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Abstract
We present a decomposition approach for integrated assessment modeling of climate pol-

icy based on a linear approximation of the climate system. In our formulation the economic
and natural science components are processed independently on different time scales. Turnpike
properties of the Ramsey growth model can be exploited to provide a precise representation of
post-terminal emissions and to reduce the economic horizon required to accurately approximate
transition paths. Germaine to the economic assessment of climate policies, our decomposition
accommodates formulation of the economic model in a complementarity format and thereby
provides a means of incorporating second-best effects that are not easily represented in an op-
timization model.

JEL classification: C61, C63, D58, D61

Keywords: integrated assessment; decomposition; terminal constraints; optimal taxation

1 Introduction

Integrated assessment modeling emerged in the mid-eighties as a new paradigm for interfacing
science and policy concerning complex environmental issues. An integrated assessment model
combines complementary knowledge from various disciplines in order to derive insights into ques-
tions of policy design. Integrated assessment models (IAMs) link mathematical representations
of the natural system and the socio-economic system to capture cause-effect chains including
feedback. An early example of integrated assessment is the RAINS model of acidification in
Europe [Alcamo et al. 1985]. Over the past years, a variety of models have been developed for
the integrated assessment of climate change – for surveys see Weyant et al. [1996], Parson and
Fisher-Vanden [1997], or Kelly and Kolstad [1999].

Figure 1 illustrates the basic structure of IAMs employed for climate policy analysis. These
models aim to represent the causal chain through which (i) economic activities trigger anthro-
pogenic greenhouse gas emissions, (ii) emissions of greenhouse gases translate into atmospheric
concentration, temperature shift, and climate change, and (iii) climate change feeds back via
the ecosystem to the economy.

Weyant et al. [1996] distinguish two broad classes of IAMs of climate change: policy simu-
lation models which assess specific policy measures and policy optimization models which seek
optimal policies. Policy simulation models typically are used to evaluate the impact of a specific
exogenous policy. Avoiding optimization, these models are descriptive and can contain much
greater modeling detail on bio-/geophysical, economic or social aspects (see e.g. the Integrated
Model to Assess the Greenhouse Effect – IMAGE – by Rotmans [1990]). As a downside, the
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Figure 1: Schematic Structure of Integrated Assessment Models for Climate Change

impacts investigated in detailed simulation models may be more difficult to interpret [Kelly and
Kolstad 1999].

Policy optimization models are normative in the sense that they seek to derive an “ideal”
best-response policy, usually defined from an economic efficiency viewpoint. Assuming rational
behavior of economic agents, policy instruments such as emission control rates or emission taxes
are derived given explicit objectives, e.g., maximizing social welfare or minimizing the social costs
of meeting exogenous environmental targets. Two prominent examples of optimizing IAMs cast
as nonlinear programs are the Dynamic Integrated Climate Economy (DICE) model by Nord-
haus [1994] and A Model for Evaluating Regional and Global Effects of GHG reduction policies
(MERGE) by Manne and Richels [1992], both of which incorporate stylized representations of
both the global economy and the global carbon cycle.

From our point of view there are two key difficulties with policy optimization IAMs in the
literature. First, integrated assessment models must be solved over very long time horizons in
order to provide a consistent accounting of both the costs and benefits of climate policy. The
overall model horizon is dictated by the climate component which is typically run over two to
three hundred years. When climate and economic equilibria are solved as a simultaneous system,
the need to run over a very long horizon demands a sparse level of modeling detail in order to keep
the optimization algorithm tractable. For this reason, IAMs are necessarily based on compact
representations of both the socioeconomic and natural science systems. A second disadvantage
of optimizing IAMs is due to their traditional formulation as nonlinear programs which do not
readily admit second-best effects such as preexisting tax distortions. Thus, “optimal” policies
emerging from IAMs formulated as nonlinear programs are only optimal in a perfect, undistorted
economy.

We present a new approach for IAMs of climate change which overcomes these two central
shortcomings. A decomposition of economic and climate problems allows us to run these sub-
models on different time scales. We solve the climate model over a long time horizon in order to
produce a precise approximation of climate dynamics and future climate state, and we solve the
economic sub-model, formulated either as a nonlinear program or as a mixed complementarity
problem (MCP – see Rutherford [1995]), over a shorter time horizon, consistent with the decades

2



in which policy design is relevant. A shorter horizon in the economic model expands the scope for
policy-relevant details on other model dimensions such as regional or sectoral disaggregation.1

Furthermore, our procedure is readily applied to economic models posed as complementarity
problems, hence providing the opportunity to incorporate second-best effects. Policy-relevant
complexities such as distortionary taxes and market failures (e.g. knowledge spillovers) can then
be accounted for in the policy design process.

A third important benefit of our decomposition – independent of the IAM’s representation
as an optimization problem or a mixed complementarity problem – is the convenient division of
work between expert modelers in different disciplines: For integrated assessment the economic
modeler need not implement models of climate dynamics or bio-physical impacts while natural
scientists can abstain from dealing with economic policy analysis.

The remainder of this paper is as follows. In section 2, we lay out the generic decomposition
approach and explain how this accomodates a complementarity formulation of the economic
submodel. In section 3, we demonstrate the advantages of the decomposition for approximating
the infinite horizon of the DICE model, a prototype IAM in the field of climate change policy
analysis. We then extend the basic DICE setting with public goods funded through distortionary
taxation in order to illustrate the importance of a second-best setting for the design of climate
policies. In section 4, we conclude. An algebraic summary of the alternative DICE formulations
is provided in Appendix A. Programming codes for the numerical models are in Appendix B.

2 Decomposition

Policy optimization models of climate change typically adopt a cost-benefit perspective in which
the marginal costs of controlling greenhouse gas emissions are balanced against the marginal
damages induced by those emissions. Climate change impacts are portrayed by a “damage
function” which features parametric relationships between economic losses and changes of the
climate state. The damage function can be based on explicit models describing climate change
impacts in natural vegetation, agricultural yields, water availability, etc. In compact IAMs
such as DICE, climate change damages are often related in reduced form to the global mean
temperature. Damages may affect either or both consumption and production activities.

In stylized terms we formulate the climate policy problem as a nonlinear optimization problem
(NLP) of a representative infinitely-lived agent:

max
∞∑

t=0

(
1

1 + ρ

)t

U(Ct, Dt) (1)

1Chang [1997] uses Benders decomposition approach to the solution of the MERGE integrated assessment
model [Manne et al. 1995]. MERGE is thereby decomposed into early and late periods and these two sub-models
are solved iteratively to produce intertemporal optimality. Unlike our approach, however, Chang’s representation
of the MERGE model retains both economic and climate components in an integrated optimization problem
whereas our formulation explicitly separates the economic and climate science components which may then operate
on different time scales.
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s.t. Ct = F (Kt, Dt, Et)− It

Kt+1 = (1− δ)Kt + It

Dt = Dt(TE
t )

TE
t = H(St)

St+1 = G(St, Et)
K0 = K̄0, S0 = S̄0

where:

ρ is the discount rate,

U denotes instantaneous utility reflecting both final consumption and the disutility of climate
damages,

Ct represents consumption in period t,

F characterizes aggregate production in period t as a function of capital, damages (with poten-
tially adverse effects on productivity), and emissions,

Dt denotes damages of climate change in period t,

TE
t is the global mean temperature in period t,

Kt is the capital stock in period t (with K0 = K̄0 as the initial capital stock),

Et are emissions in period t,

It is investment in period t,

H describes the functional relationship between the climate state and temperature,

St is a vector of the climate state (with S0 = S̄0 as the initial climate state), and

G characterizes the motion of the climate state as a function of the previous climate state and
current anthropogenic emissions.

We merge the relationships TE
t = H(St) and St+1 = G(St, Et) into a single equivalent

equation
TE

t = Γt(S0, E0, E1, ..., Et−1), (2)

where Γt relates temperature in period t as a function of the initial climate state and emissions
in previous periods.

Our decomposition is based on a linear approximation of the climate response to anthro-
pogenic activities, i.e. emissions, of the economic system:

TE
t ≈ T̄E

t +
t∑

τ=0

γtτ (Eτ − Ēτ ) (3)

where

T̄E
t is the reference value of period t temperature,

Ēτ is the reference emissions in period τ , and
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γtτ denotes the gradient of climate response (temperature) in period t to anthropogenic emis-
sions in period τ < t.

