

Neutron Scattering in Transition Metal Oxides

C. Ulrich

Department Prof. B. Keimer Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany

- physics of the 3d electrons
- strongly correlated electrons
- spin, charge, orbital degrees of freedom

LaMnO₃: a material we understand today

some current frontiers:

- orbital dynamicscolossal magnetoresistancehigh temperature superconductivity

Strongly Correlated Electrons

- high temperature superconductivity
- colossal magnetoresistance

interplay between **spin, charge and orbital** degrees of freedom

J. Hemberger *et al.*, PRB **66**, 94410 (2002)

Tomioka et al., PRB 53, 1689 (1996).

PHYSICAL REVIEW

VOLUME 100, NUMBER 2

OCTOBER 15, 1955

Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds $[(1-x)La, xCa]MnO_3^{\dagger}$

E. O. WOLLAN AND W. C. KOEHLER Oak Ridge National Laboratory, Oak Ridge, Tennessee (Received May 9, 1955)

Theory of the Role of Covalence in the Perovskite-Type Manganites $[La, M(II)]MnO_3^{\dagger}$

JOHN B. GOODENOUGH Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts (Received May 16, 1955)

Crystal Structure

3D - perovskite structure

LaMnO
LawinO ₃ VT_{10}
$Larro_3/rro_3$
$LavO_3 / YVO_3$

Pm3m	ideal cubic perovskite
Pbnm	GdFeO ₃ - type distortion

- Tilt and rotation of the TiO₆ octahedra
- Distortion of the TiO₆ octahedra

(Jahn-Teller Distortion)

Crystal Structure: Perovskite

Ruddlesden-Popper Series

R_3 Mn₂O₇ Bilayer Perovskite

Crystal Field Splitting of the 3d levels

Jahn-Teller Distortion

Distortion of the MnO₆ octahedra in LaMnO₃ (manganites): $\Delta d = c - a \sim 0.25 \text{ Å}$

Jahn-Teller Distortion

- Distortion of the octahedra
- Crystal symmetry is changed
- Lifting of degenercy

Splitting of the electronic levels

Cooperative Jahn-Teller Distortion

• crystal field splitting caused by lattice distortions (Jahn-Teller Effect)

- orbital ordering with **complex** combinations of wave functions
- **unquenched** orbital angular momentum
- Superexchange Interaction

Orbital Order in LaMnO₃

J. Rodriguez-Caravajal *et al.*, PRB **57**, 3189 (1998)

resonant X-ray scattering

Y. Murakami et al., PRL 81, 582 (1998)

T < T₀₀: orbital order locks in exchange interactions

Neutron diffraction in $LaMnO_3$

TABLE I. Structural data of LaMnO₃ (Pbmn) at three selected temperatures. Data collection has been performed on the diffractometer 3T2, using a wavelength of 1.22 Å. The Jahn-Teller transition takes place at $T_{\rm TT}$ =750 K. Cell parameters and atomic positions from references have been put in the Pham setting. The representative atom positions of the asymmetric unit have been converted to those used in our work. The structural parameters described in the monoclinic space group $P2_1/n$ of Ref. 15 have been used to produce a simulated neutron diffraction pattern that has been refined using the Pbnm space group (see text).

