

The Abdus Salam International Centre for Theoretical Physics

Workshop on "Physics for Renewable Energy" October 17 - 29, 2005

301/1679-11

"Computer Modeling of Amorphous & Mircocrystalline Silicon-based Solar Cells"

> F. A. Rubinelli INTEC Argentina

Computer Modeling of Amorphous and Microcrystalline Silicon based Solar Cells

F.A. Rubinelli

INTEC, Universidad Nacional del Litoral, Güemes 3450, 3000, Santa Fe, Argentina Santa Fe, Argentina

Laguna La Cuarentena

Sente Fe

Laguna Setubal

Perene

Laguna del Recreo

Image © 2005 EarthSat Image © 2005 DigitalGlobe

Solar Cell Modeling Computer Codes

- True computer modeling solves:
- Poisson's Equation.
- Continuity Equation for Electrons
- Continuity Equations for Holes.

 \rightarrow free electricity.

- First comprehensive computer modeling:
- G.A.Swartz, RCA (1982), I.Chen and S.Lee (1982).
- T.Ikegaki et all (1985), M.Hack and M.Shur (1985).
- Commercial computer codes:
- Medici TMA company; Atlas SILVACO company. Broad range of crystalline semiconductor devices: poly-Si, a-Si TFT and solar cells; 1-D and 2-D codes. Models describing a-Si are relatively simple.

Academic Computer Codes

- AMPS PennState University USA (S.Fonash, P.McElheny, J.Arch) (D-AMPS)
- ASPIN Ljubljana University Slovenia (Smole, Furlan, Topic, Vukadinovik)
- ASA Delft University of Technology Netherlands (Zeeman, Tao, Willeman)
- **SCAPS** University of Gen Belgium, (Burgelman et al.)
- P1CD Sandia Labs.- UNSW, Australia
- **ADEPT** Purdue University, USA, (Jeff Gray et al.)
- Forschungzentrum Jülich (Germany) Germany, (Stiebig at al.)
- Others: ASCA (New Unlv. Lisbon), Chaterjee (INDIA), Misiakos (Florida USA), Mittiga (La Sapienza, ROMA), Bruns (BERLIN)

Differences in the academic computer codes

- Choice of independent variables: Ψ , E_{FN} , E_{FP} or Ψ , n, p.
- Numerical solution techniques: Newton-Raphson, Gummel.
- Description of the DOS distribution: Tails and Gaussians.
- R-G statistics of localized states; SRH, amphoteric DB.
- Contact treatment: generic, ohmic.
- Special features: defect pool model, tunnel-recombination junctions, etc.
- Optical models: Interference, scattering.
- Friendly interface: AMPS, ASA, ASPIN (no D-AMPS).
- 1-D modeling is well suited for a-Si solar cells on flat substrates.
- 2-D modeling might be needed on: textured substrates in high efficient a-Si solar cells (spatial variations in device structure) or in spatially non-homogenous μc-Si devices.

D-AMPS

AMPS core (Penn State Univ. USA) + New Developments (INTEC, Argentina)

3 unknown or independent state variables:

+1

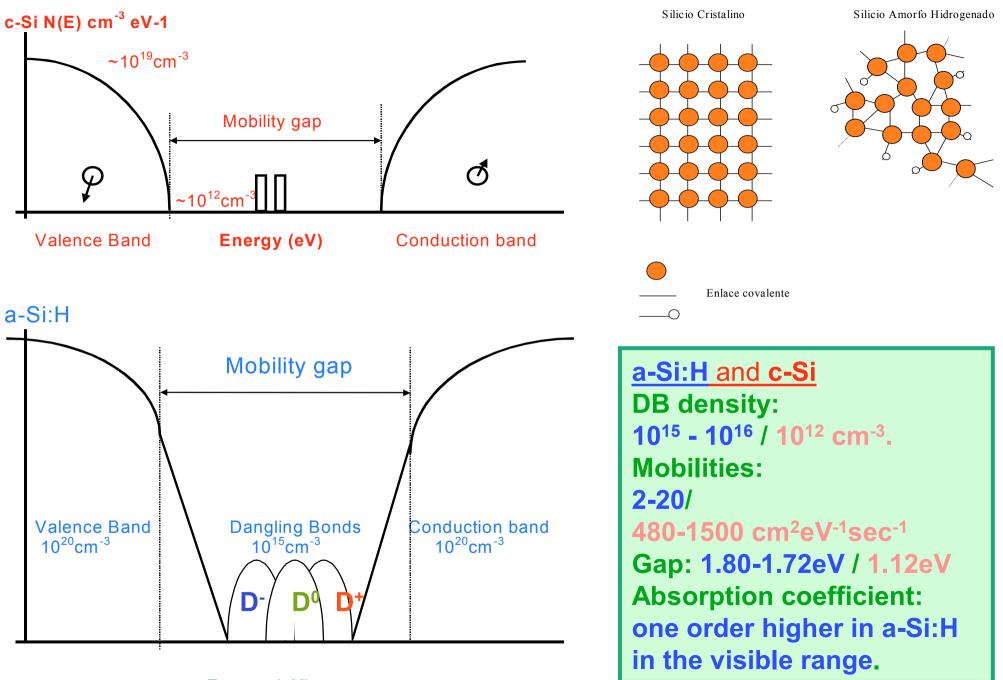
- 1 the electrostatic potential $\Psi(\mathbf{x})$
- 2 the electron quasi-Fermi level E_{FN}(x)
- 3 the hole quasi-Fermi level E_{FP}(x)

Numerical technique:

i_1

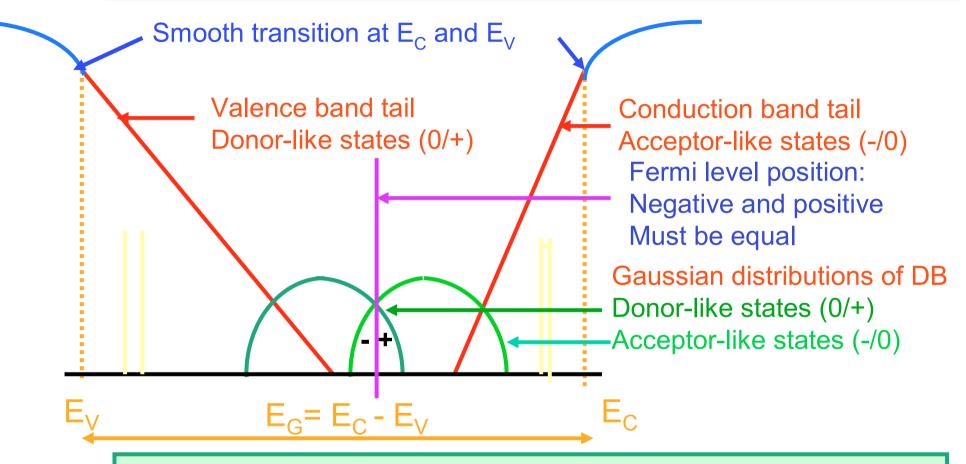
Finite difference discretization Newton Raphson formalism Trial functions of Scharletter Gummel (J at i-1/2 i+1/2)

Tasks in device modeling:

