Classification of nuclear reactions / Fragmentation

Formation of a unique fragment from the peripheral collision of a projectile
nucleus with a target nucleus. The impact results in the abrasion of few nucleons. The
excited pre-fragment decays by emitting few other nucleons.
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Neck emission

In peripheral collisions, at intermediate energies (E;,. < 100 AMeV)

guasi-target

enhancement of the emission
\ of LCP's and TMF's from the

intermediate velocity region

— The neck emission favours the n-rich LCP's.

LCP: Light Charged Particle = p, d, t, 3He, “He
IMF: Intermediate Mass Fragment = 3 <Z < 30
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Neck emission

CHIMERA predictions for Au+Au at 80 AMeV
very peripheral collisions

J. Lukasik et al., Proceedings of INPC 2001

The rapidity of a particle corresponds to et -p'r(')jé'e'ciirie'”;- o
its velocity for non-relativistic energies Y

J. Lukasik et al., Phys. Lett. B 566 (2003) 76
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Participant spectator model

In peripheral collisions, at relativistic energies (E;,. > 100 AMeV)

~

guasi-projectile
(spectator)

participant
region

guasi-target
(spectator)

The participant region, very
hot and dense. Aarn
emitting only LCPs mcunly
nucleons.
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Fragment separators

Fragmentation — production of exotic nuclei
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LISE at GANIL

LISE = Ligne d'Tons Super Epluchés (Super Stripped Ion Line)

The primary beam (12C to 238U) have been accelerated in the two
cyclotrons to energies from 5 to 95 AMeV

Wien filter
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FRS at 6SI

FRS = FRagment Separator

The primary beam (*2C to 238U) have been accelerated in the
synchrotron SIS to energies from 30 AMeV to 2 AGeV

primary beam:
08 ph @ | GeV/u - target: Be @ 1.6 gfcmz
-
\ |||terme?|ate focal plane S2 final focal plane S4
. / &
/ Segmented Clover
TOF:p / e rray

EXOGAM type

First section Second section clover detector Super Clover

% http://Iwww-w2k.gsi.deffrs/index.asp
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Fragment selection

Magnetic dipoles
Magnetic selection in mass, atomic number, and speed (A.v/Q).

The dipoles allow a deviation of the ions of the secondary beam according to their charge
state, their speed, and mass. The determination of their magnetic rigidity Br is a measure
of this deviation.

Non-relativistic formula:

with Br: magnetic rigidity (Tm) c: speed of light
B: intensity of the magnetic field (T) A: nucleus mass (J)
r: curvature radius (m) Q: positive ion charge
v: speed of the nucleus (ms) (Q = Z, if fully stripped)
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Fragment selection

Degrader (wedge)
Selection in energy loss, on the atomic mass and number (i.e. in A3/Z?2).

The degrader is located in an infermediate focal plane of the beam line. The secondary
beam, still composed of several ions of diverse charge states, is slowed down and

purified.

The energy loss in the material is characteristic of the beam particles (selection in v and
Z). = . T

The relative energy loss in the degrader is given by:

with K: constant typical of the degrader A: nucleus mass
e: thickness of the degrader Z: atomic number

Wien filter
Selection in speed (v).

The electrostatic tank of the filter is divided in 2 subsections which are , each of
them, inside a large magnetic dipolar gap. The beam goes then through a region with
cross electric and magnetic fields (the direction of the electric field is vertical and the
magnetic field's is horizontal) with intensities such that the selected nucleus can
continue its frajectory without being slowed down neither deviated of the incident
direction of the secondary beam (the forces due to the two fields compensate each
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Fragment production

at the end of the beam line
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M.Pfutzner et al., Phys. Rev. C 65(2002)064604
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Spin orientation

In the early 90's, it was discovered the possibility to create spin orientation in exotic
nuclei via projectile fragmentation.

Principle: fransfer of momentum via nucleon removal in the projectile
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Spin orientation

~

Population
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Spin orientation

-~

The direction in which the radiation is emitted by a radioactive nucleus, depends on
the direction of its nuclear spin.
This is formally described by the function:

S fon

k,n 2k+1

~

An ensemble has By =1, all other components are zero.

An ensemble has B,° components for k=even, n#0 components and odd
tensors are zero.

A ensemble has B,° components for k=odd, k=even and n=0 components
are zero.
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Determination of the polarization

Experiment E347 of July 2003

P. Himpe, private communication
N

The is determined from the asymmetry of the B emissions:
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experimental loss
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SO N0 The Physics of Spallation Processes - Exper'lmen‘r and T Ec)or' g-Fhy ( )




Influences on polarization

Al isotopes
| | |

Influence of

G 32Al ground-state: 1*
G 3133A] ground-states: 5/2*
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Kinematical model
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Polarization vs target size

Polarization of 1213B from the reaction at 68 AMeV of...

15N+197Au 15N+93Nb 15N+27A|
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— far-side trajectory

— near-side trajectory
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Polarization vs E;,.

Polarization of 12B from the reaction 13C+°Be at...
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— decrease of the amount of polarization
(and increase of the amount of alignment) n
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