International Atomic Energy Agency ## **Generation IV Reactor Systems** J. Kupitz IAEA Consultant | Reactor Parameters | Reference Value | |---|---| | Reactor power | 600 MWth | | Net plant efficiency
(direct cycle helium) | 48% | | Coolant inlet/outlet temperature and pressure | 490°C/850°C
at 90 bar | | Average power density | 100 MWth/m3 | | Reference fuel compound | UPuC/SiC (70/30%)
with about
20% Pu content | | Volume fraction, Fuel/Gas/SiC | 50/40/10% | | Conversion ratio | Self-sufficient | | Burnup, Damage | 5% FIMA; 60 dpa | 2000 2010 2020 GAS-COOLED FAST REACTOR SYSTEM (940 M\$) Fuels and Materials (300 M\$) Core materials screening Core structural material down-selection decision (GFR 2) Core materials fabrication Core materials out-of-pile testing Structural material final selection decision (GFR 5) Core materials in-pile testing Fuel basic screening Fuel down-selection decision (GFR 1) Fuel tests Reactor Systems (100 M\$) Screening and testing Materials and components He technology test benches Testing and 20 MWth He loop Balance of Plant (50 M\$) Turbo machinery technology development Component development Coupling technology to process heat applications Safety (150 M\$) Safety approach and evaluation Safety concept selection decision (GFR 3) System development and testing Design & Evaluation (120 M\$) Preconceptual design Viability phase complete Conceptual design Analysis tools Fuel Cycle (220 M\$) Screening Viability assessment Fuel system viability decision (GFR 4) Technology and performance testing | | Reference Value | | | | | |------------------------------|--------------------------------|-------------------------------|---------------------------|--|--| | Reactor Parameters | Pb-Bi Battery
(nearer-term) | Pb-Bi Module
(nearer-term) | Pb Large
(nearer-term) | Pb Battery
(far-term) | | | Coolant | Pb-Bi | Pb-Bi | Pb | Pb | | | Outlet Temperature (°C) | ~550 | ~550 | ~550 | 750-800 | | | Pressure (Atmospheres) | 1 | 1 | 1 | 1 | | | Rating (MWth) | 125-400 | ~1000 | 3600 | 400 | | | Fuel | Metal Alloy
or Nitride | Metal Alloy | Nitride | Nitride | | | Cladding | Ferritic | Ferritic | Ferritic | Ceramic coatings
or refractory alloys | | | Average Burnup
(GWD/MTHM) | ~100 | ~100–150 | 100–150 | 100 | | | Conversion Ratio | 1.0 | d≥1.0 | 1.0-1.02 | 1.0 | | | Lattice | Open | Open | Mixed | Open | | | Primary Flow | Natural | Forced | Forced | Natural | | | Pin Linear Heat Rate | Derated | Nominal | Nominal | Drated | | | Major R&D Areas | Pb-Bi Battery
(nearer-term) | Pb-Bi Module
(nearer-term) | Pb Large
(nearer-term) | Pb Batter
(far-term) | |--|--------------------------------|-------------------------------|---------------------------|-------------------------| | Metal Alloy or Nitride Fuel
(esp. for higher temperature range) | x | х | x | x | | High-Temperature Structural Materials | | | | x | | Natural Circulation Heat Transport
in Open Lattice | x | Х | x | x | | Forced Circulation Heat Transport in Open Lattice | x | Х | X | x | | Coolant Chemistry Control | x | x | x | x | | Innovative Heat Transport | x | x | x | x | | Internals Support and Refueling | x | X | x | x | | Energy Conversion: Supercritical CO ₂ Brayton Supercritical Water Rankine Ca-Br Water Cracking Desalinization Bottoming | x
x | x
x
x | x | x
x
x | | Economics: Modularization Modularization & Site Assembly | X
X | X
X | X
X | x
x | | Metal Fuel Recycle/Refabrication | x | x | | | | Nitride Fuel Recycle/Refabrication | x | х | x | x | | Reactor Parameters | Reference Value | |-------------------------------|--| | Net power | 1000 MWe | | Power density | 22 MWth/m ³ | | Net thermal efficiency | 44 to 50% | | Fuel-salt – inlet temperature | 565°C | | – outlet temperature | 700°C (850°C for hydrogen production) | | – vapor pressure | <0.1 psi | | Moderator | Graphite | | Power Cycle | Multi-reheat
recuperative helium
Brayton cycle | | Neutron spectrum burner | Thermal–actinide | | Reactor Parameters | Reference Value | |-----------------------|--------------------------| | Outlet Temperature | 530-550°C | | Pressure | ~1 Atmospheres | | Rating | 1000-5000 MWth | | Fuel | Oxide or metal alloy | | Cladding | Ferritic or ODS ferritic | | Average Burnup | ~150-200 GWD/MTHM | | Conversion Ratio | 0.5-1.30 | | Average Power Density | 350 MWth/m ³ | | Reactor Parameters | Reference Value | |---|--| | Plant capital cost | \$900/KW | | Unit power and neutron spectrum | 1700 MWe,
thermal spectrum | | Net efficiency | 44% | | Coolant inlet and outlet temperatures and pressure | 280°C/510°C/25 MPa | | Average power density | $\sim 100 \text{ MWth/m}^3$ | | Reference fuel | UO ₂ with austenitic
or ferritic-martensitic
stainless steel, or
Ni-alloy cladding | | Fuel structural materials cladding structural materials | Advanced high-strength
metal alloys are needed | | Burnup / Damage | ~45 GWD/MTHM;
10–30 dpa | | Safety approach | Similar to ALWRs | | Reactor Parameters | Reference Value | |----------------------------------|---| | Reactor power | 600 MWth | | Coolant inlet/outlet temperature | 640/1000°C | | Core inlet/outlet pressure | Dependent on process | | Helium mass flow rate | 320 kg/s | | Average power density | 6–10 MWth/m ³ | | Reference fuel compound | ZrC-coated particles in blocks, pins or pebbles | | Net plant efficiency | >50% | | Generation
IV System | Fuel | | | Recycle | | | |-------------------------|-------|-------|---------|---------|---------------------|-------------| | | Oxide | Metal | Nitride | Carbide | Advanced
Aqueous | Pyroprocess | | GFR ¹ | | | S | P | P | P | | MSR ² | | | | | | | | SFR ³ | P | P | | | P | P | | LFR | | S | P | | P | P | | SCWR | P | | | | P | | | VHTR⁴ | P | | | | S | S | P: Primary option; S: Secondary option ¹ The GFR proposes (U,Pu)C in ceramic-ceramic (cercer), coated particles or ceramic-metallic (cermet). ² The MSR employs a molten fluoride salt fuel and coolant, and fluoride-based processes for recycle. ³ The SFR has two options: oxide fuel with advanced aqueous, and metal fuel with pyroprocess. ⁴ The VHTR uses a once-through fuel cycle with coated (UCO) fuel kernels, and no need for fuel treatment, as the primary option. ...atoms for peace