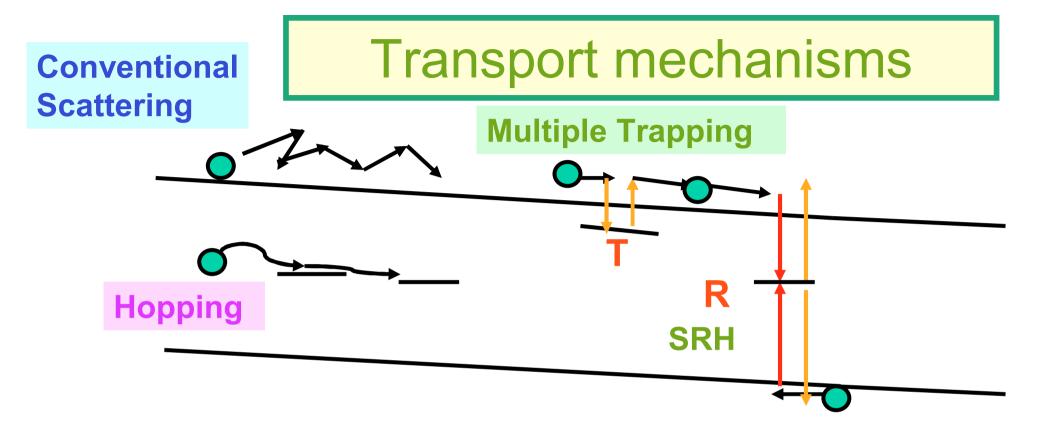

- Development of new models to accurately describe material properties, interfaces and device operation → up-dating.
- Constant testing of existing and new computer modeling in increasingly complex structures of solar cells.
- Accurate calibration of input parameters (electrical and optical) in order to reproduce a broad range of experimental results:
 - (a) Dark and illuminated current voltage (J-V) curves.
 - (b) Spectral response (SR) characteristic curves.
 - → reliable inputs. Some are unknown.
- Use of the computer code as predicted tool.
 - \rightarrow Design of solar cells to reach the best performance.
- Alternative modeling of steady state: small signal, transients.

Advantages of computer modeling

- Examine the influence of internal parameters that can not be experimentally determined.
- Ponder the impact on the solar cell performance of small changes in device configuration.
- Optimal design of the solar cell structure.
- Understanding the physic controlling the electrical transport of interesting experimental results.
- It is becoming increasingly cheaper.

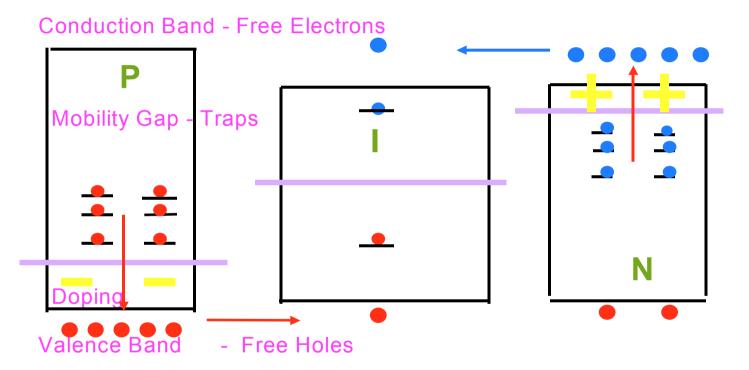

Drawbacks of computer modeling

- Too many input parameters?? \rightarrow to be discussed.
- Analytical modeling → some parameters are ignored or results are assumed to be independent of these input values.
- Some input parameters are not well known (cross sections, mobilities). We have to work within the range published in the literature.
- Very time consuming task: programming + fitting
- Difficulties found in matching output curves of some devices. example: SR under forward bias.
- Structures of solar cells are becoming increasingly complex.

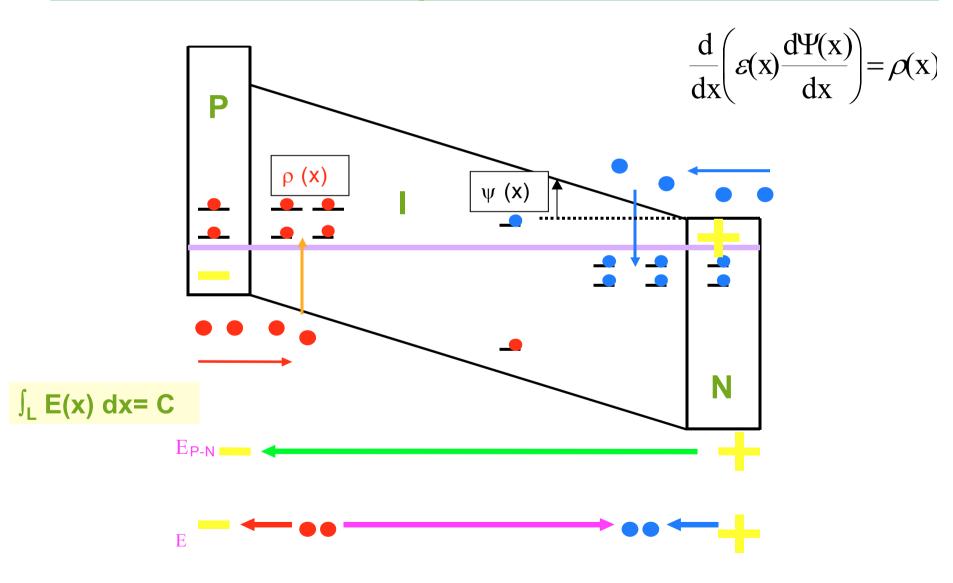


Energy (eV)

