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ABSTRACT

Anthropogenic greenhouse gas emissions may trigger climate threshold responses,

such as a collapse of the North Atlantic meridional overturning circulation (MOC).

Climate threshold responses have been interpreted as an example of “dangerous an-

thropogenic interference with the climate system” in the sense of the United Nations

Framework Convention on Climate Change (UNFCCC). The UNFCCC objective

is to “prevent” such dangerous anthropogenic interference. The current uncertainty

about important parameters of the coupled natural–human system implies, however,

that the UNFCCC objective can only be achieved in a probabilistic sense. In other

words, climate management can only reduce — but not entirely eliminate — the

risk of crossing climate thresholds. Here we use an integrated assessment model of

climate change to derive economically optimal risk-reduction strategies.

We implement a stochastic version of the DICE model and account for un-

certainty about four parameters that have been previously identified as dominant

drivers of the uncertain system response. The resulting model is, of course, just

a crude approximation as it neglects, for example, some structural uncertainty and

focuses on a single threshold, out of many potential climate responses. Subject to

this caveat, our analysis suggests five main conclusions. First, reducing the nu-

merical artifacts due to sub-sampling the parameter probability density functions

to reasonable levels requires sample sizes exceeding � � � . Conclusions of previous

studies that are based on much smaller sample sizes may hence need to be revisited.

Second, following a business-as-usual (BAU) scenario results in odds for an MOC

collapse in the next 150 years exceeding 1 in 3 in this model. Third, an economi-

cally “optimal” strategy (that maximizes the expected utility of the decision-maker)

reduces carbon dioxide (CO � ) emissions by approximately 25% at the end of this

century. Perhaps surprisingly, this strategy leaves the odds of an MOC collapse

virtually unchanged compared to a BAU strategy. Fourth, reducing the odds for an
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MOC collapse to 1 in 10 would require an almost complete decarbonization of the

economy within a few decades. Finally, further risk reductions (e.g., to 1 in 100) are

possible in the framework of the simple model, but would require faster and more

expensive reductions in CO � emissions.
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1 Introduction

Anthropogenic greenhouse gas emissions may trigger climate threshold responses

[Alley et al., 2003]. For example, some ocean models predict a collapse of the

North Atlantic meridional overturning circulation (MOC) as a potential threshold

response to anthropogenic carbon dioxide (CO � ) emissions [Stocker and Schmit-

tner, 1997; Cubasch and Meehl, 2001]. An MOC collapse has the potential to

cause widespread temperature and precipitation changes and nontrivial ecological

and economic impacts [Keller et al., 2000; Vellinga and Wood, 2002; Link and

Tol, 2004]. The potential for adverse impacts due to anthropogenic greenhouse gas

emissions raises the question of how — if at all — this risk should be reduced.

An economically efficient strategy would find some optimal balance between the

costs and benefits of reducing these impacts. Numerous studies have applied inte-

grated assessment models (IAMs) of climate change to analyze risk management

strategies in the face of uncertain climate thresholds (e.g., Nordhaus [1992], Toth

et al. [1997], Kelly and Kolstad [1999], Keller et al. [2000], Zickfeld and Bruckner

[2003], Keller et al. [2004], Bruckner and Zickfeld [2004]). Here we use a simple

IAM that accounts for uncertainty in key parameters and the potential for an MOC

collapse to analyze two main questions: (i) What would be the odds of triggering

an MOC collapse for a strategy with unabated CO � emissions? (ii) What would be

economically optimal strategies to reduce the odds of triggering an MOC collapse

to various levels? We address these questions using a simple integrated assessment

model of climate change. This framework is, as any model, subject to numerous

caveats (discussed at the end of this paper).

Our study improves on previous work by a more refined examination of the ef-

fects of parametric uncertainty and the effects of imposing a reliability constraint.

Uncertain parameters are represented by sets of stratified Latin-hypercube samples.