	RT	<i>T</i> =573 K	T=798 K	RT (Ref. 11)	RT (Ref. 14)	RT (Ref. 15)	RT (Ref. 16)
a (Å)	5.5367(1)	5.5520(2)	5.5817(3)	5.537(2)	5.5392(6)	5,5365(1)	5.5358(1)
b (Å)	5.7473(1)	5.7269(2)	5.5834(2)	5.743(1)	5.6991(7)	5.7216(1)	5.7363(1)
c (Å)	7.6929(2)	7.7365(2)	7.8896(4)	7.695(2)	7,7175(9)	7.7000(1)	7.6994(2)
x (La)	-0.0078(3)	-0.0063(3)	-0.0046(9)	-0.009(1)	-0.0063(7)	-0.0069(2)	-0.0080(3)
y (La)	0.0490(2)	0.0443(2)	0.0217(3)	0.050(1)	0.0435(5)	0.0459(2)	0.0475(3)
B (La)(Å ²)	0.34(2)	0.80(2)	1.26(3)				0.62(3)
B (Mn)(Å ²)	0.21(3)	0.46(4)	0.84(4)				0.51(6)
x[O(1)]	0.0745(3)	0.0725(3)	0.0687(10)	0.071(1)	0.0733(8)	0.0754(3)	0.0752(4)
y[O(1)]	0.4874(3)	0.4885(3)	0.4890(8)	0.489(1)	0.4893(8)	0.4883(3)	0.4869(4)
$B[O(1)](Å^2)$	0.50(3)	1.00(4)	1.87(7)		1000	· · · · ·	·. · · · ·
x[O(2)]	0.7256(2)	0.7257(2)	0.7229(6)	0.725(1)		t	
y[O(2)]	0.3066(2)	0.3038(2)	0.2831(5)	0.309(1)		1	1 1
z[O(2)]	0.0384(2)	0.0378(2)	0.0386(4)	0.039(1)	800		
$B[O(2)](Å^2)$	0.43(3)	0.91(2)	1.67(5)			t	
R_p :	8.98	10.4	14.3		a	F	1 1
R _{wp} :	9.04	10.0	11.3		·= 000	F	1 6
χ^2 :	2.35	2.40	2.63		5	t	
$R_{N-n}(\%)$	5.16	5.32	414		ė	ſ	1 E

J. Rodriguez-Caravajal et al., PRB 57, 3189 (1998)

LaMnO₃ Mn^{3+}

Hund's Rules: - largest value of total spin S

- largest value of total angular momentum L
- J =| L-S| less than half filling
 - J = |L+S| more than half filling

Superexchange Interaction

Goodenough-Kanamori Rules

strong antiferromagnetic

the Pauli principle

🔶 🚼

weak ferromagnetic

intra-atomic Hund's rule favors ferromagnetic alignment in intermediate state

Spin: antiferromagnetic OO: ferromagnetic-type Spin: ferromagnetic OO: antiferromagnetic-type

Magnetic Order in LaMnO₃

T < T₀₀: orbital order locks in exchange interactions

 $T < T_N$: magnetic order

Y. Murakami *et al.*, PRL **81**, 582 (1998)

LaMnO₃ A-type Antiferromagnet

-ferromagnetic within the ab-plane -antiferromagnetic along the c-axis

Heisenberg Hamiltonian:

 $\mathbf{H} = \boldsymbol{\Sigma}_{i \ j} \mathbf{J} \mathbf{S}_{i} \bullet \mathbf{S}_{j}$

J = exchange interaction

magnon dispersion

band width $\propto J$

TRISP Spectrometer at FRM-II

Magnon Dispersion Relation in LaMnO₃

T < T_N: anisotropic spin wave spectrum reflects the orbital ordering pattern

K. Hirota et al., Physica B 237, 36 (1997)

electron-electron Coulomb interactions

very weak \rightarrow independent electrons: **ordinary metal**

very strong \rightarrow electron crystal: Mott insulator

"strongly correlated electrons" in d- or f-electron metals:

- transport dominated by electron-electron interactions, very different from ordinary metals
- new theory of metals?

Due to the screening of the outer electron shell, the intersite Coulomb interaction plays a dominant role for 3d-electrons.

Energy gain due to electron hopping is comparable to the Coulomb repulsion.

Consider a half filled conduction band:

ideal metal:

$$H = -t \sum_{\langle j,l \rangle} \sum \sigma \left(c^{\dagger}_{j\sigma} c_{l\sigma} + c^{\dagger}_{l\sigma} c_{j\sigma} \right)$$

kinetic energy due to electron-hopping

Metal-Insulator Transition

Hubbard Model

- the kinetic energy (electron hopping) wishes to delocalize the electrons
 - \Rightarrow metallic behavior
- the Coulomb repulsion wants to localize the electrons.
 - \Rightarrow insulating behavior

$$H = \underbrace{-t \sum_{\langle j,l \rangle} \sum \sigma \left(c_{j\sigma}^{\dagger} c_{l\sigma} + c_{l\sigma}^{\dagger} c_{j\sigma} \right)}_{Hopping} + \underbrace{U \sum_{j} \hat{n}_{j\uparrow} \hat{n}_{j\downarrow}}_{Coulomb}$$

Mott-Hubbard Transition

Final Step:

The localized electrons tend to order magnetically!