Within the economic model the values of γtτ are treated as constants. The climate model is
nonlinear, so iterative refinement of the Jacobian is required. They are updated in each outer
iteration of the decomposition algorithm as:

γtτ =
∂Γt(S0, E)

∂Eτ

∣∣∣∣
E=Ē

(4)

In our implementation of DICE, the Jacobian for the climate sub-model is approximated with
numerical differencing:

γtτ ≈ T̄E
t − Γt(S0, E0, ..., Ēτ + ε, ..., Ēt)

ε
. (5)

This procedure quickly converges for our illustrative application.
Figure 2 summarizes the basic decomposition approach for our simplified climate policy prob-

lem. We start from a reference emission trajectory Ēt which is provided by the economic model
to the climate model. The climate model calculates the associated point impacts and emissions
sensitivities (i.e., T̄ t, the temperature trajectory, and γtτ , impacts on temperature in period t of
emissions in period τ). These information are returned to the economic model for a subsequent
optimization based on a linear approximation of the climate impact. The decomposition process
is iterated to convergence. Were there multiple emission sources or greenhouse gases g emit-
ted over time periods t, we would compute one numerical difference for each gas/time period,
rendering a total of |g| × |t| simulations.

Numerical differencing is only computationally tractable for small-scale climate models with
solution times measured in seconds. However, our decomposition approach can still be applied
to moderate-scale climate models with tolerable solution time (say hours) by using existing tech-
niques for finding the Jacobian of climate variables.2 Furthermore, for many policy applications
and thought experiments, the use of highly simplified reduced-form climate models seems ap-
propriate. For example, large-scale coupled general circulation models (GCMs) which are the
most reliable instruments currently available for the estimation of anthropogenic climate change
can be replaced by very compact reduced-form models with solution times in seconds provided
they are properly calibrated to the underlying GCM (see Hoos et al. [2001]).

An obvious benefit of our decomposition is that it permits the economic model and the climate
model (either in complex or reduced form) to be developed by separate teams with experts from
the respective disciplines. Likewise, the approach permits decomposition of effects associated
with the different model components – it becomes, for example, easy to interchange the climate
model as part of a sensitivity analysis of policy proposals.

A more subtle advantage of the decomposition relates to differences in the nature of time
scales for economic and climate models. Intertemporal optimization by economic agents requires
that the economic model be solved simultaneously over a time horizon sufficiently long to trace
the transition toward a new steady-state, [Lau et al. 2002]. Current investment depends on
future returns to capital, future emissions, future damages, etc. In contrast, the climate model

2Sensitivity analyses of climate models is commonly employed to obtain an optimal fit between model results
and observations. In order to avoid a computationally expensive approximation of the Jacobian by finite dif-
ferences, climatologists have developed automated methods to calculate derivatives analytically based on source
code of the climate model (see Giering and Kaminski [1998]).
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Figure 2: Basic Decomposition Approach

can be evaluated recursively given emission paths from the economic model. Decomposition
can therefore simplify the numerical calculation, as it is no longer required to solve the climate
system as a simultaneous system of equations.

A further advantage of the decomposition is realized when we formulate the underlying eco-
nomic model as a mixed complementarity problem (MCP). The MCP framework exploits the
complementarity features of economic equilibrium, thereby including the NLP representation
of economic equilibrium as a special case (Mathiesen [1985], Rutherford [1995]). By forming
the Lagrangian and differentiating, a nonlinear program can be posed as a complementarity
problem based on Karush-Kuhn-Tucker conditions. The MCP formulation relaxes the so-called
“integrability constraints” imposed by the NLP framework; one can directly address second-best
settings that reflect initial inefficiencies.

Projecting Post-Terminal Emissions and Mitigation

The Ramsey model, which provides the basis for nearly all policy-oriented IAMs, is an “exoge-
nous growth model” (see Barro and Sala-I-Martin [1995], Chapter 2). Primary factor supplies
and the intertemporal discount rate are both model inputs, so the long-run growth rate and
interest rates are both known. A policy shock in the Ramsey model produces changes in levels
but not in growth rates. For this reason, we can estimate emissions paths and damages in the
post-terminal period provided that we have an accurate approximation of prices and quantities
through the transition period.
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Shadow prices on climate impacts are Lagrange multipliers in the NLP and explicit variables
in the MCP model. These values provide a means of balancing the near-term cost with the long-
term benefits offered through emissions abatement. An economic cost undertaken in period t
(the cost of which is reflected in the shadow price of emissions abatement in that year) provides
benefits for subsequent periods τ > t in the same way that capital formation in year t leads to
a stream of capital services in subsequent periods.

A linear approximation to the climate model clearly describes the time profile of marginal
benefits associated with emission reductions. The first order condition for emissions in year t
compares the cost of abatement with the benefits of the reduction in emissions in later periods
of the economic model and in those periods which lie in the post-terminal period:

−pt
∂F

∂Et
=

∞∑
τ=t

∂Γτ

∂Et
pD

τ =
T∑

τ=t

∂Γτ

∂Et
pD

τ +
∞∑

τ=T+1

∂Γ̃τ

∂Et
p̃D

τ (6)

where

pt is the price of the aggregate production good in period t,

pD
τ is the price (cost) of damage in period τ , and

p̃D
τ is the marginal cost of damage projected in a period τ > T , based on terminal damage and

the post-terminal interest rate (r̄):

p̃D
t = pD

T

(
1

1 + r̄

)t−T

.

While there are similarities between economic and climate investments, there are substantial
differences in the time frame over which these investments pay off, as is illustrated in Figure
3. This figure considers the marginal contribution of benefits over future years of two different
types of “investment” in year 80 in the DICE model. The time path labeled “climate” evaluates
the return to a marginal reduction in greenhouse gas emissions in year 80 while the path labeled
“capital” measures the stream of returns to an additional unit of physical capital formation in
year 80. At the margin both types of investment are just profitable, but the time frame over
which the benefits accrue is much longer in the case of climate capital than in the case of physical
capital. This difference explains in large part why out decomposition procedure works so well.
Climate effects operate over a longer time scale than economic effects, and for this reason the
climate model needs to operate over a longer horizon than the economic model.

In contrast, conventional IAMs employ “transversality” weights in the objective function
which reflect post-terminal climate impacts. The specification of the values for these parameters
remains ad-hoc [Nordhaus 1994] and can have substantial impact on results, as we demonstrate
below.

Integrability Constraints

First-order conditions of mathematical programs only correspond to equilibrium conditions for
the case of integrability that implies efficient allocation (see e.g. Takayma and Judge [1971]).In
practical terms, integrability refers to a situation where the shadow prices of programming con-
straints coincide with market prices. Since many interesting economic problems are associated
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Figure 3: Time Structure of Returns to Economic and Climate Investments

with non-integrable second-best situations – e.g. due to ad-valorem taxes, institutional price
constraints, or spillover externalities – the classical optimization approach to integrated assess-
ment is relatively limited in the scope of policy applications.3 In contrary, the MCP formulation
of economic problems permits the incorporation of “non-integrabilities” to reflect inefficiencies
of market allocation.

3 Illustration

We illustrate the advantages of our decomposition approach using the DICE model by Nord-
haus [1994]. This model was originally formulated as a nonlinear program in an integrated,
simultaneous system of equations. Because of its simplicity and relative transparency, DICE
and its multiregional extension, RICE [Nordhaus and Yang 1996], have been widely used for the
integrated assessment of climate change. DICE is based on Ramsey’s model of saving and in-
vestment. A single world producer-consumer chooses between current consumption, investment
in productive capital, and costly measures to reduce current emissions and slow climate change.
Population growth and technological change (productivity growth) are both exogenous. The
representative consumer maximizes the discounted utility of consumption over an infinite hori-
zon subject to a Cobb-Douglas production function which includes damages from climate change
as a quadratic function of changes in global mean temperature. In the absence of abatement
measures, anthropogenic emissions occur in direct proportion to output. Emissions per unit
output are assumed to decline exogenously at a fixed rate and can be further reduced by costly
emission-control measures. Within a simple reduced-form “two-box” (ocean and atmosphere)

3Integrability problems may be relaxed in the optimization context by adding terms to the objective and
solving a sequence of nonlinear programs to obtain a market equilibrium (see e.g. Manne and Rutherford [1994]).
However, sequential joint maximization with tax distortions is tedious and error-prone.
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climate sub-model based on Schneider and Thompson [1981], emissions accumulate and increase
the stock of greenhouse gases in the atmosphere. As this stock grows, it increases the amount
of solar radiation trapped by the earth’s atmosphere which in turn triggers an increase in global
mean temperature.