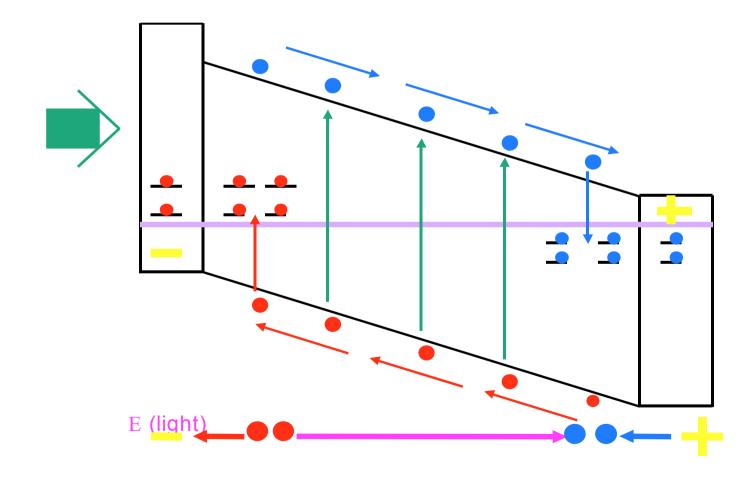
Density of States

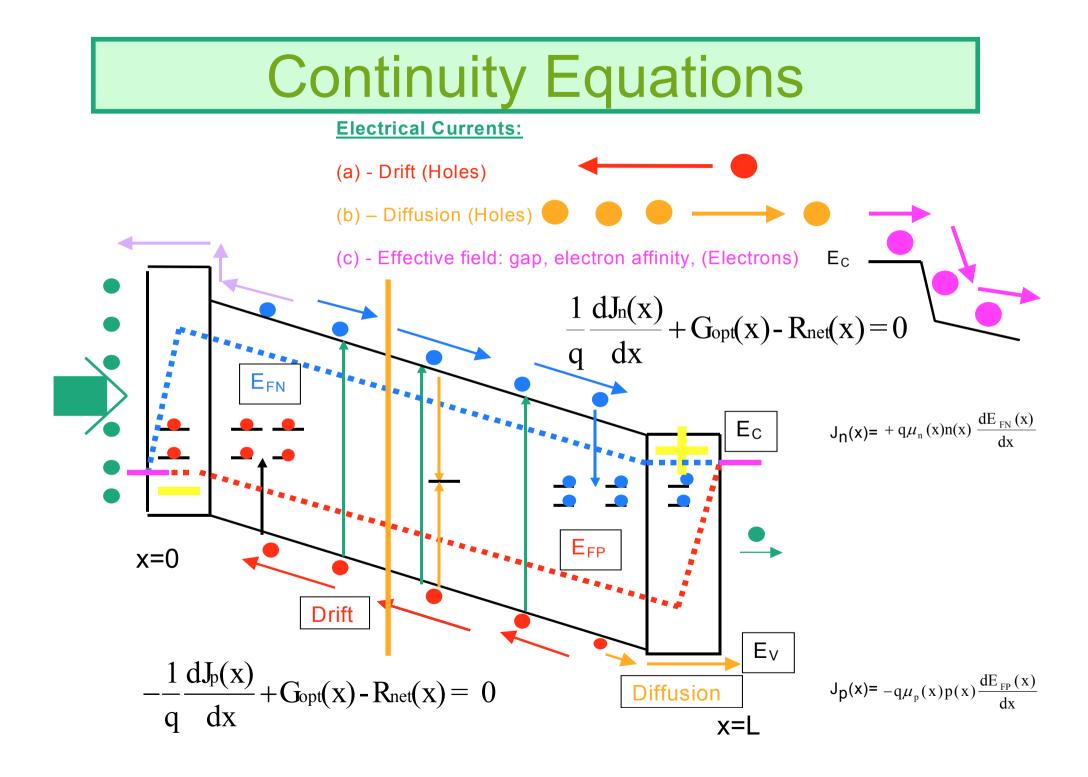


- Density of extended states is assumed parabolic like in c-Si
- Mobility edges at conduction and valence bands E_c and E_v
- Doping impurities: shallow donor and acceptor localized levels
- Spatial disorder: conduction and valence band tails.
- Structural defects: levels near mid-gap → DB



