"Methods and Techniques" **Experimental Techniques (I) Crystal & Time-of-Flight Spectrometers**

Prof. Dr. Thomas Brückel Institute for Scattering Methods Institute for Solid State Research

- Scattering experiments • Crystal spectrometers
- Time-of-flight spectrometers

Riggs	<u>Neutron</u>						
• matte	er wave:						
	momentum	$\underline{p} = m \cdot \underline{v} = \hbar \underline{k}$; $\mathbf{p} = h/\lambda$					
	energy	$E = \frac{1}{2}mv^2 = \frac{\hbar^2k^2}{2m} = \frac{h^2}{2m\lambda^2} = k$	_B T _{eq}				
i	- 2056						
		$\lambda[nm] \approx \frac{396}{v[m/s]} = \frac{6.28}{k[nm^{-1}]}; \ \lambda[A$	$[^{\circ}] \approx \frac{3956}{v[m/s]}$				
		$E[meV] \approx \frac{0.818}{\lambda^2 [nm]} = \frac{81.8}{\lambda^2 [A^\circ]} \approx 0.0$	$207k^{2}[nm^{-2}] = 2.07k^{2}[A^{\circ^{-2}}]$				
Ex	Example: "thermal neutrons"						
	$T_{eq} = 300 \text{ K}$	E = 25 meV	$\approx \Delta E_{elementary excitations.}$				
		$\lambda = 0.18 \text{ nm}$	$\approx d_{atoms}$				
		v = 2 200 m/s					

<u>Sca</u>	<u>Scattering Law S(Q,ω)</u>				
Dynamic structure factor	$S(\underline{Q}, \omega) = \int dt S(\underline{Q}, t) e^{i\omega t}$				
integral:	$\int S(\underline{Q}, \omega) d\omega = \int dt S(\underline{Q}, t) \underbrace{\int d\omega e^{i\alpha t}}_{\delta(t)} = S(\underline{Q}, 0)$ $\Rightarrow \text{ snapshot}$				
elastic:	$S(\underline{Q},0) = \int dt S(\underline{Q},t)$ $\Rightarrow \text{ time average}$				

Halleta	<u>Intensity (Quantitative)</u>						
233332							
source →	primary spectrome	eter → sample → s	econdary spectrometer				
	1. collimator monochromato 2. collimator	ır	3. collimator analyzer 4. collimator				
			detector				
(Φ/k _T)f(k)d³rd³k	dj(k _i)	$n_{s} t dxdy [d^{2}\sigma/d\Omega dE_{f}]$	$\Delta\Omega\Delta 0$				
	$(\Phi/k_{T}) f(k_{i}) k_{i} d^{3}k_{i}$	$n_{S}^{} t dxdy [(k_{f}^{}/k_{i})(\sigma/4\pi)S(\underline{Q},\omega)]$	$\Delta \mathbf{\Omega} = \Delta (\mathbf{k}_{f})_{x} \Delta (\mathbf{k}_{f})_{y} / \mathbf{k}_{f}^{2}$ $\Delta \omega = (\hbar/m) \mathbf{k}_{f} \Delta \mathbf{k}_{f}$				
Intensity at the detector:							
$\Delta I_{\mathrm{D}} = \mathrm{dj}(k_{\mathrm{i}}) n_{\mathrm{S}} t \mathrm{dxdy} \mathrm{d}^{2} \sigma / \mathrm{d} \Omega \mathrm{dE}_{\mathrm{f}} \underline{\Delta} \Omega \underline{\Delta} \omega = (\Phi/k_{\mathrm{T}}) f(k_{\mathrm{i}}) n_{\mathrm{S}} t \mathrm{dxdy} (\sigma/4\pi) \mathrm{S}(\underline{0}, \omega) (\mathrm{h}/\mathrm{m}) \underline{\Delta}(k_{\mathrm{s}})_{\underline{\lambda}} \Delta(k_{\mathrm{s}})_{\underline{\lambda}} \Delta k_{\mathrm{s}} \mathrm{d}^{3} k_{\mathrm{s}}$							
$\Delta I_{\rm D} = (\Phi/k_{\rm T}) \frac{f(k_{\rm t})}{f(k_{\rm t})} \frac{dxdy n_{\rm S} t (\sigma/4\pi) S(Q,\omega)}{(h/m)} \frac{d^3k_{\rm t} \Delta^3 k_{\rm f}}{d^3k_{\rm f}}$							