For our illustrative application of the decomposition approach, we distinguish two alternative
mathematical formulations of DICE: the familiar implementation as an integrated model (int)
and its representation as the combination of separate climate and economic models (dec).
The int implementation adopts the terminal constraints (“transversality” adjustment terms)
as suggested by Nordhaus, where as the dec implementation employs cost-benefit calculus of
climate impacts through the climate model.4

3.1 Horizon Sensitivity

In order to evaluate the sensitivity of the optimal policy with respect to the model horizon,
we run both models for horizons of 5, 10, 20, and 40 periods (with each period representing a
10-year time interval). The decomposed model uses an economic horizon of the specified length
but runs the climate model over a 600 year horizon. As is evident in Figure 4, the decomposed
model is virtually insensitive to the model horizon, whereas the integrated model shows a drastic
sensitivity, in particular for the first few decades. The key policy instrument in the DICE model
is the emissions control rate, i.e., the fraction of emissions which are mitigated relative to the
uncontrolled level. Differences in optimal emission control rates between the two formulations
differ substantially, particularly for short time horizons. Precise terminal approximation in the
decomposed model offers scope for improvements in the range and details of policy analysis that
can be covered, including regional, sectoral or technological details.

3.2 Revenue Replacement

A decomposed MCP formulation can incorporate second-best effects. We illustrate the impor-
tance of market distortions by considering a simple extension of the DICE model in which a
public good provided in each period is funded through a distortionary tax on capital earnings.
In the reference simulation, we hold the capital tax fixed at an exogenous rate and compute the
“optimal” abatement profile together with the resulting level of public goods provision.5 In the
counterfactual simulation we endogenize the capital tax rate through an equal-yield constraint
(keeping public good provision at the reference level) and evaluate the marginal utility of devia-
tions from the “optimal” abatement profile for each model period. Carbon taxes then serve two
roles in the model. They change relative prices to induce conservation, and they raise public
funds thereby providing an opportunity to decrease the capital tax.

As has been well established in the economic literature, preexisting tax distortions affect
the economic cost of environmental policy instruments. When the government applies emission
restrictions, these raise revenue which may be used to reduce other taxes. In the case where rev-
enues from carbon permit sales are used to replace distortionary taxes, the “optimal” abatement
profile based on a first-best setting is too low. This occurs because the marginal benefit calculus

4The algebra for both models is provided in Appendix A and GAMS code for these models is provided in
Appendix B. We provide coding of the decomposed model in both NLP and MCP formats, and these formulations
produce identical results.

5“Optimal” – as suggested by the traditional optimization approach – implies that direct marginal abatement
cost are equated with the marginal benefits from avoided damages.
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Figure 4: Sensitivity of Emission Control Rate
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in the optimization framework is implicitly based on a marginal cost of public funds equal to 1,
whereas distortionary financing of public provision implies that the marginal cost of public funds
is greater than one. As illustrated in Figure 5, the larger the baseline tax rate on capital in our
example, the larger is the marginal benefit of increasing stringency of environmental restrictions.
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Figure 5: Welfare Impact of 1% Increase in Abatement
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4 Conclusions

In this paper, we have presented a new approach to integrated assessment modeling of climate
change. Our decomposition of IAMs is based on a linear approximation to the climate sub-
model and permits the economic and natural science components to be processed independently
on different time scales. An accurate cost-benefit calculus can be performed based on the climate
submodel operating over a longer time horizon while the economic model focuses on the policy-
relevant near term policy options. From a computational point of view, the reduction in model
periods vis-à-vis integrated models permits more scope for policy-relevant details. Furthermore,
a decomposition approach based on a complementarity formulation of the economic system
provides a convenient means of incorporating second-best effects that may substantially alter
policy conclusions based on the assumptions of perfectly undistorted economies.

Decomposition allows the separation of components from different disciplines through a con-
sistent, well-defined interface. The economic model generates emission paths, and the climate
model returns climate impacts and their partial derivatives with respect to emissions. In this
way, modelers in each discipline can focus on their specific expertise. Furthermore, the decom-
position permits assessment of the relative importance of the various model components. For
example, it becomes possible to interchange the climate sub-model and evaluate sensitivity of
optimal abatement policies with respect to alternative formulations of natural science relation-
ships. We leave such an investigation for future research.
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A Algebraic Model Formulations

We use the DICE model by Nordhaus [1994] – a standard Ramsey model of savings and invest-
ment that combines stylized representations of the global economy and the climate – in order to
illustrate the advantages of the decomposed mixed complementarity framework for integrated
assessment.

In section A.1, we start with the original implementation of DICE as a nonlinear program
(NLP). In section A.2, we proceed with the decomposition of the integrated economy-climate
model while maintaining the NLP formulation of the economic sub-model. In section A.3, we
re-cast the NLP formulation of the economic sub-model as a mixed complementarity problem
(MCP) thereby making use of state-variable targeting for the economic sub-model and cost-
benefit calculus through the climate sub-model to better approximate the infinite horizon. In
section A.4, we lay out a simple public finance extension to account for pre-existing market
distortions within the MCP framework.

A.1 Integrated NLP Formulation

The standard assumptions for the Ramsey model imply that the optimal allocation of resources
by a central planner who maximizes the utility of the representative agent is identical to the
optimal allocation of resources in an undistorted decentralized economy. The first-order con-
ditions of the associated NLP formulation can thus be interpreted as the outcome of idealized
competitive markets.

In the NLP setting, the representative agent explicitly maximizes the discounted value of
“utility” from consumption subject to a number of economic and geophysical constraints.

Objective function

The economic objective function in DICE is defined as:

T∑

t=1

ρtLt log[C(t)/L(t)] (A-1)

where:

Ct is consumption in period t,

Lt is the exogenous labor supply in perid t (population growth), and

ρt denotes the discount factor.

Economic constraints

The economic model consists of equations describing technology, abatement options, output
markets, emissions, and capital accumlation. Gross economic output is given by a standard
Cobb-Douglas function:

Qt = atL
1−γ
t Kγ

t (A-2)

where:

Qt denotes gross economic output,
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at represents the level of total factor productivity,

Kt is the capital stock in period t (with K0 = K̄0 exogenously specified), and

γ is the capital value share (capital elasticity in output).

Abatement options are described by a geometric control cost function:

At = b1Υb2
t (A-3)

where:

At is the abatement level in period t,

Υt denotes the emission control rate in period t, and

b1, b2 are the exogenous paramters of the abatement cost function.

Total emissions are directly linked to gross output. The emission control rate Υt describes
the endogenous relationship between emissions and gross output:

Υt = 1− Et

σtQt
(A-4)

where:

Et denotes the emissions in period t, and

σt is an exogenous efficiency improvement factor which scales down the emission intensity of
macro production over time.

Output net of abatement and damage costs (both of which measured as loss in output) equals:

Yt = Qt −AtQt −DtYt (A-5)

where Yt represents net output in period t, and Dt denotes damages of climate change in period
t.

In each period, net economic output is divided between consumption and investment:

Qt = Ct + It (A-6)

The capital stock is determined by the balance between depreciation and capital investment:

Kt = (1− δ)Kt−1 + It (A-7)

where δ denotes the capital depreciation rate.
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Geophysical constraints

The climate sub-model in DICE contains four stylized geophysical relationships that link together
the different forces affecting climate change: emission accumulation and transportation (carbon
cycle), radiative forcing, and temperature-climate relationships for the atmosphere and lower
oceans.

Emission accumulation and transportation is defined as:

Mt = 590 + βEt + (1− δM )(Mt−1 − 590) (A-8)

where:

Mt denotes the atmospheric concentration of CO2 emission,

β is the marginal atmospheric retention rate, and

δM represents the carbon transfer rate to deep ocean.

