

The Beijer International Institute of Ecological Economics -The Royal Swedish Academy of Sciences

1st Teaching Workshop on Environmental Economics for the Middle East and North Africa December 5-16, 2005 - ICTP, Trieste, Italy

Irrigation Water Pricing

Lecture I.2

Yacov Tsur

The Hebrew University of Jerusalem

Yacov Tsur The Hebrew University of Jerusalem

1st Teaching Workshop on Environmental Economics for the Middle East and North Africa December 5-16, 2005 - ICTP, Trieste, Italy

Empirical analysis

▶Programming

Guidelines:

1. *Marginal cost pricing* is efficient - maximizes the joint surplus of water users (farmers) and water suppliers

 \Box 2. Average cost pricing balances the water supply budget but entails a loss in efficiency. The farmers carry the burden of the welfare loss.

3. *Block-rate pricing* can retain efficiency while transferring wealth between water users and water suppliers.

Problems with the econometric approach:

➢Price – Quantity data are rare (require volumetric pricing, which is used in only 25 % of irrigated land worldwide)

> When *P-Q* data are available, price variation is typically small \rightarrow inaccurate estimation (large variance)

≻Watch out for quota restrictions (disequilibrium)

LP Example (Moroccan ORMVA) Sugar cane late planting Model R'Me /Loukkos field per hectare (product1) 29.6 22 31 42 52 62 62 62 62 Janua Tebru, Marc May 1882 470
 140

 185

 661
 103

 22643
 2266

 2203
 89
193 20 July Augus re (proc Septemi Octobi Novemb Decemit 705.6 560 Janu Febri Mar 62 31 498.4 583 683 242 25.6 900 303 280 65 130 130 Output1 price (Dh/unit) Output21 price (Dh/unit) 17404.8 15026 4840 15948.8 264399 16780

Mod	el R'Mel/Loukkos	Groudnut, earlyplanting	Groudnut late	Soft wheat	Sugar cane	Strawber ry (under plastic	Barley as fodder	Corn as fodder	Melon (under plastic	Water melon	Pepper	Potatos
						turnel)			turnel)			crop
Land use	September1	1	1			1						
	September2	1	1			1			1			
	October1		1			1 1	1 1					
	October2					1	1		1			
	November1					1 1	1 1					
	November2					1	1		1			
	December1						1					
	December2											
	January1						1					
	January2						1					
	(February 1						1					
	February2			1		1 1	1		1			
	March1			1		1 1			1	1 1		
	March2					1 1				1 1		
	April 1			1		1 1		1	1	1		
	April 2	1				1 1		1				
	May1	1		1		1 1		1	1	1		
	May2	1	1	1		1 1		1	1			
	June1	1	1			1 1		1		1 1		
	June2	1	1	1		1 1		1	1	1 1		
	July1	1	1			1 1		1		1 1		
	July2	1	1			1 1		1	1	1 1		
	August1	1	1			1 1		1		1 1		
	August2	1	1			1 1		1	1	1 1		
Rotation	Groundhuts-limits	1	1									
	Groundhuts-diversification	2	-1									
	Potatos-diversification											
	Circleles-Imits			1			1	1				
	Sugar care-limits											
	Stravb+Melon+w.melon-Imit	3										
	Solanacée a limita											
	Open field vigetable limits										-3.3	5
	Intensification limits (med.ter	1	1	1				1		1		
	Diary-limits											
Succession	September	1	1			1	1 1		1	1		
	October		0.5			1	1					
	November					1 1	1					
	December			0.5		1	1 1					
	January			1		1	1 1					
	February			1		1 1	1 1		1			
	March			1		1	1			1 1		
	April	0.5		1		1 1	1 1	1				
	May	1	0.5	1		1	1	1	1	1 1		
	June	1	1			1	1	-			-	
	July	1	1			1	1	1	1	1 1		
	Itumet					-					-	