What drives the phase transition?

\bullet	Mn^{4+}	(d ³)
S+	Mn^{3+}	(d ⁴)

Resonant X-ray scattering of charge and orbital order

M.v. Zimmermann et al., PRL 83, 4872 (1999)

Spin, Charge and Orbital Order

PM paramagnetic

- SR short range
- CA canted
- AFM antiferromagnetic
- FM ferromagnetic

Structural:

- O orthorhombic
- O' orthorhombic Jahn-Teller
- O" orthorhombic Orbital Order
- R rhombohedral
- T tetragonal
- Mc monoclinic
- H hexagonal

- I insulating
- M metallic

J. Hemberger *et al.*, PRB **66**, 94410 (2002)

Spin, Charge and Orbital Order

LaMnO₃ well understood!

Are Transition Metal Oxides well understood?

NOT AT ALL!!

- HTc superconductors (cooperates)
- Unconventional HTc superconductors
- Colossal Magnetoresistance
- Frustrated Magnets
- Quantum Magnetism
- Orbital Excitations

LaMnO₃: unsolved problems

Inelastic Neutron Scattering: Spin Wave Dispersion

large deviations from predictions of simple Heisenberg model

 \rightarrow interaction with phonons? \rightarrow low-lying orbital excitations?

High Temperature Superconductors

HTc superconductivity

 $T_{\rm C} = 93 {\rm K}$

Spin Structure in LaTiO₃

 G_x -type antiferromagnet 0.53 μ_B / Ti³⁺ ion along the a-axis **Inelastic Neutron Scattering:**

 $Ti^{3+} 3d_1$

Integrated intensity of the (1/2 1/2 1/2) antiferromagnetic Bragg reflection. G-type spin structure.

expected for a 3D Ti³⁺ ion: $\mu_0 = 0.85 \ \mu_B \ / \ Ti^{3+}$

2D perovskite Cu²⁺: $\mu_0 = 0.60 \ \mu_B \ / \ Cu^{2+}$

B. Keimer *et al.*, PRL **85**, 3946 (2000).C. Ulrich, M. Reehuis, J. Hemberger (2004).

Magnon Dispersion Relation of $LaTiO_3$ along the (1,1,1) direction.Isotropic Heisenberg model with nearest neighbor superexchange.J = 15.5 meVSpin Gap $\Delta = 3.3 \text{ meV}$

B. Keimer et al., PRL 85, 3946 (2000).

- **LaTiO₃:** larger bond angle $\theta \sim 156^{\circ}$ (AFM) \Rightarrow wide band
- **YTiO₃:** smaller bond angle $\theta \sim 142^{\circ}$ (FM) \Rightarrow narrow band smaller Ti-Ti hopping weakened superexchange
- spin ferromagnetism as predicted by electronic band structure calculations
- Goodenough-Kanamori rules obeyed

Theory: Sawada & Terakura Mizokawa et al.

 $|\psi\rangle_{1,3} = c_1 |yz\rangle \pm c_2 |xy\rangle$ $|\psi\rangle_{2,4} = c_1 |xz\rangle \pm c_2 |xy\rangle$

Proposed Ti *3d*¹-orbitals

Experiment: Akimitsu et al. (neutrons) Itoh et al. (NMR)