We find that sample sizes exceeding � � � are required to reduce the effects of sam-
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pling resolution to arguably reasonable levels. For a business-as-usual policy (i.e.,

no CO � abatement) the odds for triggering an MOC collapse over the next 150

years exceed 1 in 3. Considering previously published estimates for climate change

damages, we find that optimal carbon abatement increases steadily from more than

10% in 2005 to almost 30% over the next 150 years. However, this economically

“optimal” policy does not considerably reduce the future odds of an MOC collapse

compared to the BAU strategy. Constraining the odds of triggering an MOC col-

lapse to below 1 in 10 requires CO � abatement exceeding 80% within the next 60

years. Reducing these odds further to 1 in 100 is possible in the model, but requires

faster and more expensive abatement — close to 90% abatement over the next 40

years.

2 The integrated assessment model

We adopt the Dynamic Integrated model of Climate and the Economy, DICE [Nord-

haus, 1994], as a simple and transparent framework. This model links an economic

growth model, as pioneered by Ramsey [1928], to a description of the CO � induced

climate change and the resulting economic impacts. Here we describe the general

structure and key parameters of the model. An excellent and very thorough descrip-

tion is given in Nordhaus [1994].

The objective of the decision-problem is to determine abatement and investment

policies that maximize the discounted sum of utility across the considered states of

the world

� � � ��
� � 	


 ��

 � 
 �

� � � � � � �
� � � � � 
 �

(1)

where
�  

is an initial point (the year 1965),
� �

is the considered time horizon, � is

the pure rate of social time preference, and
�

denotes a particular state of the world

(SOW) out of ! considered discrete samples (discussed below). Well-being in the
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DICE model is represented by a flow of utility

� � � � � � � � � � � � � � � �
(2)

where
�

is population, specified exogenously, and
�

is per capita consumption. (The

used symbols are summarized and defined in the Appendix.)

Consumption is the difference between economic output and the sum of in-

vestment in capital stocks, damages caused by climate change and investment in

reducing CO � emissions. The DICE model describes economic output using a

constant-returns-to-scale Cobb Douglass production function with parameters for

labor, capital, and level of technology. Labor inputs are proportional to population.

Economic activity has the side effect of CO � production with an exogenously

evolving ratio between economic output — measured as gross world product

(GWP) — and CO � production. A linear carbon cycle model links CO � emis-

sions to atmospheric CO � concentrations. Radiative forcings by greenhouse gases

besides CO � and through aerosols are prescribed exogenously.

The climate system in DICE is represented by a simple model consisting of an

atmosphere, a surface ocean, and a deep ocean [Schneider and Thompson, 1981].

Higher greenhouse gas levels enhance radiative forcing, warming the atmosphere

and (over time) the deep ocean. The climate sensitivity is an important parame-

ter in this model and represents the equilibrium temperature increase for a hypo-

thetical doubling of atmospheric CO � . Economic damages due to climate change

are approximated by a polynomial fit to previous studies, as described in Nordhaus

[1994]. The original DICE model is modified to consider economic damages caused

by an MOC collapse. Following previous studies, we approximate the model results

of Stocker and Schmittner [1997] by a critical equivalent CO � concentration, be-

yond which the MOC collapses [Keller et al., 2004]. The cost of carbon emissions

abatement is expressed as a function of the fractional reduction in CO � emissions,

� � � �
, relative to uncontrolled emissions.
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3 Representation of parametric uncertainty

Previous work identified four parameters as key drivers of the optimal policy under

uncertainty [Nordhaus and Popp, 1997; Keller et al., 2004]. We improve on these

studies by considering (i) a more refined resolution, (ii) the combined effects of

multiple parameter uncertainty, and (iii) the effects of a “reliability constraint” on

optimal policies (discussed below). The considered parameters are: (i) the damage

associated with an MOC collapse ( �
�
); (ii) the climate sensitivity ( � � ); (iii) the

decline in population growth rate ( � � ); and (iv) the initial growth of the CO � –GDP

ratio, ( � 	 ). The specific choices of parameter distributions, given in Table 1, are

discussed below.