700	tumei)						planting	carly parally	Model R'Mel/Louk kos	
700				turnei) 800	1400			530	e September	ator use
700			1300	600	900				October	m3
700			700	500	300				November	
300	700			300					December	
	300			200					January	
500	500	900		200					Petruary	
100 500	1000	500		700	500	1000	200	270	Acril	
00 80	2000	1400		800	900	1000	1000	11.00	May	
500 1300	15.00			1000	1300		1700	18.00	June	
1600				12:00	1700		2300	2400	July	
				12:00	1700		1570	18:00	August	
									Water supply constraint	
									Tot.water charge	
				1200	1700		2500	2400 1800	July August Water supply constraint Tot water charge	

Guidelines cont.

 \Box 4. *Implementation costs* are part of the cost of water supply and should affect the marginal cost (*MC*) price accordingly.

□ 5. From efficiency standpoint, the desirable pricing method to use is the one that yields the highest welfare when implementation costs are accounted for.

□ 6. Any charge aimed at covering the fixed costs of water supply should be levied in a way that does not affect farmers' water input decisions.

Numerical illustration (Tsur and Dinar 1997)

2 crops x 2 inputs: Cotton-Wheat, water-nitrogen

Quadratic approximation for per-hectare water-nitrogen production functions:

Parameters estimates from Hexem and Heady (1978) Linear MC

Implementation cost = % of water proceeds

Area pricing optimal at 10 % implementation costs

Income distribution

Improving income distribution comes at the expense of efficiency → Efficiency – Equity tradeoffs

□Is water pricing an effective policy tool?

Empirical evidence doesn't support (Tsur and Dinar 1997, Tsur et al. 2004)

Pricing scheme	Pmc	α	δ	π ³	π^2	π^1	$\pi^{1}+\pi^{2}+\pi^{3}$	μ	G
1				173,967	433,836	5,784,108	6,391,910	452,502	0.575
	0.46	0.75	0.5Pmc	180,982	452,753	5,952,928	6,586,663	468,148	0.577
	0.46	0.5	0.5Pm	177,877	450,166	5,952,928	6,580,970	465,248	0.577
	0.46	0.25	0.5Pm	176,267	442,978	5,883,928	6,503,173	459,959	0.576
	0.46	0.75	Pmc	187,997	471,671	6,121,748	6,781,415	483,794	0.58
	0.46	0.5	Pmc	181,787	466,496	6,121,748	6,770,030	477,994	0.578
2	0.46	0.25	Pmc	178,567	452,121	5,983,748	6,614,435	467,416	0.577
		$Q(m^3)$	δ						
	0.46	10,000	Pmc	178,567	438,436	5,788,708	6,405,710	457,102	0.569
	0.46	10,000	0.5P	176,267	436,136	5,786,408	6,398,810	454,802	0.572
	0.46	20,000	Pmc	183,167	443,036	5,793,308	6,419,510	461,702	0.563
3	0.46	20,000	0.5P	178,567	438,436	5,788,708	6,405,710	457,102	0.569

Guidelines cont.

7. Water prices have limited effect on income distribution within the farming sector and are therefore poor means to address income distribution goals

□ 8. How to allocate the fixed cost of water supply can be determined based on income distribution criteria (the urban population can carry (some of) the burden of the fixed costs of irrigation water supply (they will get some of it back in the form of fresh and cheap ag products and in environmental amenities)

Farm profits and income distribution under MC pricing at 3 Dh $m^{\text{-}1}$ (Source: Tsur et al. 2004)

