

Magnetic surfaces and Thin Films (Polarized Neutron Reflectometry)

25. October 2005 **Hartmut Zabel** *Ruhr University Bochum, Germany*

School on Pulsed Neutron Sources Trieste - Italy, 17 - 28 October 2005

Surfaces, Interfaces and Thin Films

For fundamental properties in the area of magneto- and spintronics

Exchange bias

F - pinned

Proximity effects and tunneling

Lateral structures

Surfaces, Interfaces and Thin Films

For fundamental properties in the area of magneto- and spintronics

Exchange bias

Content

1. X-ray and neutron reflectivity

2. Polarized neutron reflectivity (PNR)

- Methods
- Instrumentation
- Examples

1. X-ray and neutron reflectivity

Index of refraction

 $\sqrt{\varepsilon(\omega)} = n(\omega) = Brechungsindex \Rightarrow Optik$

X-ray refractive index

Refractive Index:

$$n^{2}(\omega) = 1 + \frac{4\pi\rho_{A}e^{2}}{m_{e}}\sum_{i}\frac{f_{i}}{\omega_{i}^{2} - \omega^{2} + i\gamma}$$

For x-ray's, the refractive index is always smaller than 1:

$$n(\lambda) = 1 - \frac{r_0}{2\pi} \rho_e \lambda^2$$
$$\approx 1 - 10^{-5} < 1$$

Adding dispersion and absorption correction:

Plot of δ and β for CoO

http://www-cxro.lbl.gov/optical_constants/getdb2.html 8

Snellius law for different media

Snellius law for different media

$$\frac{\cos\alpha}{\cos\alpha'} = n;$$

Critical angle for total reflection

Since n < 1, total reflection occurs at:

For all angles $\alpha < \alpha_c$ the wave can not penetrate into the medium, but at α_c there is an evanescent wave travelling along the interface

Critical angle for total reflection

Since n < 1, total reflection occurs at:

$$\frac{\cos\alpha_c}{\cos0} = \cos\alpha_c = n$$

For all angles $\alpha < \alpha_c$ the wave can not penetrate into the medium, but at α_c there is an evanescent wave travelling along the interface

Critical Scattering Vector

Scattering vector is defined as:

$$Q = \frac{4\pi}{\lambda} \sin \alpha = 2k \sin \alpha$$

Accordingly the critical scattering vector is:

$$Q_c = \frac{4\pi}{\lambda} \sin \alpha_c = 2k\sqrt{1 - \cos^2 \alpha_c} = \sqrt{4k^2(1 - n^2)}$$
$$\cong \sqrt{4k^2 2\delta} = \sqrt{16\pi r_0 \rho_e}$$

The critical scattering vector is no more a function of the wavelength. It is entirely determined by the property of the material and in particular by the electron density ρ_e .

Fresnel reflectivity

For $Q_z < Q_c$: R = 1, For $Q_z > Q_c$: R = R_f

The reflectivity drops with Q^4 , for scattering vectors $Q >> Q_c$. This applies for perfectly flat interfaces.

Fresnel reflectivity for Si

http://sergey.gmca.aps.anl.gov/

Reflectivity from a thin layer: Kiessig fringes

Reflectivity from a double layer

Reflectivity from a multilayer

Reflectivity and Bragg range

In-situ control of layer thickness and oxide growth

Layer thickness, electron density

Out -of-plane lattice constant, Number of coherently scattering lattice planes

Electron density profile from reflectivity data

Back transformation from reflectivity data to electron densities and thickness profiles is the ultimate goal. However, the back transformation is not always uniquely possible.

Smooth and rough surfaces

Smooth and rough surfaces

Smooth and rough surfaces

Reflectivity of rough surface

Master formular yields for a Gaussian roughness a damped Fresnel reflectivity:

$$R(Q_z) = R_F(Q_z) \exp(-Q_z^2 \sigma^2)$$

 $R_F(Q_z)$ is the Fresnel reflectivity of the ideal surface. Roughness adds a damping factor, similar to the Debye-Waller factor:

Off-specular diffuse scattering

Off-specular scattering from rough interfaces

Perfectly specluar surface, 100% reflection, mirror image

Perfectly rough surface, 100% diffuse scattering, projector wall

Partially reflecting and scattering from rough surface

Diffuse Scattering

Scattering function in the Born approximation:

$$S(\vec{Q}) = \int \langle \rho(0)\rho(R) \rangle e^{i\vec{Q} \cdot \vec{R}} d^3R$$

