

Nanostructured Materials

25. October 2005 Hartmut Zabel Ruhr University Bochum, Germany

School on Pulsed Neutron Sources Trieste - Italy, 17 - 28 October 2005

Lateral magnetic structures

Shinjo et al. Kyoto

A. Remhof, Bochum

D. Buntix, Leuven

K. Temst, Leuven

R. Brucas, Uppsala

Lithographic sample preparation

Lithographic tools

Lithography: Laser, e-beam, focused ion beam, x-ray, AFM cantilever

Etching: Wet, dry, ion beam, plasma

Resin, spin coating, annealing, etc.

Nanostructures

Top-down approaches:

- lithography
- atomic force microscopy

Bottom-up approaches:

- dendrimers
- molecular arrangements (e.g. micelles)
- approaches of molecular biology

Alternative techniques I: molecular self-assembly to defined structures

The advantages of molecular self-assembly:

- directly nm-sized technique by assembly of molecules to defined structures
- potential for better versatility
- 3-dimensional structures possible
- imitation of structures of nature

Alternative techniques II: Nanotransfer printing (nTP)

Schematic representation of the nanotransfer printing (nTP) procedure to create gold patterns on Si substrates.

NOTE: stamp is fabricated by top-down lithography.

From H. Lipsanen

Alternative techniques III: Polymeric Templating of Magnetic Nanostructures

 Next, we aim to use these aligned scaffolds as templates for the organization of functional magnetic nanoparticles

http://www.msd.anl.gov/highlights/docs/darling_polymeric_hl.pdf

Templating with polymer stripes and grooves

- Long-range ordered block copolymers inside the groove.
- ➤ No grain boundaries observed.
- > Polymer domains align with the groove edge.
- > 9 rows of polymer domains in a 230 nm wide groove.

From E.L.Thomas, C.A. Ross, MIT

Assemblies of magnetic nanoparticles

8 nm Co nanoparticles in cylindrical Al₂O₃ pores Self-assembly of Co nanodiscs

Polymer-templated assembly of 5 nm Co nanospheres

Meigan Aronson, Sue Inderhees, Omar Yaghi, Jinsang Kim, Nick Kotov, and Glenn Strycker, University of Michigan, Ann Arbor

Lateral magnetic stripes

How does the magnetization reversal proceed?

Two limiting cases

Coherent rotation:

$$m_1 = -1$$
 $m_1 = 0$ $m_1 = 1$

Domain formation:

$$m_1 = -1$$
 $m_1 = 0$ $m_1 = 1$

Vector magnetometry

Longitudinal MOKE

 α depends on intraband transition, thickness, wavelength, incident angle, etc.

Vector MOKE

Vector MOKE

Vector MOKE

Vector-MOKE

$$\frac{m_x}{m_y} = \frac{\cos \chi}{\sin \chi} = \frac{\theta_K^x}{\theta_K^y}$$
$$\chi = \arccos\left(\frac{\theta_K^x}{\theta_K^y}\right)$$
$$\frac{\left|\vec{M}\right|}{\left|\vec{m}\right|_{x,sat}} = \frac{\theta_K^x}{\theta_K^{x,sat}} \frac{1}{\cos \chi}$$

Vector-MOKE for....

Coherent rotation:

Off-specular reflectivity of a film surface

Courtesy K. Temst, Leuven

1. Example: thin stripes

Sample: $Co_{0.7}Fe_{0.3}$ stripes, w=1.2 µm, D=3 µm, thickness 90 nm

1. Example: thin stripes

Sample: $Co_{0.7}Fe_{0.3}$ stripes, w=1.2 µm, D=3 µm, thickness 90 nm

Two-fold shape anisotropy:

- easy axis: along the stripes
- hard axis: perpendicular to the stripes

Reciprocal space map from a stripe array

Specular reflectivity ridge can be recognized and offspecular Bragg peaks from the lateral stripe array.

K. Theis-Bröhl, et al. Phys. Rev. B 68, 184415 (2003).

Kerr Microscopy

K. Theis-Bröhl et al. Phys. Rev B 68, 184415 (2003).

Kerr Microscopy

K. Theis-Bröhl et al. Phys. Rev B 68, 184415 (2003).

PNR: hard axis, χ =63°

K. Theis-Bröhl et al. Phys. Rev B B 68, 184415 (2003).

Vector-MOKE -thin stripes

Vector-MOKE -thin stripes

2. Example: thick stripes

Sample: $Co_{0.7}Fe_{0.3}$ stripes, w=2.4 µm, D=3 µm, thickness 80 nm

Small angle domains in remanence

Small angle domains in remanence

Diffuse scattering from domains

down up 1.5 (b) 1.5 (a) Experimental: -2 44 Oe -3 (at maximum 0.5 0.5 α^{1.5} α^{1.5} of spin-flip) O_r 0.5 0.5 1.5 1.5 'n 1 1 1.5 (d) (c) -2 1 -3 Simulation: 0.5 0.5 0.5 1.5 0.5 1.5 1 1 $\alpha_{\rm f}(\rm deg)$

K. Theis-Bröhl et al. Phys. Rev B 71, 020403 (2005)

Domains and Fluctuations

K. Theis-Bröhl et al. Phys. Rev. B 71 (2005) 020403

Domains and Fluctuations

Thin stripes

Mostly single domainSimple reversal processPNR and MOKE agree

Thin stripes

Mostly single domain
Simple reversal process
PNR and MOKE agree

Thick stripes

Thin stripes

Mostly single domain
Simple reversal process
PNR and MOKE agree

Thick stripesComplex domain structure

Thin stripes

Mostly single domain
Simple reversal process
PNR and MOKE agree

Thick stripes

Complex domain structureDipol - interaction

Thin stripes

Mostly single domainSimple reversal processPNR and MOKE agree

Thick stripes Complex domain structure Dipol - interaction PNR yields additional information on the magnetization direction

PNR at lateral Fe/Cr multilayer

Competing interactions between crystal anisotropy, exchange field, and dipolar field

N. Ziegenhagen et al., Physica B 335, 50 (2003)

-2.4

-2.9

-3.4

-3.9 -4.4

-4.9

-5.4

Future prospects for lateral magnetic structures

Stripes with dipole character

Islands with vortex structure

Acknowledgements

Katharina Theis-Bröhl Max Wolff Florin Radu Boris Toperverg

Uni Bielefeld

FZ-Jülich

IFW Dresden

Funding

U. Rücker, Th. Brückel

J. McCord

SFB 491

bmb+f

Großgeräte der physikalischen Grundlagenforschung