Radiative forcing is a function of CO2 emission concentration and other non-CO2 greenhouse
gases:

Ft = 4.1
(

log(Mt/590)
log(2)

)
(A-9)

where Ft is radiative forcing (i.e. the increase of surface warming in watts per square meter), and
Ot represents other greenhouse gases (most notably CH4 and N2O) that are taken as exogenous.

Radiative forcings warm the atmospheric layer, which in turn warms the upper ocean, thereby
gradually warming the deep oceans. Due to thermal inertia of different layers there are time
lags in climate change. The links between radiative forcing and temperature changes in the
atmosphere and the deeper oceans are given as:

TE
t = TE

t−1 + c1[Ft−1 − c2T
E
t−1 − c3(TE

t−1 − TL
t−1)] (A-10)

TL
t = TL

t−1 + c4(TE
t−1 − TL

t−1) (A-11)

where:

TE
t is the temperature in the atmosphere,

TL
t is the temperature in the lower oceans, and

c1, c2, c3, c4 are geophysical parameters of climate dynamics.

Economic-geophysical linkage constraint

The interface between the economic system sub-model and the climate system sub-model is given
by an assumed quadratic relationship between atmospheric temperature and climate change
damage:

Dt = υ(TE
t )2 (A-12)

where υ denotes a damage coefficient which is calibrated based on the damage level assumed to
be associated with CO2 doubling.
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Terminal constraints

Approximation of an infinite horizon economy within a finite horizon numerical model requires
“terminal constraints”. For example, in the steady state, gross investment is proportional to
the capital stock through the growth rate of the labor force and the capital depreciation rate.
A typical terminal constraint for investment might then require sufficient investment to cover
growth plus depreciation:

IT = (χ + δM )KT (A-13)

where χ denotes the growth rate of the labor force.
DICE uses this (integrable) constraint on investment in the terminal period together with

an adjustment term in the utility function to account for the “consumption” value of terminal
capital stock. In addition, adjustment terms are incorporated to reflect post-terminal damages
from emission concentrations and temperature. The adjusted objective function then reads as:

[
T∑

t−1

ρtLt log(C(t)/L(t))

]
+ ρt(φKKT + φT E

TE
T ) (A-1’)

where:

φK is the (positive) “transversality” coefficient for capital,

φM is the (negative) “transversality” coefficient for emission concentration, and

φT E
is the (negative) “transversality” coefficient for temperature.

A.2 Decomposed NLP formulation

Our first extension of Nordhaus’ model involves decomposition of the integrated economy-climate
model based on a linear approximation of the climate model. The decomposition replaces the
climate equations in the economic model with a reduced-form linear approximation of climate
impacts (temperature):

Tt = Γt ≈ T̄t +
t∑

τ=1

∂Γt

∂Eτ
(Eτ − Ēτ ) (A-14)

where:

T̄t is the reference level value of temperature (climate impact) in period t,

Γt renders the temperagture in period t as a function of the intial climate state and emissions
in previous periods

Ēτ is the reference level value for emissions in period τ , and

∂Γt
∂Eτ

denotes the gradient of temperature in period t to anthropogenic emissions in period τ .

Local dependence of temperature (climate impacts) in period t on emissions in period τ may
be calculated through numerical differencing:

∂Γt

∂Eτ
=

T̄E
t − Γt

ε
(A-15)
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where ε is a sufficiently small emission interval for numerical differencing.
Linear approximation of the climate model requires that we account for the local dependence

of the transversality terms in the objective function on emissions, and we can calculate the
gradient of the transversality terms as:

∂ΩT

∂Eτ
=

(φMMT + φT E
TE

T )− (φMM̄T + φT E
T̄E

T )
ε

(A-16)

where ∂ΩT
∂Eτ

denotes the local dependence of the transversality terms in the terminal period on
emissions in period τ .

Thus, we obtain the adjusted objective function:
[

T∑

t=1

ρtLt log(C(t)/L(t))

]
+ ρt

[
φKKT +

T∑

t=1

∂ΩT

∂Et
(Et − Ēt)

]
(A-1”)

Altogether, the decomposed model consists of an economic sub-model comprising equations
(A-1”), (A-2)-(A-7), (A-13), and (A-14), and the climate sub-model compromising equations (A-
8)-(A-12), (A-15), and (A-16). We solve the decomposed model iteratively, by first solving the
economic model and then using the resulting emissions profile to evaluate the climate model and
its derivatives. Successive solutions converge rapidly as the partial derivatives of temperature
with respect to emissions turn out to be very stable.

A.3 Decomposed MCP formulation

Next, we provide the algebraic formulation of the decomposed MCP approach to DICE. Follow-
ing Mathiesen [1985], the economic sub-model can be characterized by two classes of equilibrium
conditions that reflect the first-order conditions of the NLP: (i) zero profit conditions for con-
stant returns activities, and (ii) market clearance conditions for goods and factors. The decision
variables are two vectors: (i) activity levels for constant returns production, and (ii) prices
for goods (services) and factors. In equilibrium, each of these variables is linked to one in-
equality condition: (i) an activity level to a zero profit condition, and (ii) a price to a market
clearance condition.6 The primal constraints of the NLP economic sub-model constitute the
market-clearance conditions for the MCP whereas the shadow prices (dual variables) of these
constraints coincide with market prices. Differentiation of the NLP Langragian with respect to
the primal variables (activity levels) renders the zero-profit conditions of the MCP for consump-
tion, capital accumulation, investment, net output, gross output, abatement, emissions, damage,
and emission control. We indicate the associated complementary variable to each equilibrium
condition using the “perp” operator, “⊥”.

• consumption:
ρtLt/C(t) = pC

t ⊥ Ct (A-17)

where pC
t is the price of consumption in period t.

6In a model with multiple agents, we must add an additional class of income balances that relate factor income
to expenditure of agents (with associated income variables).
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• capital accumulation:

pK
t Kt = γpQ

t Qt + pK
t+1(1− δ)Kt ⊥ Kt (A-18)

where pQ
t denotes the price of gross output in period t, and pK

t is the price of capital in
period t.

• investment:
pC

t = pK
t+1 ⊥ It (A-19)

• net output:
pY

t (1 + Dt) = pC
t ⊥ Yt (A-20)

where pY
t represents the price of net output in period t

• gross output:
pQ

t = py
t (1−At)− pE

t σt(1−Υt) ⊥ Qt (A-21)

where pE
t is the price of emissions.

• abatement:
pA

t + pY
t Qt = 0 ⊥ At (A-22)

where pA
t denotes the price of abatement.

• damage:
pD

t + pY
t Yt = 0 ⊥ Dt (A-23)

where pD
t is the price of damage in period t.

• emissions:

−pE
t =

T∑

τ=1

pD
τ

∂Dt

∂TE
t

∂Γt

∂Eτ
+ pD

T χt ⊥ Et (A-24)

where χt is the (paramterized) post-terminal climate impact of emissions in period t (see
below (A-16’)).

• emission control:
−pE

t σtQt = pA
t b1b2Υt(b2 − 1) ⊥ Υt (A-25)

Terminal Constraints

In the complementarity formulation, the post-terminal capital stock enters as an endogenous
variable. Using state variable targeting for this variable, we can relate the growth of investment
in the terminal period to the growth rate of capital or any other “stable” quantity variable such
as macroeconomic output in the model:

IT /IT−1 = YT /YT−1 ⊥ KT (A-26)

Furthermore, we need a constraint that defines the price of the post-terminal capital:

It + KT (1− δ) = KT ⊥ pK
T (A-27)

19



where KT represents the post-terminal capital stock.
The complementarity model formulation has explicit price indices representing the cost of

abatement and the benefits offered through abatement. A linear approximation to the climate
model portrays the time profile of marginal benefits associated with emission reductions at dif-
ferent points in time through the economic model. Thus, we can compare the benefits associated
with cutbacks in emissions in the later periods of the model with the benefits of those cutbacks
in periods which lie beyond the terminal period of the model.