Pair correlation function:

$$G(\vec{R}) = \left\langle \left(\rho(0) - \left\langle\rho(0)\right\rangle\right) \left(\rho(\vec{R}) - \left\langle\rho(\vec{R})\right\rangle\right) \right\rangle$$
$$= \left\langle\rho(0)\rho(\vec{R})\right\rangle - \left\langle\rho(0)\right\rangle \left\langle\rho(\vec{R})\right\rangle$$
$$= \left\langle\rho(0)\rho(\vec{R})\right\rangle - \left\langle\rho(0)\right\rangle^{2}$$

Inserting:

$$S_{tot}(\vec{Q}) = \left\langle \rho(0) \right\rangle^2 \int e^{i\vec{Q} \cdot \vec{R}} d^3 R + \int C(\vec{R}) e^{i\vec{Q} \cdot \vec{R}} d^3 R$$

 $S_{spec}(\vec{Q})$ + $S_{diff}(\vec{Q})$

Specular Reflection Diffuse Scattering

Height-height correlation function

Height-height correlation function for a single self-affine, fractal surface:

$$C(R) = \langle z(0)z(R) \rangle = \sigma^2 \exp[-(R / \xi)]^{2h}$$

 σ = rms roughness

$$\xi = cut-off length:$$

for $R > \xi$, interface appears smooth,

for R < ξ , interface appears rough, fractal behavior

$$S_{diff}(\vec{Q}) = \frac{\exp(-Q_z^2 \sigma^2)}{Q_z^2} \times \int [\exp(Q_z^2 C(R)) - 1] \exp(iQ_{\parallel}R) d^2R$$

S.K. Sinha, E.B. Sirota, S. Garoff, and H.B. Stanley, Phys. Rev. B 38 2297 (1988)⁶

Specular and off-specular scattering

J. Als-Nielsen and Des McMorrow, Wiley, 2001

Transverse scans

Transverse scan from an FePt film on GaAs

A. Nefedov et al. J. Phys.: Condens. Matter 14, 12273 (2002)

Transverse scans

Transverse scan from an FePt film on GaAs

A. Nefedov et al. J. Phys.: Condens. Matter 14, 12273 (2002)

Refractive index for neutrons

Snell's law for specular reflection:

$$n = \frac{\sin \gamma_0}{\sin \gamma_t} = \frac{\left|\vec{k}_t\right|}{\left|\vec{k}_i\right|}$$

Refractive index for neutrons

Snell's law for specular reflection:

$$n = \frac{\sin \gamma_0}{\sin \gamma_t} = \frac{\left|\vec{k}_t\right|}{\left|\vec{k}_i\right|}$$

QM potential step for the z-component of the kinetic energy:

Combining both

$$n^{2} = \frac{\sin^{2} \gamma_{0}}{\sin^{2} \gamma_{t}} = \frac{\left|\vec{k}_{t}\right|^{2}}{\left|\vec{k}_{i}\right|^{2}} = \frac{E_{t}}{E_{i}} = \frac{E_{i} - V_{n}}{E_{i}} = 1 - \frac{4\pi}{k_{i}^{2}} N_{A} b_{coh}$$

 N_A = nuclei number density

 b_{coh} = coherent scattering length of nuclei A Notice that n ≤ 1, only for $b_{coh} \ge 0$

Total reflection only for $b_{coh} \ge 0$

Example: Neutron reflectivity from a non-magnetic, infinite thick and flat sample

For $Q_z < Q_c$: R = 1, only for b >0, i.e. for coherent scattering length.

Neutron Reflectivity

Neutron Reflectivity

- Film thickness
 Interface roughness
- Density profiles

$$V = V_n \pm V_m = \frac{2\pi\hbar^2}{m} N_A (b_n \pm p_m)$$

$$V = V_n \pm V_m = \frac{2\pi\hbar^2}{m} N_A (b_n \pm p_m)$$

$$V = V_n \pm V_m = \frac{2\pi\hbar^2}{m} N_A (b_n \pm p_m)$$

$$V = V_n \pm V_m = \frac{2\pi\hbar^2}{m} N_A (b_n \pm p_m)$$

Reflectivity from thin FM film

2. Polarized neutron reflectivity

Initial state and polarization of neutron out side of the sample:

Initial state and polarization of neutron out side of the sample:

State and polarization of neutron inside of the sample:

$$V_{m,Y}(z) = -\left|\vec{\mu}_n\right| \left|\vec{B}(z)\right|$$
$$= -4\pi \left|\vec{\mu}_n\right| \left|\vec{M}(z)\right|$$
$$= -\frac{2\pi\hbar^2}{m_n} p_m(z)$$