Following Keller et al. [2004], we adopt a uniform distribution for the damages

due to an MOC collapse ( �
�
) between 0% and 3% GWP. For the climate sensitiv-

ity ( � � ) we adopt the empirical distribution reported by Andronova and Schlesinger

[2001] with an expected value of 3.4 
 C and 95% confidence limits of 0.9 
 C and

12.7 
 C. Population growth in the DICE model declines at a constant rate, � � . We fit

a Weibull distribution to the reported discrete samples given in Nordhaus and Popp

[1997] and constrain samples to positive values. The ratio between CO � production

and economic output initially grows at a rate of � 	 . We fit a negative Weibull distri-

bution to the discrete samples given in Nordhaus and Popp [1997], constraining all

samples to negative values. The probability density functions for the four uncertain

parameters are displayed in Figure 1.

Each uncertain parameter is sampled from the appropriate distribution. All other

parameters are considered as certain and their numerical values are adopted from

the DICE model [Nordhaus, 1994]. We refer to a combination of four samples

(one specific sample from each probability density function of the four uncertain

parameters) as a single state of the world (SOW). Taking � � samples from each

distribution yields �
�

� � � SOWs. We adopt the Latin-hypercube sampling tech-
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nique outlined in Nordhaus and Popp [1997] to define the SOW sets. Probability

density functions of the parameters are divided into � � intervals with equal prob-

ability mass. The expected value of the distribution over each interval provides

the � � samples with each SOW being equally likely. The results of this sampling

method are illustrated in Figure 1 for � �

� �
, corresponding to �

� � � �
� � SOWs.

This sampling technique ensures that the mean value of the samples is equal to the

mean value of the distribution, but it neglects potential correlations between the

parameters.

4 The solution method

We determine a single policy that maximizes the expected utility defined in Equa-

tion (1). We apply a numerical optimization method, since analytic solutions are

not available for this problem. The presence of a climate threshold in the DICE

model can introduce non-smooth gradients and local optima in the objective func-

tion [Keller et al., 2004]. As a result, gradient based methods can result in severely

biased results and global optimization methods are required. Based on previous

benchmark results [Moles et al., 2004] we implement the SRES algorithm [Runars-

son and Yao, 2000] to solve this non-convex and nonlinear global optimization

problem. SRES is a genetic optimization algorithm that uses a sequence of mu-

tation and selection to improve an objective function. The algorithm starts with an

initial random population of trial vectors that are evaluated by the objective func-

tion. Some fraction of well-performing members of this population are selected

and used to generate new trial vectors (with random perturbation, akin to the effects

of mutation in the evolution of natural populations). The repeated application of

selection and mutation results in a generally improving objective function without

the typical pitfalls of gradient based methods [Goldberg, 1989]. We consider a time

5



horizon of 470 years to ensure that the finite time horizon has virtually no influence

on the reported results over the next two centuries.

Finding the global optimum for this non-convex optimization problem is non-

trivial. As with all global optimization problems without a known analytical so-

lution, one cannot mathematically prove that the precise global optimum has been

identified in a finite computation time. However, we implement an algorithm for

detecting misconvergence that ensures a close approximation to the optimal solu-

tion. Specifically, we run the SRES algorithm with two sets of initial conditions and

compare optimal strategies at the end of each iteration. When the decision variables

for each optimal strategy differ by a root mean square error of less than 0.5%, the

two solutions are for practical purposes identical and likely a good approximation

to the global maximum. In case this approach does not lead to convergence, we

switch to another global optimization algorithm [Runarsson and Yao, 2005]. So-

lutions that still have not converged with the second algorithm are discarded and

the process is reinitialized with a new random initial population. This procedure

is continued until the convergence criteria is satisfied. The model code is available

upon request.

5 Analyzed strategies

We compare three strategies: (i) business-as-usual (BAU), (ii) unconstrained opti-

mal, and (iii) reliability constrained optimal. For BAU, carbon emissions remain

unabated. This is implemented by setting abatement ( � ) to zero and optimizing

utility (Equation 1) as a function of relative investment ( � � � ) only. For the un-

constrained optimal policy, we maximize the objective function by choosing � and

� � � . Abatement is set to zero between 1965 and 1995, to reflect past policies,

and BAU investment values are used for these times. Reliability constrained opti-
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mal policies maximize the expected utility with the additional constraint to keep the

odds of triggering an MOC collapse below a specified level. This is implemented by

introducing a penalty to the objective function when the odds of an MOC collapse

exceed the specified reliability.