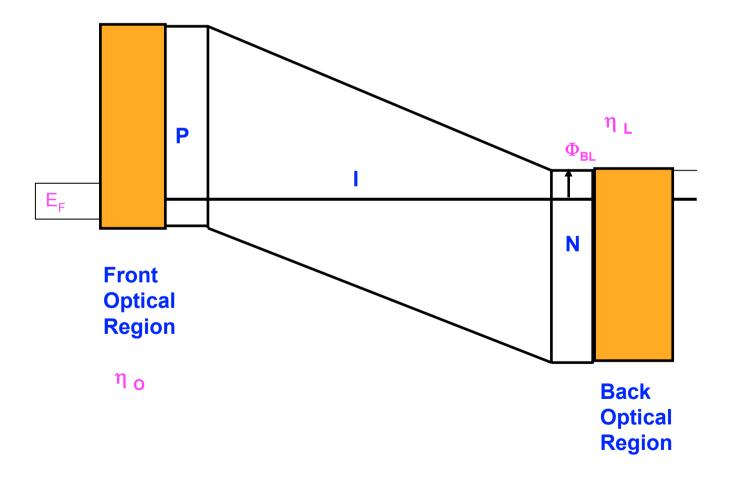
- Conventional scattering: extended state transport
- \rightarrow described by carrier concentrations and mobilities
- Multiple trapping: electrons and holes in extended
- states move by drift-diffusion, they are captured by tail states, remain immobile for some time, and are re-emitted back into extended states.
- \rightarrow described also by concentration of carriers and mobilities
- **Hopping:** involves tunnel between localized states inside the mobility gap Thermally activated and negligible at room temperature


POISSON'S EQUATION:



Poisson's Equation Equilibrium

Poisson's Equation Under illumination



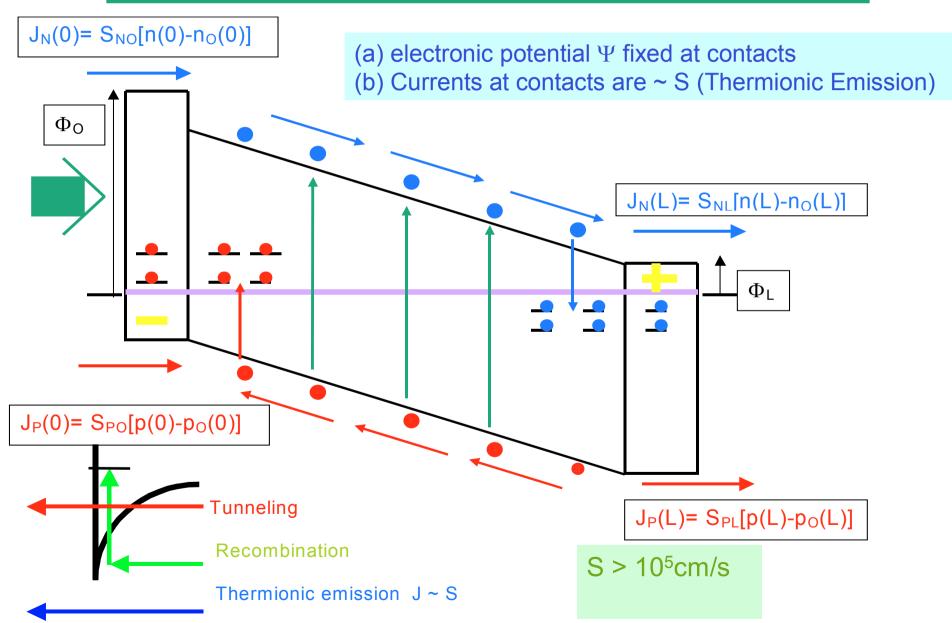
Total current

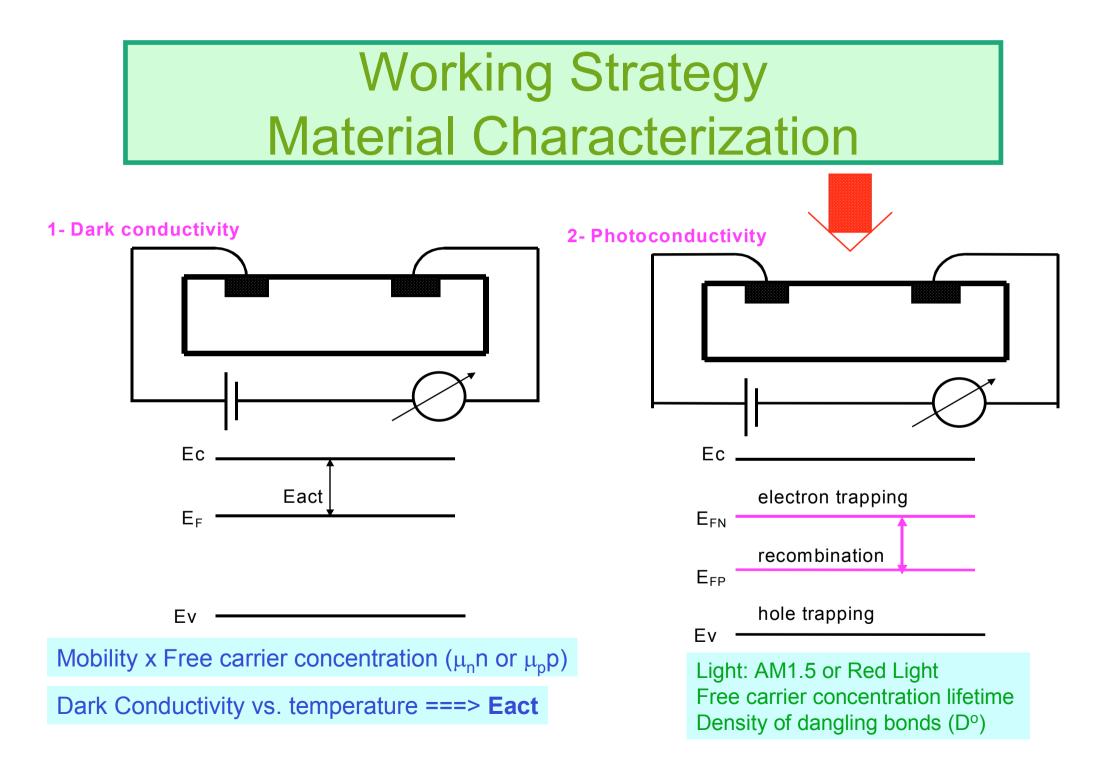
$$\frac{1}{q}\frac{dJ_n(x)}{dx} + G_{opt}(x) - R_{net}(x) = 0 \qquad J = J_N + J_P$$
$$J = J_{n0} + J_{pL} + e \cdot \int_0^L Rnet(x) dx - e \cdot \int_0^L Gopt(x) dx$$

Optical current

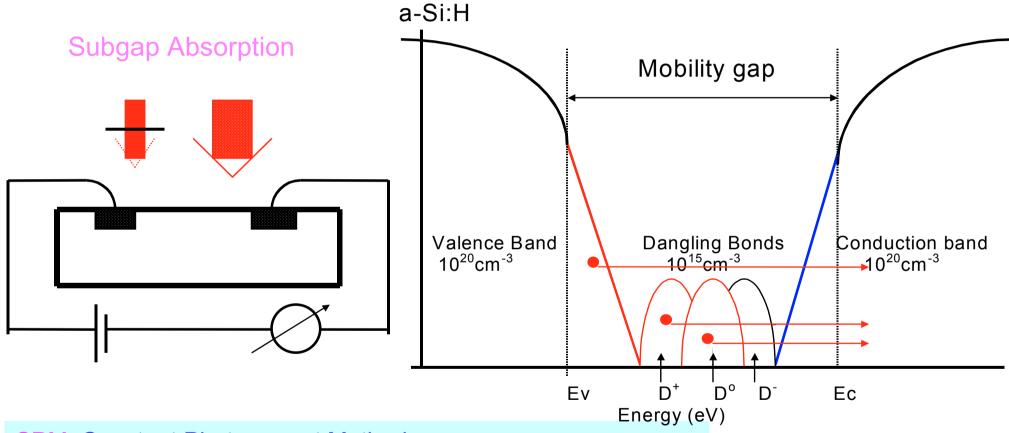
Pin + optical layers

Charge, f, and R (equations)