Post-terminal damages are calculated on the basis of the climate sub-model which is solved for
several decades beyond the terminal period of the economic sub-model. Extrapolating present
value prices and quantities into the post-terminal period then permits us to relate marginal
emission throughout the time horizon of the economic sub-model to damages occurring after the
terminal period of the economic sub-model. The valuation of post-terminal damages is based
on a geometric extrapolation of post-terminal prices, and post-terminal climate is calculated on
the basis of post-terminal emission paths which are extrapolated from the economic sub-model:

χt =
TC∑

τ=T

∂Dt

∂TE
t

∂Γt

∂Eτ

p̄D
τ

p̄D
T

(A-16’)

where p̄D
τ is the reference price of damage in period τ , and TC denotes the extended time

horizon of the climate sub-model beyond the terminal period T of the economic sub-model.
The decomposed MCP formulation of DICE combines equations (A-2)-(A-7), (A-13), (A-14),

and (A-17)-(A-27) for the economic sub-model and equations (A-8)-(A-12), (A-15), and (A-16’)
for the climate sub-model.

A.4 Decomposed MCP formulation with Distortionary Public Funding

Our final model version extends the MCP formulation of DICE’s economic sub-model with a
public sector which finances the provision of a public good model through distortionary taxation
of capital earnings. The extended MCP model cum decomposition can then be used to illustrate
the importance of initial market distortions for the formulation of climate response policies.

The modifications and extensions involve:

• capital accumulation (zero-profit condition):

pK
t Kt =

γpQ
t Qt

1 + tk
+ pK

t+1(1− δ)Kt ⊥ Kt (A-18’)

where tk denotes the tax rate on capital earnings (as the equal-yield instrument).

• equal-yield constraint for public good provision:

G = Ḡ ⊥ tk (A-28)

where G is the level of public good provision (likewise: government demand), and Ḡ
denotes a fixed target level (index) of public good provision.

• explicit definition of rents on emissions:

ζt = pE
t Et − pY

t AtQt ⊥ ζt (A-29)

where ζt denotes the rents on emissions in period t.
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• government budget constraint:

G
T∑

t=0

pC
t Lt

L0
= tk

γpQ
t Qt

(1 + tk) + ζ
⊥ G (A-30)

The decomposed MCP formulation with distortionary taxation combines equations (A-2)-(A-
7), (A-13), (A-14), (A-17), (A-18’), and (A-19)-(A-30) for the economic sub-model and equations
(A-8)-(A-12), (A-15), and (A-16’) for the climate sub-model.
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B GAMS Code

B.1 dicedata.gms

$title DICE Data based on the revised version of the model as of August 1993

* Define default solvers here:

option nlp=conopt;
option mcp=path;

* http://www.econ.yale.edu/~nordhaus/homepage/dicemodels.htm

$if not set t $set t 40
$if not defined t SET t Time periods /1*%t%/
$if not defined tc ALIAS (t,tc);

SETS tfirst(t) First period,
tlast(t) Last period;

SCALARS
r Rate of social time preference per year /.03/,
gl0 Growth rate of population per decade /.223/,
dlab Decline rate of population growth per dec /.195/,
deltam Removal rate carbon per decade /.0833/,
ga0 Initial growth rate for technology per decade /.15/,
dela Decline rate of technology per decade /.11/,
sig0 CO2-equiv-GWP ratio /.519/,
gsigma Growth of sigma per decade /-.1168/,
dk Depreciation rate on capital per year /.10/,
gamma Capital elasticity in output /.25/,
m0 CO2-equiv concent. 1965 billion tons carbon /677/,
tl0 Lower stratum temperature (C) 1965 /.10/,
t0 Atmospheric temperature (C) 1965 /.2/,
atret Marginal atmospheric retention rate /.64/,
q0 1965 gross world output trillions 1989 US$ /8.519/,
L0 1965 world population millions /3369/,
k0 1965 value capital billions 1989 US dollars /16.03/,
c1 Coefficient for upper level /.226/,
lam Climate feedback factor /1.41/,
c3 Coefficient trans upper to lower stratum /.440/,
c4 Coeff of transfer for lower level /.02/,
a0 Initial level of total factor productivity /.00963/,
a1 Damage coeff for co2 doubling (fraction GWP) /.0133/,
b1 Intercept control cost function /.0686/,
b2 Exponent of control cost function /2.887/,
phik Transversality coef. capital /140 /,
phim Transversality coef. carbon ($ per ton) /-9/,
phite Transversality coef. temp. (B$ per degree C) /-7000 /;

PARAMETERS
L(tc) Level of population and labor,
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al(tc) Level of total factor productivity (TFP),
sigma(tc) Emissions-output ratio,
rr(tc) Discount factor,
ga(tc) Growth rate of TFP from 0 to T,
forcoth(tc) Exogenous forcings from other greenhouse gases,
gl(tc) Growth rate of labor 0 to T,
gsig(tc) Cumulative improvement of energy efficiency;

tfirst(t) = yes$(ord(t) eq 1);
tlast(t)= yes$(ord(t) eq card(t));
gl(tc) = (gl0/dlab)*(1-EXP(-dlab*(ORD(tc)-1)));
L(tc)=L0*EXP(gl(tc))*.9;
ga(tc)= (ga0/dela)*(1-EXP(-dela*(ORD(tc)-1)));
al(tc) =a0*EXP(ga(tc));
gsig(tc) = (gsigma/dela)*(1-EXP(-dela*(ORD(tc)-1)));
sigma(tc)=sig0*EXP(gsig(tc));
rr(tc) = (1+r)**(10*(1-ORD(tc)));
forcoth(tc) = 1.42;
forcoth(tc)$(ORD(tc) lt 15) = .2604+.125*ORD(tc)-.0034*ORD(tc)**2;

B.2 dice94.gms

$title DICE version 1994 -- with cosmetic revisions

$include dicedata

VARIABLES
C(t) Consumption trillion US dollars
K(t) Capital stock trillion US dollars
I(t) Investment trillion US dollars
D(t) Damage
A(t) Abatement cost
Y(t) Output net abatement and damage costs
Q(t) Gross Output
E(t) CO2-equiv emissions billion t
M(t) CO2-equiv concentration billion t
MIU(t) Emission control rate GHGs
FORC(t) Radiative forcing - W per m2
TE(t) Temperature - atmosphere C
TL(t) Temperature - lower ocean C
UTILITY Maximand;

POSITIVE VARIABLES MIU, E, TE, M, Y, C, K, I;

EQUATIONS
UTIL Objective function
YY(t) Output
AA(t) Abatement
DD(t) Damage
QQ(t) Underlying production function
CC(t) Consumption
KK(t) Capital balance
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KC(t) Terminal condition of K
EE(t) Emissions process
FORCE(t) Radiative forcing equation
MM(t) CO2 distribution equation
TTE(t) Temperature-climate equation for atmosphere
TLE(t) Temperature-climate equation for lower oceans;

CC(t).. C(t) =E= Y(t) - I(t);
YY(t).. Y(t) =E= Q(t) - A(t)*Q(t) - D(t)*Y(t);
AA(t).. A(t) =E= b1 * MIU(t)**b2;
DD(t).. D(t) =E= (a1/9)*SQR(TE(t));
QQ(t).. Q(t) =E= al(t) * L(t)**(1-gamma) * K(t)**gamma;
KK(t).. K(t) =L= (1-dk)**10 * K(t-1) + 10 * I(t-1) + (k0*0.9)$tfirst(t);
KC(tlast).. dk * K(tlast) =L= I(tlast);
EE(t).. E(t) =G= 10 * sigma(t) * (1-MIU(t)) * Q(t);
FORCE(t).. FORC(t) =E= 4.1*(LOG(M(t)/590)/LOG(2)) + forcoth(t);
MM(t).. M(t) =E= 590 + atret*E(t) + (1-deltam)*(M(t-1)-590) + m0$tfirst(t);
TTE(t).. TE(t) =E= TE(t-1)+c1*(FORC(t-1)-lam*TE(t-1)-c3*(TE(t-1)-TL(t-1))) + t0$tfirst(t);
TLE(t).. TL(t) =E= TL(t-1)+c4*(TE(t-1)-TL(t-1)) + tl0$tfirst(t);
UTIL.. UTILITY =E= SUM(t, 10 *rr(t)*L(t)*LOG(C(t)/L(t))/0.55)