6 Results and discussion

6.1 Effects of sampling resolution

Previous studies analyzing related decision problems use relatively low resolutions

for the SOW sampling, ranging on the order of � �

�
to � �

� samples (e.g., Chao

[1995], Yohe [1996], Zickfeld and Bruckner [2003], Bruckner and Zickfeld [2004],

Keller et al. [2004]). For a nonlinear system, such low resolutions can introduce

considerable biases [Tol, 2003]. Here we evaluate these biases for a subset of the

uncertain parameters and model structure. To this end, we compare optimal strate-

gies estimated at different resolutions to identify when further resolution increases

have negligible effects. In each case, � � samples of each uncertain parameter are

taken, leading to � � � SOWs. Figure 2 illustrates the unconstrained optimal abate-

ments when one (circles), seven (squares), and 15 (stars) samples of each uncertain

parameter are taken. Note that the linear increase in samples per model parameter

( � � ) results in a geometric growth of the number of SOWs (following �
�

� � � )

and the approximate computational requirements. Solving the optimal control prob-

lem for � �
�

� � implies �
�

� �
� � �

� SOWs and requires approximately 16 hours

on a high performance computer cluster (8 nodes with dual 2.4 GHz processors).

Carbon abatement exceeds 10% in 2005 and rises to more than 20% over the

subsequent 80 years, regardless of the reliability constraint. For � �
�

� abatement

increases sharply immediately, reaching approximately 60% in 2155. After 2155,

abatement levels drop to around 20%. In this case an MOC collapse is delayed, but
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not avoided. Increasing the numerical resolution changes the results considerably.

For � �

� �
and � �

�
� � , abatement increases steadily to around 30% over the

next 150 years. The optimal abatement levels for � �

� �
are practically indistin-

guishable from the more computationally involved calculations using � �

�
� � .

The biases introduced by the discreet sampling of the underlying probability

density functions decrease almost monotonically, with small changes beyond � �

�

�
(Figure 3). Beyond � �

� �
the solution has, for practical purposes, converged.

This suggests that � �

� �
provides a reasonable approximation for the specific

parametric uncertainty in the chosen model structure. We adopt this value for the

more detailed analysis below. It is important to note that this study focuses on

uncertainty about a subset of the model parameters. As a result, the true uncertainty

is likely larger than the one reported here.

6.2 What are economically optimal risk reduction strategies?

The analysis, so far, adopts the expected utility maximization approach of previous

studies [Nordhaus, 1992]. Expected utility maximization may be a useful frame-

work for cases with well known costs and benefits and where the decision-makers

actually adopt this decision criteria. Expected utility maximization can, however,

be a poor description of decision making when the negative impacts are not easily

quantified or the underlying probability functions are deeply uncertain [Bradford,

1999; Lempert, 2002]. Decision problems that arguably fall into these categories

include the design of dikes, water reservoirs and nuclear power stations. Such prob-

lems are often solved by imposing a reliability constraint on the accepted odds of

failure [Ouarda and Labadie, 2001; van Manen and Brinkhaus, 2005]. Here we an-

alyze how a reliability constraint on the odds of avoiding an MOC collapse affects

the timing and extent of CO � abatement.

The odds for an MOC collapse over the next 150 years exceed 1 in 3 for the
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BAU policy (Figure 4 b). Optimal reductions of CO � emissions without a reliability

constraint do not considerably decrease these odds. The fact that the optimal pol-

icy in this model considering published estimates of economic damages of climate

change (including damages due to an MOC collapse) results in considerable odds

of an MOC collapse is in contrast to previous results and warrants some discus-

sion. Nordhaus [1994, p.115] considers the effects of a climate catastrophe (with

economic impacts in the tens of percent of GWP) on optimal climate policy for

a single SOW. In this case, the optimal policy without parameter uncertainty is

to avoid the catastrophe. Keller et al. [2004] show that much smaller damages

(less than 2% of GWP) results in an optimal policy that avoids an MOC collapse

for a single SOW. Considering parametric uncertainty in the model of Keller et al.

