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-Cell Design
-Silicon technology

- Cell fabrication processes



-Cell Design



- the cell design must take into account
Its application:

Production-terrestrial, space,
concentration,architecture, etc-
Lab- high efficiency, theoretical limit-

- process lay-out:
from three to more than 20 steps
production line —clean room
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-Si cells theoretical efficiency sioz
limit: 26-28%
-Record efficiency: 24.7%
- Average efficiency
(production): 14%
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Cell Parameters

texturing andior hushar
anti-reflection coatin

eJsc- short circuit current

= optical absorption | \.] |

= pbase recombination (red light) |

= emitter recombination (blue light)

*Fill Factor

*\/0C- open circuit voltage

N =|deality factor (n)
= pbulk recombination (Job) _ _
_ . =Series resistance (Rs)
= emitter recombination (Joe) _
_ =Shunt resistance (Rsh)
=Space charge region (Jor)
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To optimise cell efficiency:
-Increase carriers
generation
-Increase carriers
collection

A reduction of the overall QE is

Losses: recombination, resistive

Recombination:
Joe: Front surface
Emitter
Jr: space charge region

Job: Base
Back

caused by reflection and a low
diffusion length.
?1_0 g Ideal quantum
@ /gfﬁciency
E The red response is »
(] reduced due to rear No light is absorbed
£ surface passivation, below the band gap and
‘E reduced absorption at so the QF is zero at long
= long wavelengths and wavelengths.
g low diffusion lengths.
WSS, _hc  Wavelength
Blue response is reduced due to front E
surface recombination. g
Resistive:
Bulk
Emitter
Back
Contact grid

Shunt



Crystalline Silicon
« 85% of world-wide solar cell production
(400 MW, 2.5 10°%)

- Second most abundant element

- Only semiconductor employed in microelectronic
Industry

Large-scale production/Technology coming from
microelectronics
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-Silicon technology



Silicon Is the second most abundant element, but about half of
the cell cost Is due to the substrate.
Silicon production steps:
1) From sand to metallurgical-grade Silicon (MG-Si)
2) MG-SI to semiconductor-grade Silicon (SeG-Si)

3) Crystal growth
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Metallurgical-grade Silicon (MG-SI)

- Due to the relative impurity of sand, quartzite — 99% SiO,- Is the
starting material.

- Silicon is produced in an Arc Furnace, at T about 1900°C, reducing
S10, by Carbon ( coke, coal and wood chips):
SI0,+2C— Si+2CO
Liquid silicon is poured into shallow troughs.

MG-Si 98% pure (major impurities Fe and Al).
Cost 1-2$/Kg



Metallurgical-grade Silicon (MG-SI)
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Figure 6.1. Cross section showing typical features of an
arc furnace as used to produce metallurgical-grade silicon:
1, carbon and quartz; 2, cavity; 3, electrode; 4, silicon; 5,
silicon carbide; 6, hearth; 7, electrode paste, 8, copper elec-
trodes; 9, tapping spout; 10, cast-iron shell; 11, ceramic;
12, graphite lid. (After Ref. 6.1, © 1976 IEEE.)



Semiconductor grade Si (SeG-Si)

For use in electronics, impurities must be almost completely removed
MG-Si purification (Siemens process)
MG-SI Is converted to a volatile compound

Si + 3HCI = SiHCI, + H,

Trichlorosilane is produced by multiple fractional distillation

SeG-Si Is obtained reducing Trichlorosilane by H.,:
SIHCI; + H, = Si + 3HCI
Result: polysilicon



Crystal Growth

-Silicon for electronic industry

must be not only impurity-free,
but also a single crystal, defect-
free.

-Poly-Si is molten and grown
Into single-crystal ingots:

Czochralsky (CZ)
Floating Zone (FZ2) (-




-SeG polycrystalline Si is molten Czochralsky (CZ) method
In a crucible, at T=1410 °C

Czochralski growth

-A crystal seed is dipped into the
molten Si and pulled slowly out of
the melt in the vertical direction
while rotating:

crystallization at solid/liquid
Interface

- SeG- Si residual impurities are
confined in liquid phase

- dopants (B, P) can be added to
the melt
- L4=200 pm t=135 usec




-A zone of molten Si is
slowly passed along the
length of a poly-Si ingot.

-Material melts at one
boudary and recrystallizes at
the other.