+ SUM(tlast, rr(tlast)*(phik*K(tlast)+phim*M(tlast)+phite*TE(tlast)));

* Assign a naive starting point which is in the domain of the functions:

C.L(t) = 1; K.L(t) = 1; I.L(t) = 1; Y.L(t) = 1; Q.L(t) = 1; E.L(t) =1;
M.L(t) = 1; MIU.L(t) = 1; FORC.L(t) = 1; TE.L(t) = 1; TL.L(t) = 1;
UTILITY.L = 1;

* Upper and Lower Bounds for economic reasons or stability

MIU.UP(t) = 0.99; MIU.LO(t) = 0.01; K.LO(t) = 1; TE.UP(t) = 20;
M.LO(t) = 600; C.LO(t) = 2;

MODEL CO2 /all/;
SOLVE CO2 maximizing UTILITY using NLP;

B.3 nlp.gms

$TITLE DICE version 1994 -- NLP Decomposition

$if not set tc $set tc 80
$if not set t $set t 40

scalar kterm /0/;

set tc /1*%tc%/,
t(tc) /1*%t%/;

$include dicedata

alias (t,tp);
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PARAMETER
dref(tc) Reference values of damage
eref(tc) Reference values of emissions
pdref(tc) Reference shadow price on damages
xi(t) Post-terminal damages
grad(tc,t) Local dependence of D(tp) on E(t);

xi(t) = 0;
dref(t) = 0;
grad(tc,t) = 0;
eref(tc) = 0;

VARIABLES
C(t) Consumption trillion US dollars,
K(t) Capital stock trillion US dollars,
I(t) Investment trillion US dollars,
Y(t) Output net abatement and damage costs,
D(tc) Damage,
A(t) Abatement cost,
Q(t) Gross Output,
E(t) CO2-equiv emissions billion t,
MIU(t) Emission control rate GHGs,

UTILITY Maximand;

POSITIVE VARIABLES E, Y, C, K, I, MIU;

EQUATIONS
UTIL Objective function
CC(t) Consumption
YY(t) Output
AA(t) Abatement
QQ(t) Underlying production function
KK(t) Capital balance
DD(t) Damage
EE(t) Emissions process
TERMCAP Terminal capital stock constraint;

CC(t).. C(t) =E= Y(t) - I(t);
YY(t).. Y(t) =E= Q(t) - A(t)*Q(t) - D(t)*Y(t);
AA(t).. A(t) =E= b1 * MIU(t)**b2;
QQ(t).. Q(t) =E= al(t) * L(t)**(1-gamma) * K(t)**gamma;
KK(t).. K(t) =L= (1-dk)**10 * K(t-1) + 10 * I(t-1) + (k0*0.9)$tfirst(t);
EE(t).. E(t) =G= 10 * sigma(t) * (1-MIU(t)) * Q(t);
DD(t).. D(t) =E= dref(t) + SUM(tp, grad(t,tp)/1e6*(E(tp)-eref(tp)));
TERMCAP.. kterm =e= sum(tlast, (1-dk)**10 * K(tlast) + 10 * I(tlast));
UTIL.. UTILITY =E= SUM(t, 10 *rr(t)*L(t)*LOG(C(t)/L(t))/0.55)

- SUM(t, E(t) * xi(t));

* Assign a starting point which is in the domain of the functions:

K.L(t) = k0*0.9 * L(t)/sum(tfirst,L(tfirst));
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Q.L(t) = al(t) * L(t)**(1-gamma) * K.L(t)**gamma;
I.L(t) = (K.L(t+1) - (1-dk)**10*K.L(t)) / 10;
MIU.l(t) = 0.1;
E.L(t) = 10 * sigma(t) * 0.9 * Q.L(t);
A.L(t) = b1 * MIU.L(t)**b2;
D.L(t) = 0;
Y.L(t) = Q.L(t)*(1-A.L(t))/(1 + D.L(t));
C.l(t) = Y.L(t) - I.L(t);
UTILITY.L = 1;

kterm = sum(tlast(t), K.L(tlast) * Y.L(t)/Y.L(t-1));

MIU.UP(t) = 0.99;
MIU.LO(t) = 0.01;
K.LO(t) = 0.1;
C.LO(t) = 0.1;

option nlp=conopt;

model CO2 /all/;
solve CO2 maximizing UTILITY using NLP;

eref(t) = E.L(t);
pdref(t) = -DD.M(t);
LOOP((tlast,tc)$(not t(tc)),

eref(tc) = eref(tlast) * (sigma(tc)*L(tc))/(sigma(tlast)*L(tlast));
pdref(tc) = pdref(tlast) * (L(tc)*rr(tc)) /(L(tlast)*rr(tlast));

);

PARAMETERS
m(tc) CO2-equiv concentration billion t,
forc(tc) Radiative forcing - W per m2,
te(tc) Temperature - atmosphere C,
tl(tc) Temperature - lower ocean C,
deltaE Difference iterval /0.01/;

m(tfirst) = M0;
te(tfirst) = T0;
tl(tfirst) = TL0;

* Generate GAMS code for the climate model:

$onecho >climatemodel.gms
$onuni
loop(tc,

m(tc) = 590 + atret*eref(tc) + (1-deltam)*(m(tc-1)-590) + m0$tfirst(tc);
forc(tc) = 4.1*(LOG(m(tc)/590)/LOG(2)) + forcoth(tc);
te(tc) = te(tc-1)+c1*(forc(tc-1)-lam*te(tc-1)-c3*(te(tc-1)-tl(tc-1))) + t0$tfirst(tc);
tl(tc) = tl(tc-1)+c4*(te(tc-1)-tl(tc-1)) + tl0$tfirst(tc);
dref(tc) = (a1/9) * sqr(te(tc)););

$offecho
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* Generate GAMS code for numerical differencing

$onecho >jacobian.gms
eref(t) = E.L(t);
pdref(t) = -DD.M(t);
LOOP((tlast,tc)$(not t(tc)),

eref(tc) = eref(tlast) * (sigma(tc)*L(tc))/(sigma(tlast)*L(tlast));
pdref(tc) = pdref(tlast) * (L(tc)*rr(tc)) /(L(tlast)*rr(tlast));

);
$include climatemodel

D.L(tc) = dref(tc);
grad(tc,tp) = 0;
loop(tp, eref(tp) = eref(tp) + deltaE;

$include climatemodel
grad(tc,tp) = (dref(tc)-D.L(tc))*1e6 / deltaE;
eref(tp) = eref(tp) - deltaE;);

dref(tc) = D.L(tc);
loop(tlast,

xi(t) = sum(tc$(not t(tc)), grad(tc,t)/1e6*pdref(tc));
);

$offecho

$include climatemodel
solve CO2 maximizing UTILITY using NLP;

parameter itrlog(t,*) Iteration log -- Emission control rate GHGs;
itrlog(t,"iter0") = MIU.L(t);
set iters /iter1*iter6/;
loop(iters,
$include jacobian

solve CO2 maximizing UTILITY using NLP;
itrlog(t,iters) = MIU.L(t);

* Update terminal capital stock:

kterm = sum(tlast(t), K.L(tlast) * Y.L(t)/Y.L(t-1));
);

B.4 mcp.gms

$TITLE DICE version 1994 -- MCP Decomposition

$if not set tc $set tc 60
$if not set t $set t 40

set tc /1*%tc%/,
t(tc) /1*%t%/;

$include dicedata

alias (t,tp); alias (tp,tpp);
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PARAMETER
teref(tc) Reference values of temperature
pdref(tc) Reference present value of damage
grad(tc,t) Local dependence of TE(tp) on E(t),
eref(tc) Reference values of emissions
xi(t) Post-terminal damage value;

VARIABLES
C(t) Consumption trillion US dollars
K(t) Capital stock trillion US dollars
I(t) Investment trillion US dollars
Y(t) Output net abatement and damage costs
D(tc) Damage
A(t) Abatement cost
Q(t) Gross Output
E(t) CO2-equiv emissions billion t
MIU(t) Emission control rate GHGs

PY(t) Output
PQ(t) Underlying production function
PC(t) Consumption
PA(t) Shadow price on abatement cost coefficent
PD(t) shadow price on damage coefficent
PK(t) Capital balance
PE(t) Emissions process
KT Terminal Capital stock,
PKT Shadow price on terminal capital;