Initial state and polarization of neutron out side of the sample:

State and polarization of neutron inside of the sample:

$$V_{m,Y}(z) = -\left|\vec{\mu}_n\right| \left|\vec{B}(z)\right|$$
$$= -4\pi \left|\vec{\mu}_n\right| \left|\vec{M}(z)\right|$$
$$= -\frac{2\pi\hbar^2}{m_n} p_m(z)$$

Total neutron – sample potential (independent of the angle ϕ):

$$V = V_n \pm V_m = \frac{2\pi\hbar^2}{m_n} N_A (b_n \pm p_m)$$

Initial state and polarization of neutron out side of the sample:

State and polarization of neutron inside of the sample:

Schrödinger equation

Potential for polarized neutron scattering at magnetic samples:

$$V = \begin{pmatrix} V_{++} & V_{+-} \\ V_{-+} & V_{--} \end{pmatrix} = \frac{2\pi\hbar}{m_n} N_A \begin{pmatrix} b_{coh} + p_Y & p_X \\ p_X & b_{coh} - p_Y \end{pmatrix}$$

Inserting in Schrödinger equation:

$$\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial z^2}+V\right)\!\!\begin{pmatrix}\psi_+\\\psi_-\end{pmatrix}=E\!\begin{pmatrix}\psi_+\\\psi_-\end{pmatrix}$$

Yields the respective reflectivities R⁺⁺, R⁻⁻, R⁺⁻, R⁻⁺.

Reflectivity and Asymmetry

$$R^{+} = R^{++} + R^{+-}$$

$$R^{-} = R^{--} + R^{-+}$$

$$R^{+} - R^{-} = R^{++} - R^{--}$$

$$R^{+} + R^{-} = R^{++} + R^{--} + 2R^{+-}$$
Spin Asymmetry :

$$SA = \frac{R^{+} - R^{-}}{R^{+} + R^{-}} = \frac{R^{++} - R^{--}}{R^{++} + R^{--} + 2R^{+-}}$$

Spin asymmetry (SA), single surface

Reflectivity and Asymmetry for single thin ferromagnetic film (Fe)

F. Radu et al. submitted

Non-spin flip (NSF) scattering

NSF – scattering measures the Y-component of the magnetization vector: M_{Y} (longitudinal component)

Spin-flip (SF) scattering

SF – scattering measures the X-component of the magnetization vector: M_x (transverse component)

Vector Magnetometry

$$\phi = \arctan\left(\frac{M_y}{M_x}\right)$$
$$\left|\vec{M}\right| = \frac{M_y}{\sin\phi}$$

Selection rule for magnetic neutron scattering

Magnetization components parallel to the scattering vector are not visible to the neutrons!

Instrumention: two types

Instrumention: two types

- Angle
 dispersive
- monochromatic beam
- scanning of $\boldsymbol{\alpha}$

Instrumention: two types

- Angle
 dispersive
- monochromatic beam
- scanning of $\boldsymbol{\alpha}$
- Wavelength
 dispersive
- White beam
- TOF method,
- \bullet fixed α

Polarizer, analyzer, and spin flipper

transmission supermirror:

Polarizer, analyzer, and spin flipper

Schematics: neutron reflectometer with complete polarization analysis

This part is identical for angle dispersive and wavelength dispersive instruments

Schematics of an angle dispersive (fixed wavelength) reflectometer

The ADAM Reflectometer at the ILL

http://www.ill.fr/YellowBook/ADAM/

TOF - PNR - CRISP-ISIS

- a. Thin films
- b. Superlattices and roughness
- c. Exchange bias
- d. Magnetic patterns

PNR of 2 nm Fe film on 150 nm Nb on sapphire substrate

Amount of magnetic material: 10⁻³ emu

Nb cap 5nm
Fe 2 nm
Nb film 150 nm
Substrate

Nuclear and magnetic density profile in (GaMn)As

Nuclear and magnetic density profile in (GaMn)As

Nuclear and magnetic density profile in (GaMn)As

G

PNR from model-spinstructures in magnetic multilayers

Reciprocal space maps in the small angle regime

Exchange coupling in [Fe_{0.43}Cr_{0.57}(24Å)/Cr(28Å)]

R. Siebrecht, et al. 2000

Exchange coupling in [Fe_{0.43}Cr_{0.57}(24Å)/Cr(28Å)]

