi
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http://musr.triumf.ca/intro/musr/muSRBrochure.pdf   by Jeff E. Sonier 

Figure 3: The asymmetry of positron from µ+-decay 

 

 

 

 

Figure 4: The basic principle of a µSR-experimental. The signals are explained in the test. 
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Figure 5: Crystal axises (a,b,c) and the magnetic system (x,y,z) with the corresponding  
rotation angles 

 

 

Figure 6: Lay-out of a low energy µSR-experiment with control of the penetration depth 
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Muon moderation (E. Morenzoni et al.) 

 

Figure 7: Principle of a muon moderator 

 

 

 

Figure 8: The London penetration in the context of the Meissner effect 
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Figure 9: Experimentally determined field profiles into two different samples. A local and a 
non-local case are shown. 

 