POSITIVE VARIABLES MIU, Y, C, K, I, PE;

EQUATIONS
YY(t) Output,
AA(t) Abatement,
DD(t) Damage (linear climate model),
QQ(t) Underlying production function,
CC(t) Consumption,
KK(t) Capital balance,
EE(t) Emissions process,

EQ_C(t) Consumption trillion US dollars,
EQ_K(t) Capital stock trillion US dollars,
EQ_I(t) Investment trillion US dollars,
EQ_Y(t) Output net abatement and damage costs,
EQ_Q(t) Gross Output,
EQ_A(t) Abatement,
EQ_D(t) Damage,
EQ_MIU(t) Emission control rate GHGs
EQ_E(t) CO2-equiv emissions billion t
EQ_PKT Equilibrium for terminal capital market,
EQ_KT Equilibrium for terminal capital stock;
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CC(t).. C(t) =E= Y(t) - I(t);
YY(t).. Y(t) =E= Q(t)*(1-A(t)) - D(t)*Y(t);
AA(t).. A(t) =E= b1 * MIU(t)**b2;
QQ(t).. Q(t) =E= al(t) * L(t)**(1-gamma) * K(t)**gamma;
KK(t).. K(t) =L= (1-dk)**10 * K(t-1) + 10 * I(t-1) + (k0*0.9)$tfirst(t);
EE(t).. E(t) =G= 10 * sigma(t) * (1-MIU(t)) * Q(t);
DD(t).. D(t) =E= (a1/9)*SQR(teref(t) + sum(tp, grad(t,tp)*(E(tp)-eref(tp))));
EQ_C(t).. 10 * rr(t) * L(t) / (0.55*C(t)) =E= PC(t);
EQ_K(t).. K(t) * PK(t) =G=

gamma * PQ(t) * Q(t) + (PK(t+1)+PKT$tlast(t)) * (1-dk)**10 * K(t);
EQ_I(t).. PC(t) =E= 10 * (PK(t+1) + PKT$tlast(t));
EQ_Y(t).. PY(t) * (1+D(t)) =E= PC(t);
EQ_Q(t).. PQ(t) =E= PY(t)*(1-A(t)) - PE(t)*10*sigma(t)*(1-MIU(t));
EQ_E(t).. -PE(t) =E= SUM(tp, PD(tp)*grad(tp,t)* 2 *(a1/9) *

(teref(tp) + SUM(tpp, grad(t,tpp)*(E(tpp)-eref(tpp)))) )
+ SUM(tlast, PD(tlast)*xi(t));

EQ_A(t).. PA(t) + PY(t)*Q(t) =E= 0;
EQ_D(t).. PD(t) + PY(t)*Y(t) =E= 0;
EQ_MIU(t).. -PE(t)*10*sigma(t)*Q(t) =E= PA(t) * b1 * b2 * MIU(t)**(b2-1);
EQ_PKT.. SUM(tlast, 10 * I(tlast) + K(tlast) * (1-dk/100)**10) =E= KT;
EQ_KT.. SUM(tlast(t), I(t)/I(t-1) - Y(t)/Y(t-1)) =E= 0;

MODEL DICEMCP /CC.PC, YY.PY, AA.PA, QQ.PQ, KK.PK, EE.PE, DD.PD, EQ_C.C,
EQ_K.K, EQ_I.I, EQ_Y.Y, EQ_Q.Q, EQ_E.E, EQ_A.A, EQ_D.D, EQ_MIU.MIU,
EQ_KT.KT, EQ_PKT.PKT /;

PARAMETERS
m(tc) CO2-equiv concentration billion t,
forc(tc) Radiative forcing - W per m2,
te(tc) Temperature - atmosphere C,
tl(tc) Temperature - lower ocean C,
deltaE Difference iterval /0.01/;

m(tfirst) = M0;
te(tfirst) = T0;
tl(tfirst) = TL0;

parameter teinit(tc) Tracking of initial temperature trajectory;

* Generate GAMS code for the climate model:

$onecho >climatemodel.gms
$onuni
loop(tc,

m(tc) = 590 + atret*eref(tc) + (1-deltam)*(m(tc-1)-590) + m0$tfirst(tc);
forc(tc) = 4.1*(LOG(m(tc)/590)/LOG(2)) + forcoth(tc);
te(tc) = te(tc-1)+c1*(forc(tc-1)-lam*te(tc-1)-c3*(te(tc-1)-tl(tc-1))) + t0$tfirst(tc);
tl(tc) = tl(tc-1)+c4*(te(tc-1)-tl(tc-1)) + tl0$tfirst(tc);
teref(tc) = te(tc););

$offecho

* Generate GAMS code for numerical differencing
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$onecho >jacobian.gms
eref(t) = E.L(t);
pdref(t) = PD.L(t);
LOOP((tlast,tc)$(not t(tc)),

eref(tc) = eref(tlast) * (sigma(tc)*L(tc))/(sigma(tlast)*L(tlast));
pdref(tc) = pdref(tlast) * (L(tc)*rr(tc)) /(L(tlast)*rr(tlast));

);
$include climatemodel

teinit(tc) = teref(tc);
grad(tc,tp) = 0;
loop(tp, eref(tp) = eref(tp) + deltaE;

$include climatemodel
grad(tc,tp) = (teref(tc)-teinit(tc)) / deltaE;
eref(tp) = eref(tp) - deltaE;);

teref(tc) = teinit(tc);
loop(tlast,

xi(t) = sum(tc$(not t(tc)), grad(tc,t)*2*(a1/9)*
(teref(tc) + sum(tpp, grad(tc,tpp)*(E.L(tpp)-eref(tpp))))*pdref(tc))
/ pdref(tlast);

);

$offecho

K.L(t) = k0*0.9 * L(t)/sum(tfirst,L(tfirst));
Q.L(t) = al(t) * L(t)**(1-gamma) * K.L(t)**gamma;
I.L(t) = (K.L(t+1) - (1-dk)**10*K.L(t)) / 10;
MIU.l(t) = 0.1;
A.L(t) = b1 * MIU.L(t)**b2;
D.L(t) = 0;
Y.L(t) = Q.L(t)*(1-A.L(t))/(1+D.L(t));
C.l(t) = Y.L(t) - I.L(t);
PC.L(t) = 10 * rr(t) * L(t) / (0.55*C.L(t));
PY.L(t) = PC.L(t) / (1+D.L(t));
PQ.l(t) = PY.l(t);
PK.l(t) = PY.l(t);
PA.l(t) = -PY.L(t)*Q.L(t);
PD.l(t) = -PY.L(t)*Y.L(t);
PE.l(t) = -PA.L(t)*b1*b2*MIU.L(t)**(b2-1)/(10*sigma(t)*Q.L(t));
MIU.UP(t) = 0.99;
MIU.LO(t) = 0.01;
KT.L = sum(tlast, K.L(tlast));
PKT.L = sum(tlast, PK.L(tlast)); PKT.UP = +INF;
E.L(T) = 10 * sigma(t) * (1-MIU.L(t)) * Q.L(t);

set diagitr Diagonalization iterations /iter0*iter4/;

LOOP(diagitr,

$INCLUDE jacobian

SOLVE DICEMCP USING MCP;
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);

B.5 mcptax.gms

$TITLE DICE version 1994 -- MCP implementation with taxes

$if not set tk0 $set tk0 0.25

scalar tk0 Baseline capital tax rate /%tk0%/;

scalar g0 Baseline government /1/;

$if not set tc $set tc 60
$if not set t $set t 40

set tc /1*%tc%/,
t(tc) /1*%t%/;

$include dicedata

alias (t,tp); alias (tp,tpp);

PARAMETER
teref(tc) Reference values of temperature
pdref(tc) Reference present value of damage
grad(tc,t) Local dependence of D(tp) on E(t),
eref(tc) Reference values of emissions
xi(t) Post-terminal damage value;

VARIABLES
C(tc) Consumption trillion US dollars
G Government demand
K(t) Capital stock trillion US dollars
I(t) Investment trillion US dollars
Y(t) Output net abatement and damage costs
D(tc) Damage
A(t) Abatement cost
Q(t) Gross Output
E(t) CO2-equiv emissions billion t
MIU(t) Emission control rate GHGs