Magnetic roughness in Co/Cu superlatties

S. Langridge, J. Schamlian, C.H. Marrows, D.T. Dekadjevi, B.J. Hickey, PRL 85, 4964 (2000).

Transverse scans across half-order AF peak

$$S_{Diff}(Q) = DW \int d^2 \vec{r} e^{i\vec{Q}_{\parallel}\cdot\vec{r}} \left[s + m + sm\right]$$

s = structural roughness m =domain distribution roughness sm =cross term contains magnetic roughness

Diffuse scattering due to:

- domain size distribution
- orientational domain distribution
 Diffuse scattering diminishes in high fields

New ³He Spin-Filter

New ³He Spin-Filter

New ³He Spin-Filter

³He spin-filter technique is very useful for the polarization analysis of offspecular scattering. Compared to solid-state analyzer, the spin-filter covers a wider angular range and is free of small angle scattering.

AF-coupled Co/CoO multilayer

Exchange bias effect

Exchange interaction of a F and AF layer across a common interface

Magnetic field

F. Radu, M. Etzkorn, R. Siebrecht, T. Schmitte, K. Westerholt, and H. Zabel Phys. Rev. B 67, 134409 (2003)

Magnetic hysteresis: neutrons tell the difference

1. Nucleation and domain wall movement:

2. Coherent Rotation:

3. Domain formation:

PNR results of CoO/Co bilayer

F. Radu, M. Etzkorn, R. Siebrecht, T. Schmitte, K. Westerholt, and H. Zabel Phys. Rev. B 67, 134409 (2003)

PNR results of CoO/Co bilayer

F. Radu, M. Etzkorn, R. Siebrecht, T. Schmitte, K. Westerholt, and H. Zabel Phys. Rev. B 67, 134409 (2003)

PNR results of CoO/Co bilayer

F. Radu, M. Etzkorn, R. Siebrecht, T. Schmitte, K. Westerholt, and H. Zabel Phys. Rev. B 67, 134409 (2003)

Diffuse scattering from CoO/Co

After first field cooling: Single domain state, large H_{c1}

After first field cooling: Single domain state, large H_{c1}

After first reversal: domain wall motion, creating AF domains

After first field cooling: Single domain state, large H_{c1}

After first reversal: domain wall motion, creating AF domains

After first field cooling: Single domain state, large H_{c1}

After first reversal: domain wall motion, creating AF domains

After first field cooling: Single domain state, large H_{c1}

After first reversal: domain wall motion, creating AF domains

Spin glass type interfacial layer

Neutron reflectometers with polarization analysis

ADAM	ILL	SPN	Dubna
D17	ILL	REFLEX	Dubna
HADAS	FRJ	ROG	Delft
CRISP	ISIS	REFSANS	GKSS/FRM II
AMOR	PSI	N-REX	MPI/FRM II
MORPHEUS	PSI	MIRA	FRM II
V6	HMI	MARIA	Jülich/FRM II
EROS	LLB		
PRISM	LLB		
PNR	GKSS		
NeRo	GKSS		

Do we still need PNR?

X-Ray Magnetic Dichroism XMCD

XMCD experimental layout

XMCD and XRMS

- Element specific
- Spin and orbital moment analysis
- Magnetic scattering (XRMS)
- Vector magnetometry (similar to MOKE)
- Environment of magnetic ion (metallic versus ionic)
- High time resolution (ns-ps)
- High spatial resolution (x-ray microscopy: 10-20 nm)

YES, PNR is still required!

- The only method to provide depth resolved absolute magnetic moments
- Sensitive to magnetic induction (including stray fields in domain walls and screening fields in superconductors)
- No interference with optical terms, and no independent determination of optical parameters required
- Born approximation is sufficient for analysis at Q > Q_c
- Vector magnetometry is measured in the same field configuration
- Deep interfaces and layers are accessible
- Polarization analysis of diffuse scattering possible
- Coherence length of neutrons on the order of magnetic domain sizes (several μm), providing access to fluctuation terms.

Literature

- J.F. Ankner and G.P. Felcher, J. Magn. Magn. Mater. 200, 751 (1999)
- M.R. Fitzsimmons et al. J. Magn. Magn. Mater.
 271, 103 (2004)
- H. Zabel and K. Theis-Bröhl, J. Phys.: Condens. Matter 15, S505 (2003)
- H. Zabel, Materials Today, Jan. 2006
- Many further references are in these reviews

Thank you for your attention