-High purity regrown Si
crystal: no crucible, liquid
region prevents impurity from
entering the growing crystal

-L4>500 pm t>100 psec

Floating Zone (FZ) Method

&

Polycrystalline
ingot

Molten silicon
%F coil
—i
R

Grown single
crystalline material

\Qlﬂ crystalline seed
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*Microelectronics 1 Si wafer for >10° chips
*Photovoltaic 1 Si wafer for 1,5Wp; 1,5KWh/year

PV application requirements much less severe than in electronics:
-impurity levels
-carriers transport properties

Silicon especially developed for PV:

Multi-crystalline Si Ribbon Solar grade Si



Multi-crystalline Si

-Crystalline grains random oriented.

-Grain boundaries: recombination
centers - shunt paths for current.

-Columnar structures and large grains
(some mm): comparable to single-
crystal

L,>150 pm t>10 usec

-Production less expensive: 15-30$/kg

-55% Si cells production on mc-Si
(record EFF: 19,8%)




Multi-crystalline Silicon

Casting

-starting material: scraps of ingots
for microelectronics, molten in a
quartz crucible.

- DS method:
Solidification starts from the
bottom: columnar ingot growth.

L, 200 pm t >10 psec




Ribbon

- Almost half of the material is
lost during wafering.

«Silicon is grown in ribbons
(250-300 pum)

-EFG method (Edge-defined-
Film-fed-Growth):

Molten Silicon moves up the
Interior of a grafite die by
capillarity.

"
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-some metallic impurities
can be present in
concentrations>10%/cm3
(100 times > SeG-Si)

-Preparation of Silane
(SiH,) from metallurgical
grade Si

-Deposition of Si from
SiH,

solar grade Silicon

105 107 103 102 10~ 10 10
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-Cell fabrication processes



bhushar

Za

texturing and/or
anti-reflection coating

.

front surface
doping
(emitter)

rear contact



E m itte r GRIGLIA ANTIRIFLESSO

ephotogeneration in blue region of REGIONE P
spectrum

ecollection of photogenerated
carriers

shallow, lightly doped, passivated
(low recombination)

eContribution to Series Resistance:

deep, heavily doped

N, ix, t) (atomi/cm?)

Np

«Compromise: junction profile S S W

(b}

igura 2.4
Irogaggio per diffusione termica: (@) da sorgente infinita; (b) da sorgente finita superficiale.
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n/p Junction
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Phosphorus thermal Diffusion in Silicon

_ Doped Oxide, spin-on, screen
Solid ——  printing, thin films

Diffusion source: | jquig ——*  laser

I

Gaseous — Open tube

-Phosphorus: most used

Fick laws: I) J=-D grad C 11) 8C/ 6t = D 6°C/ ox?
J = flux

C = concentration



POCI, 25°C /xhaust /Quartz tube

==
L
o. .. x
Thermostat Mass flowmeters
Reactive Gas V\ ’\
Carrier Gas Carrier Gas

“open tube” diffusion:

a) Predeposition on wafer surface
b) Drive-in: P atoms diffusion

T:800-1000 °C; N, and O,

Silicon Wafers



Source: POCl,

2POCI, + 3/20, > P,0+3Cl,
Si +0, > SiO,
5Si +2P,0, > 5Si0, +4P
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Temperature, time
duration and dopant
source determine:

-P surface concentration,C,
-X;=junction depth
-resistance and t of
diffused region

- when Cs > P solubility
limit (104! at/cm3a 1000°C)
dead layer: high defect
density region , low t

-Concentration profile:

C(x,t)=C, erfc(x/2\Dt)

D= D, exp (-AE/KT) P diffusion coefficient in
Si (1014 cm?/sec a 980 °C)
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LASER ASSISTED DOPING

laser beam creates dopant atoms (PCl,; pyrolysis or solid
source) and simultaneously induces melting of silicon:
dopant liquid phase diffusion.

Localized process, low thermal budget
Fast diffusion kinetics

PCl3

AL

<



SURFACE PASSIVATION

Surface: critical discontinuity in i
the crystal structure |
-High density of allowed states
within the forbidden gap

10 60° o
Qo O
10 L 00
OO

interface trap density, eV-1cm-2

9 0® #%80 0
10 &% T, *
L >
o dry oxygen, oxygen pull
s dry oxygen, argon pull

«Silicon: surface-state density R

8
10 S L i !

reduced growing passivanting T T R TR

Trap energy, eV

oxide

Surface State (Interface Trap) Density Measured at the Interface between Silicon

_ i n te rf a C e b etW e e n OX i d e an d S i Zn: ‘,:sm i’:\i?:_‘g;y_]e oxide was grown at 1000°C in the ambients shown (after Eades
moves towards bulk 01—

*Thermal Oxidation: open tube, = | / R
In O,at T 800-1000 °C S Ll L e omas
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elow T alternative: SiN layer x axi i
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Ohmic Contacts

-Front contact must minimize
series resistance losses,
providing at the same time the
maximum light amount to reach
the cell surface.