Pricing Scheme	Pmc	α	δ	π^3	π^2	π^1	$\pi^1 + \pi^2 + \pi^3$	μ	G
1	3			126,083	286,867	3,819,806	4,232,756	308,073	0.552
	3	0.75	0.5Pmc	153,427	346,867	4,914,073	5,414,367	386,115	0.564
	3	0.5	0.5Pmc	151,583	346,867	4,920,806	5,419,256	384,893	0.568
	3	0.25	0.5Pmc	141,083	346,492	4,470,806	4,958,381	356,705	0.564
	3	0.75	Pm	217,583	533,617	7,742,414	8,493,614	586,771	0.589
	3	0.5	Pm	177,083	499,867	6,021,806	6,698,756	474,322	0.583
2	3	0.25	Pmc	156,083	406,117	5,121,806	5,684,006	405,338	0.573
		Q (m ³)							
	3	10,000	Pm	156,083	316,867	3,849,806	4,322,756	338,073	0.503
	3	10,000	0.5P	141,083	301,867	3,834,806	4,277,756	323,073	0.527
	3	20,000	Pmc	186,083	346,867	3,879,806	4,412,756	368,073	0.462
3	3	20,000	0.5P	153,427	316,867	3,849,806	4,320,100	335,892	0.508

No dramatic change in the Gini index

Water quality

Suppose there are *H* sources of water of different quality (e.g., fresh, saline, reclaimed) with the (annual) capacity limits x_{h} , h = 1, 2, ..., H.

 $f(q_1,q_2,...,q_H,z,s)$ = the water production function of the *H* water inputs $q_1,q_2,...,q_H$, the purchased inputs *z*, and other limited inputs *s*.

The derived demands for the H water inputs stem from:

 $Max_{\{q,z,s\}} \{ \pi = p f(q_1,q_2,...,q_H,z,s) - rz \}$ subject to:

 $q_1 \le x_1, q_2 \le x_2, \dots, q_H \le x_H$ $s \le b$

□ 9. When water derived from sources of different quality (e.g., fresh, saline or reclaimed water) has different effect on crop yield, each water quality is treated as a separate input and must be priced separately. The demand for each water quality depends on the available supply as well as demands for other water types. Given the set of water demands, pricing should be determined simultaneously for all types of irrigation water

Guideline - cont.

□ 10a. When irrigation water is derived from a stock source (lake, reservoir, aquifer) in an unsustainable fashion (the stock shrinks over time or water quality deteriorates), the price of water must reflect also the scarcity value and stock externality (effect of stock size on withdrawal cost). These effects show up via the user cost of water, calculated within an intertemporal management framework. The user cost of water should be added to the price of water.

□ 10b. When irrigation water is derived from a ground and surface sources conjunctively and surface water supply (e.g., rainfall) fluctuates, groundwater acts also as a buffer that mitigates the fluctuations in surface water supplies. This role has economic value that should be added to the price of groundwater.

Miscellaneous guidelines.....

□11. Under volumetric pricing, efficiency requires that the price of water reflects the marginal cost of water supply disregarding water allocation between crops (i.e., water price should not change across crops)

□ 12. Under per area pricing, changing the (per hectare) water fee across crops can be used to improve efficiency by affecting farmers' crop selection

Pricing Scheme	Implementation	Efficiency Achieved	Time Horizon of Efficiency	Ability to Control Demand	
Volumetric	Complicated	First-best	Short-run	Easy	
Output Relatively easy		Second-best	Short-run	Relatively easy	
Input Relatively easy		Second-best	Short-run	Relatively easy	
Per area	Per area Easiest		N/A	Hard	
Block rate (Tiered) Relatively complicated		First-best	Short-run	Relatively easy	
Two part Relatively complicated		First-best	Long-run	Relatively easy	
Water Market	Impossible without pre-established institutions	Potentially First-best	Typically Short-run	N/A	

Prices vs. Quantity: the role of asymmetric information:

□ 14. Due to the prevalence of asymmetric information, water allocation and pricing rules should be designed in order to minimize the limitations imposed on farmers' input-output decisions

Staumza		Z	(\$ m ⁻³)	
	0.05	0.1	0.15	0.2
Stabilization value (\$/ha)	52.6	48.4	33.3	14.7
Value due to increase supply (\$/ha)	91.9	20.9	0.5	0
Tot GW vlaue	144.4	69.3	33.8	14.7
Percent SV of Tot Value	36%	70%	98%	100%