\Rightarrow anisotropic spin wave spectrum expected

Inelastic Neutron Scattering in YTiO₃

C. Ulrich et al., PRL 89, 167202 (2002).

Orbital Fluctuations in LaTiO₃

t_{2g} orbitals versus e_g orbitals

- not bond directional: JT coupling is relatively weak
- two equivalent orbitals on every bond : quantum resonance
- large degeneracy : fluctuations are enhanced

t_{2g} -superexchange in LaTiO₃

c - bond :

$$rac{4t^2}{U} \left(\ S_i S_j + \ rac{1}{4} \
ight) \left(\ au_i au_j + \ rac{1}{4} \ n_i n_j \
ight)_{ab}$$

spin

spin : triplet orbital: singlet resonance orbital: triplet

Spin-orbital resonance

orbital fluctuations:

with fixed exchange parameter J = 15.5 meV from neutron scattering:

- antiferromagnetic state
- reduced magnetic moment of 0.5 μ_B
- isotropic spin dynamic with a spin gap of 3 meV

G. Khaliullin, S. Maekawa, PRL 85, 3950 (2000).

New Orbitally Ordered States

derived from superexchange model with spin ferromagnetism imposed (Khaliullin & Okamoto, PRL 2002)

- reduced anisotropy due to strong orbital quantum fluctuations
- naturally explains spatially isotropic magnon dispersions, small magnon gap
- prediction: **ORBITONS** (i.e. orbital wave)

Collective orbital excitation

LaMnO₃

Observed by Raman light scattering?

E. Saitoh et al., Nature 410, 180 (2001).

Assigned to two phonon excitations (IR)

M. Grüninger et al., Nature 418, 39 (2002).

orbital wave

Dispersion Energy gap

in analogy to magnons or phonons

high energy Raman peak at 230 meV in LaTiO₃ and YTiO₃

possibly two-orbiton excitation

calculation of the phonon-DOS diploma-thesis: Mael Guennou

Temperature dependence of the Raman spectrum

not a two magnon excitation not a polaron (both are insulators!) also seen in IR transmission (M. Grüninger, cond-mat/0503405)

Raman resonance in the energy range of the optical d_i-d_i intersite transition

Okimoto et al., PRB **51**, 9581 (1995)

Two-orbiton process

Two-magnon process

2-orbiton excitations

 $YBa_2Cu_3O_{6+\delta}$ insulating AF

K.B. Lyons *et al.*, Phys. Rev. Lett. **60**, 732 (1987).

neutron scattering is an excellent technique to study the interplay between spin, charge, and orbitals

Elastic neutron scattering - Nuclear

- crystals structure
- orbital order

Elastic neutron scattering - Magnetic

- magnetic moment
- spin direction

Inelastic Neutron Scattering - Magnetic

- spin gap energies
- spin wave dispersion
- strenght of the exchange interaction

Collaborators:

Theory:

G. Khaliullin, P. Horsch, A.M. Oles, *Max-Planck-Institut FKF, Stuttgart, Germany.*

S. Maekawa, S. Okamoto, Tohoku University, Sendai, Japan. RIKEN, Saitama, Japan.

J. Sirker, Universität Dortmund, Germany.

Raman Light Scattering

A. Gößling, M. Grüninger Universität zu Köln, Germany.

Crystal Growth:

S. Miyasaka, Y. Taguchi, Y. Tokura, *University of Tokyo, Japan.*

H. Roth, M. Cwik, T. Lorenz Universität zu Köln, Germany.

J. Hemberger, F. Lichtenberg *Universität Augsburg, Germany.*

Inelastic neutron scattering:

ILL A. Ivanov, M. Ohl, M. Rheinstaedter, W. Schmidt, *Institut Laue-Langevin, Grenoble, France.*

LLB

P. Bourges, D. Reznik, Y. Sidis, Laboratoire Léon Brillouin, Saclay, France.

J.W. Lynn, NIST, Gaithersburg, Maryland.

HMI Neutron diffraction:

M. Reehuis, Hahn-Meitner-Institut, Berlin, Germany.

ESRF Synchrotron x-ray diffraction:

P. Pattison, ESRF, Grenoble, France.

<u>NSLS</u> Resonant x-ray diffraction:

J.P. Hill, D. Gibbs, M.v. Zimmermann, *NSLS, Brookhaven National Lab., New-York.*