™™ fingers

-A good back contact allows to N
Increase J.. and V,
(confinement techniques).

/

hushars

-Good ohmic contact
metal/silicon
-Low metal resistivity

Current, mA

I j I !
B 0E 02 =038 05

Volts



Ohmic Contacts

Front Grid:
-Busbar are directly connected to the external load
-Fingers collect current to delivery to a busbar.

i
| =

L 1 L p-layer
Rbase

Rs=Rbase+Remitter+Rgrid



- photolitography
vacuum
evaporation

-screen printing

- electrochemical
growth

Contact technologies

Deposition | Electro-plating | Evaporation | Screen printing
technique/ | Electroless

Metal

NI Front Front

Au F/B F/B F/B

Ag Front Front Front

Ti Front

Pd Front

Al Back Back Back




photolitography

- photosensitive polymer is deposited on wafer
surface

-Regions to metallize are exposed through a mask
to UV light

- vacuum evaporation

Front:

T1 (400 A) adherence to Si

Pd (200 A) barrier layer

Ag 1-5 um good electrical conductivity

Back:

Al 1um

-Lift-off: photoresist removed in acetone

-Annealing: 400- 600 °C N, or forming gas
ohmic contact

Resolution: few microns

Shadowing < 4%




Screen printing

-contact grid is obtained by depositing on
wafer surface, through metal screens,
Inks or conductive pastes

-inks contain metal grains (Ag, Al),
glasses, organic binders and solvent

-Firing:

In a belt furnace, the glass melting
temperature (about 800°C) is reached for
few minutes

Contact to Si: alloy metal/Si (Al) througﬁ
glass matrix (AQ)

Resolution: 80-100 micron C e T
Shadowing:10%



Selective Emitter

*Heavy doped emitter :

low response in blue region -
“dead layer”, photogenerated
carriers have low probability to
be collected-

«Selective emitter:

regions under contacts are
heavy doped, to reduce Rc
Exposed region is low doped to
Increase collection in blue
spectral portion

- double diffusion, laser doping

front metal contact
rontmetalen high resistance metsl

1o s ilicon contact

heavy doping under
contact to minimise
contact resistance



AntiReflection treatments

\_
Silicon reflects 35% of ok Bare silicon
Incident light, and up to 54% at
short A (high refractive index n) =
"'EEI]
*Techniques to reduce losses: g
Silicon under glass

-Deposition of one or more ol i -
layers of thin oxides antreflection coating of 2.3
- Surface Texturization - L

0.4 0.6 0.8 1.0

Wawvel ength {pm)



Thin AR layers
elosses due to reflection can be drastically reduced

I r2’ 1 2rir2cos 26
1+r1°r2° +rir2c0s 20

_ [ No—T N1—N2 27d1
Nn= o= 5:
No+ M N1+ N2 A

R:Rmin:> ﬂldlZ(%j dlz(ioj
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R

R .=
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Nni* — Nonz
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Thin AR layers

* single layer AR coating:

Material n
Ao= 600 nm; n,=2.0; d,=750 A Si 3,45
Sio 1,9
e|_osses reduced to 10% ALO, r
Si,N, 2,0
= T
: Ta,O, 2,2

Silicon under glass

10

Silicon under glass with optimal
antireflection coating of n=2.3
1 | 1 1 1 1

0.4 0.6 0.8 1.0
Wavelength {pm)




double layer AR coatings

-better match between
high index of Si (3,5) and
low index of air (1)

-AR effect over a wide
wavelength range

- losses reduced to 3%

2 2 2
N1 N3—N2 No
Rmin = ; 5
N1 N3+ N2 No

1st layer: n,=2.2-2.6
2nd layer: n;=1.3-1.6

IQE (%)
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ARC deposition methods
 Vacuum Evaporation
*Sputtering

*Chemical VVapour Deposition

ePlasma Enhanced CVD

- thickness uniformity and reproducibility
-Stoichiometry control



TEXTURING

epyramidal structures (about
10 microns) on wafer surface

e incident light is trapped
(multiple reflections)

-larger exposed area
-Oblique incidence (increased
collection efficiency at long 1)

Reflectance < 10%

with ARC < 4%




/100

-for Si <100> oriented,
structure is achieved by
Intersection between the
<100> and <111> planes
(a=54.7°), allowing at
least two consecutive
reflections

10

-wet anisotropic etch
NaOH or KOH based

-Different etch rates along
different crystallographic
directions:

etch rate about 35 faster for
<100> direction than for <111>
direction.



-Inverted pyramids
structure reduces
reflection to few

percent

-honeycomb: traps
light in multi-
crystalline Si cells

TEXTURING




Thank you for your attention