[2004] results in lower optimal abatement levels. The current study considers a

more thorough representation of parametric uncertainty. Hence, the current results

are generally consistent with the previously observed effects of parameter uncer-

tainty in this decision problem [Keller et al., 2004]. We hypothesize that improving

some of the known shortcomings of the DICE model (e.g., the static representation

of the technology for reducing CO � emissions [Keller et al., 2003] and the use of a

relatively high rate of social time preference that decreases the importance of future

climate change impacts [Nordhaus, 1994]) would result in higher CO � abatement

and lower odds of triggering an MOC collapse in the optimal policy.

One might ask how much CO � abatement is required to significantly reduce the

odds for an MOC collapse? Decreasing the odds of an MOC collapse to 1 in 10

increases the (constrained) optimal abatement to approximately 80% in the next 60

years (Figure 4 a). Decreasing these odds further to 1 in 20 or 1 in 100 is possible (in

the framework of the model), but requires higher and more expensive abatement. A

reliability constraint of 1 in 100 implies almost 90% abatement in the next 40 years.

Whether such a rapid and almost complete decarbonization of the global economy
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is feasible is an open question.

Parametric uncertainty translates into predictive uncertainty. This is illustrated

in Figure 5 for BAU, the unconstrained optimal policy and the reliability con-

strained optimal policy with odds for an MOC collapse of 1 in 10. Emissions in-

crease substantially between 2055 and 2105 for the BAU and optimal policies (Fig-

ure 5 a,b); the mean value of emissions increases from 24 Gt C a
� �

to 38 Gt C a
� �

for BAU and from 19 Gt C a
� �

to 28 Gt C a
� �

for the optimal policy. In contrast,

the optimal reliable policy results in mean CO � emissions of 5.7 Gt C a
� �

in 2055

and 2.8 Gt C a
� �

in 2105. The differences in CO � emissions drive differences in at-

mospheric CO � concentrations (Figure 5 c,d). Between 2055 and 2105, mean CO �

concentrations increase from 560 ppm to 850 ppm for the BAU policy, and from

520 ppm to 725 ppm for the optimal policy. The optimal reliable policy, in con-

trast, has a reduced mean CO � concentration of 460 ppm in 2055 and 450 ppm in

2105. The reduced CO � concentrations for the optimal reliable policy result in de-

creased global warming (Figure 5 e,f). For the BAU and optimal policies, the mean

temperature increases to 2.3 � C and 2.1 � C respectively. This increase is 1.9 � C for

the optimal reliable policy. The effect of different strategies on temperatures be-

comes more noticeable over time. In 2105, the mean temperature increase for the

BAU, optimal and reliability constrained optimal case are 3.6 � C, 3.3 � C and 2.2 � C

respectively.

7 Caveats

This study improves on previous studies by considering the effects of reliability

constraints and more refined numerical resolution, but is still silent on potentially

important questions. For example, we analyze only the effects of a single threshold

out of many possible climate responses [Keller et al., 2005], consider only uncer-
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tainty about a subset of the model parameters, and neglect structural uncertainty,

stochastic variability and the distinct possibility that we may learn in the future

[Kelly and Kolstad, 1999].

The issue of structural uncertainty can be illustrated by the adopted choice of

a single MOC model [Stocker and Schmittner, 1997]. As discussed in Cubasch

and Meehl [2001], the MOC varies widely across model implementations. Several

models (e.g. Latif et al. [2000]) suggest a stabilizing feedback that results in a

basically insensitive MOC. Which MOC model is a more appropriate description

of reality is currently deeply uncertain [Cubasch and Meehl, 2001]. This structural

uncertainty could be represented by a Bayesian Model Averaging approach [Hoet-

ing et al., 1999]. Assuming a binary mixture of the adopted sensitive MOC model

[Stocker and Schmittner, 1997] and a member of the insensitive MOC models [Latif

et al., 2000] with ignorant priors (�
�

� � � for both) would reduce the reported odds

of triggering an MOC collapse by a factor of two. As discussed in Keller et al.