PY(t) Output
PQ(t) Underlying production function
PC(t) Consumption
PA(t) Shadow price on abatement cost coefficent
PD(t) shadow price on damage coefficent
PK(t) Capital balance
PE(t) Emissions process
TK Capital tax rate
KT Terminal Capital stock,
PKT Shadow price on terminal capital
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RENT(t) Rents on emission permits;

POSITIVE VARIABLES MIU, Y, C, K, I, PE;

EQUATIONS
YY(t) Output,
AA(t) Abatement,
DD(t) Damage (linear climate model),
QQ(t) Underlying production function,
CC(t) Consumption,
KK(t) Capital balance,
EE(t) Emissions process,

EQ_C(t) Consumption trillion US dollars,
EQ_K(t) Capital stock trillion US dollars,
EQ_I(t) Investment trillion US dollars,
EQ_Y(t) Output net abatement and damage costs,
EQ_Q(t) Gross Output,
EQ_A(t) Abatement,
EQ_D(t) Damage,
EQ_MIU(t) Emission control rate GHGs
EQ_E(t) CO2-equiv emissions billion t
EQ_PKT Equilibrium for terminal capital market,
EQ_KT Equilibrium for terminal capital stock
EQ_G Government budget,
EQ_TK Capital tax rate
EQ_RENT(t) Rental rate;

CC(t).. C(t) + G * L(t)/L0 =E= Y(t) - I(t);
YY(t).. Y(t) =E= Q(t)*(1-A(t)) - D(t)*Y(t);
AA(t).. A(t) =E= b1 * MIU(t)**b2;
QQ(t).. Q(t) =E= al(t) * L(t)**(1-gamma) * K(t)**gamma;
KK(t).. K(t) =L= (1-dk)**10 * K(t-1) + 10 * I(t-1) + (k0*0.9)$tfirst(t);
EE(t).. E(t) =G= 10 * sigma(t) * (1-MIU(t)) * Q(t);
DD(t).. D(t) =E= (a1/9)*SQR(teref(t) + sum(tp, grad(t,tp)*(E(tp)-eref(tp))));
EQ_C(t).. 10 * rr(t) * L(t) / (0.55*C(t)) =E= PC(t);
EQ_K(t).. K(t) * PK(t) =G=

gamma*PQ(t)*Q(t)/(1+TK) + (PK(t+1)+PKT$tlast(t)) * (1-dk)**10 * K(t);
EQ_I(t).. PC(t) =E= 10 * (PK(t+1) + PKT$tlast(t));
EQ_Y(t).. PY(t) * (1+D(t)) =E= PC(t);
EQ_Q(t).. PQ(t) =E= PY(t)*(1-A(t)) - PE(t)*10*sigma(t)*(1-MIU(t));
EQ_E(t).. -PE(t) =E= SUM(tp, PD(tp)*grad(tp,t)*2*(a1/9) *

(teref(tp) + sum(tpp, grad(t,tpp)*(E(tpp)-eref(tpp)))))
+ SUM(tlast, PD(tlast)*xi(t));

EQ_A(t).. PA(t) + PY(t)*Q(t) =E= 0;
EQ_D(t).. PD(t) + PY(t)*Y(t) =E= 0;
EQ_MIU(t).. -PE(t)*10*sigma(t)*Q(t) =E= PA(t) * b1 * b2 * MIU(t)**(b2-1);
EQ_PKT.. SUM(tlast, 10 * I(tlast) + K(tlast) * (1-dk/100)**10) =E= KT;
EQ_KT.. SUM(tlast(t), I(t)/I(t-1) - Y(t)/Y(t-1)) =E= 0;
EQ_TK.. G =e= g0;
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EQ_G.. G * SUM(t,L(t)/L0*PC(t)) =E=
TK * sum(t, gamma*PQ(t)*Q(t)/(1+TK)) + SUM(t, RENT(t));

EQ_RENT(t).. RENT(t) =e= PE(t)*E(t) - PY(t)*A(t)*Q(t);

MODEL DICEMCP /CC.PC, YY.PY, AA.PA, QQ.PQ, KK.PK, EE.PE, DD.PD, EQ_C.C,
EQ_K.K, EQ_I.I, EQ_Y.Y, EQ_Q.Q, EQ_E.E, EQ_A.A, EQ_D.D, EQ_MIU.MIU,
EQ_KT.KT, EQ_PKT.PKT, EQ_G.G, EQ_TK.TK, EQ_RENT.RENT /;

PARAMETERS
m(tc) CO2-equiv concentration billion t,
forc(tc) Radiative forcing - W per m2,
te(tc) Temperature - atmosphere C,
tl(tc) Temperature - lower ocean C,
deltaE Difference iterval /0.01/;

m(tfirst) = M0;
te(tfirst) = T0;
tl(tfirst) = TL0;

parameter teinit(tc) Tracking of initial temperature trajectory;

* Generate GAMS code for the climate model:

$onecho >climatemodel.gms
$onuni
loop(tc,

m(tc) = 590 + atret*eref(tc) + (1-deltam)*(m(tc-1)-590) + m0$tfirst(tc);
forc(tc) = 4.1*(LOG(m(tc)/590)/LOG(2)) + forcoth(tc);
te(tc) = te(tc-1)+c1*(forc(tc-1)-lam*te(tc-1)-c3*(te(tc-1)-tl(tc-1))) + t0$tfirst(tc);
tl(tc) = tl(tc-1)+c4*(te(tc-1)-tl(tc-1)) + tl0$tfirst(tc);
teref(tc) = te(tc););

$offecho

* Generate GAMS code for numerical differencing

$onecho >jacobian.gms
eref(t) = E.L(t);
pdref(t) = PD.L(t);
LOOP((tlast,tc)$(not t(tc)),

eref(tc) = eref(tlast) * (sigma(tc)*L(tc))/(sigma(tlast)*L(tlast));
pdref(tc) = pdref(tlast) * (L(tc)*rr(tc)) /(L(tlast)*rr(tlast));

);
$include climatemodel

teinit(tc) = teref(tc);
grad(tc,tp) = 0;
loop(tp, eref(tp) = eref(tp) + deltaE;

$include climatemodel
grad(tc,tp) = (teref(tc)-teinit(tc)) / deltaE;
eref(tp) = eref(tp) - deltaE;);

teref(tc) = teinit(tc);
loop(tlast,

xi(t) = sum(tc$(not t(tc)), grad(tc,t)*2*(a1/9)*(teref(tc)
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+ sum(tpp, grad(tc,tpp)*(E.L(tpp)-eref(tpp))))*pdref(tc)) / pdref(tlast);
);

$offecho

K.L(t) = k0*0.9 * L(t)/sum(tfirst,L(tfirst));
Q.L(t) = al(t) * L(t)**(1-gamma) * K.L(t)**gamma;
I.L(t) = (K.L(t+1) - (1-dk)**10*K.L(t)) / 10;
MIU.l(t) = 0.1;
A.L(t) = b1 * MIU.L(t)**b2;
D.L(t) = 0;
Y.L(t) = Q.L(t)*(1-A.L(t))/ (1 + D.L(t));
C.l(t) = Y.L(t) - I.L(t);
PC.L(t) = 10 * rr(t) * L(t) / (0.55*C.L(t));
PY.L(t) = PC.L(t) / (1+D.L(t));
PQ.l(t) = PY.l(t);
PK.l(t) = PY.l(t);
PA.l(t) = -PY.L(t)*Q.L(t);
PD.l(t) = -PY.L(t)*Y.L(t);
PE.l(t) = -PA.L(t)*b1*b2*MIU.L(t)**(b2-1)/(10*sigma(t)*Q.L(t));
MIU.UP(t) = 0.99;
MIU.LO(t) = 0.01;
KT.L = sum(tlast, K.L(tlast));
PKT.L = sum(tlast, PK.L(tlast)); PKT.UP = +INF;
TK.FX = tk0;
E.L(t) = 10 * sigma(t) * 0.9 * Q.L(t);

set diagitr Diagonalization iterations /iter0*iter4/;

LOOP(diagitr,
$INCLUDE jacobian

SOLVE DICEMCP USING MCP;
);
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