[2005], future observations have a strong potential to reduce this uncertainty.

8 Conclusion

We examine the effect of parametric uncertainty and the potential for an MOC col-

lapse in an economic optimal growth model. We expand on previous studies by

considering (i) the effects of a reliability constraint, (ii) a larger number of uncer-

tain parameters, and (iii) a more realistic numerical resolution.

A business-as-usual strategy results in considerable odds of an MOC collapse

(exceeding 1 in 3 in the next 150 years in this simple model). An unconstrained

optimal policy does not reduce these odds considerably. Reducing these odds to 1

in 10 requires an almost complete decarbonization (greater than 80%) over the next

60 years. A further reduction to 1 in 100 reduces this decarbonization time scale to
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40 years.
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Appendix 1: List of symbols

symbol definition

BAU business-as-usual

CO � carbon dioxide
�

per capita consumption per year

� � decline in population growth rate

GDP gross domestic product

GWP gross world product

� � initial growth in CO � –GDP ratio

� gross investment
�

population

� � climate sensitivity

� CO2 abatement relative to the BAU scenario

� number of SOWs

� � number of samples of each uncertain parameter

� GWP

� pure rate of social time preference

SOW state of the world
�

SOW index
�

time
� �

start of considered time horizon
� �

end of considered time horizon

�
�

threshold specific fractional economic damage
�

flow of utility
� �

discounted sum of utility
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Table Legends

Table 1: Summary of the considered uncertain parameters. MOC refers to the North

Atlantic meridional overturning circulation.
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Figure Legends

Figure 1: Probability density functions (PDFs) for the considered uncertain param-

eters. Shown are: (i) the damage associated with an MOC collapse collapse ( �
�
),

(ii) the climate sensitivity ( � � ), (iii) the decline in population growth rate ( � � ), and

(iv) the initial growth in CO � to GDP ratio ( � � ). The triangles denote the locations

of the stratified Latin-hypercube samples for � 	
� �

. See text for details on the

sampling procedure.

Figure 2: Optimal abatement levels for � 	
�

� (circles), � 	
� �

(stars) and

� 	
�

� � (squares). These sampling densities correspond to 1, 2,401 and 50,625

states of the world respectively.

Figure 3: Effects of increasing sampling resolution on approximation error. Shown

are the mean difference (calculated from 2005 to 2155) between optimal abatement

as a function of the numbers of states of the world (SOWs) compared with the opti-

mal solution for 50,625 SOWs. The number of samples of each uncertain parameter

are marked on the plot. The solution has practically converged beyond
�

�
�

2,401

SOWs.

Figure 4: (a) Abatement strategies and (b) the potential odds of an MOC collapse

for the business-as-usual policy (BAU), the unconstrained optimal policy and the

optimal policies with odds for an MOC collapse constrained below 1 in 10, 1 in 20

and 1 in 100.

Figure 5: Cumulative density functions (CDFs) of carbon dioxide (CO � ) emissions

in (a) 2055 and (b) 2105; atmospheric CO � concentration in (c) 2055 and (d) 2105;

and temperature increase in (e) 2055 and (f) 2105. The business-as-usual strategy

is represented by the dotted lines, the unconstrained optimal strategy by the dashed
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lines and the optimal strategy with odds of an MOC collapse constrained below 1

in 10 by the solid lines.
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Table 1:

Parameter Units Symbol Mean 95% confidence Distribution Reference
limits type

MOC % GWP �
�

1.5 � � � �
�

�
�

Uniform [Keller et al.,
specific

�
� �

�
� � 2004]

damages
Climate � C � � 3.4 � � � �

�

Empirical [Andronova and
sensitivity �

�
�

�
� Schlesinger, 2001]

Decline in Per � � 0.2 � � � � �
�

Weibull [Nordhaus and
population decade � �

� �
� Popp, 1997]

growth
Initial Per � � -0.1168 � � � � � �

�

Weibull [Nordhaus and
decline of decade � � � � � Popp, 1997]

CO � to
GDP ratio
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