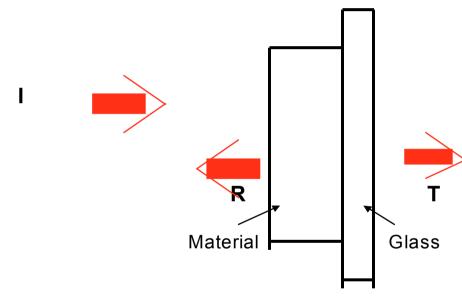

 $\rho = q \cdot \int_{E_v}^{E_c} N(E) \cdot [1 - f(E)] \cdot dE \quad \text{donor} \quad \rho = -q \cdot \int_{E_v}^{E_c} N(E) \cdot f(E) \cdot dE \quad \text{acceptor}$ $f = \frac{1}{1 + e^{\frac{E_T - E_F}{k \cdot T}}} \quad \text{FD} \quad f = \frac{(n + p')\sigma_n}{(n + n')\sigma_n + (p + p')\sigma_p} \quad \text{SRH}$


$$\mathbf{n'} = \mathbf{N}_{c} \cdot \mathbf{e}^{\frac{\mathbf{E}_{T} - \mathbf{E}_{c}}{\mathbf{k} \cdot \mathbf{T}}} \qquad \qquad \mathbf{p'} = \mathbf{N}_{v} \cdot \mathbf{e}^{\frac{\mathbf{E}_{v} - \mathbf{E}_{T}}{\mathbf{k} \cdot \mathbf{T}}}$$

$$\mathbf{R} = \mathbf{N}_{\mathrm{T}} \cdot \mathbf{v}_{\mathrm{th}} \cdot \boldsymbol{\sigma}_{\mathrm{n}} \cdot \boldsymbol{\sigma}_{\mathrm{p}} \cdot \frac{\mathbf{n} \cdot \mathbf{p} - \mathbf{n}_{\mathrm{i}}^{2}}{(\mathbf{n} + \mathbf{n}')\boldsymbol{\sigma}_{\mathrm{n}} + (\mathbf{p} + \mathbf{p}')\boldsymbol{\sigma}_{\mathrm{p}}}$$


v_{TH}~ 10⁷cm/s

Boundary Conditions


Material Characterization

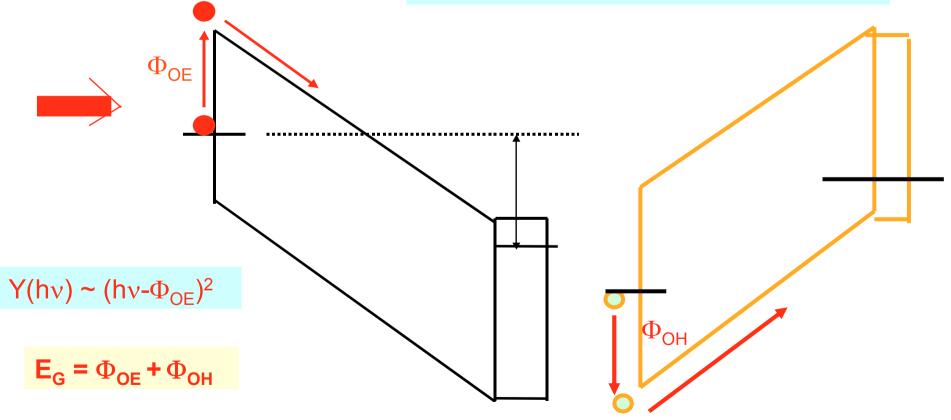
CPM: Constant Photocurrent Method DBP: Dual Beam Photoconductivity, Others (PDS) Valence Band Tail Slope and Dangling Bond Density (D⁻ and D^o)

Optical characterization of materials

4 - Reflection and Transmission:

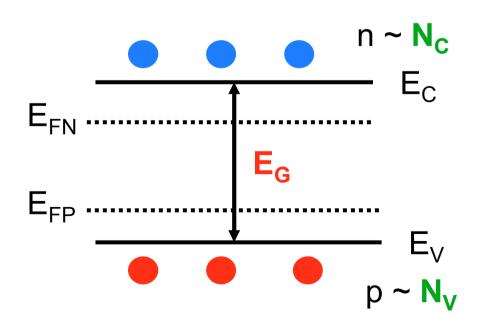
Absorption coefficients (α) and Refractive Indexes (n) Optical Gap (Tauc Gap) $\alpha(h\nu)n(h\nu) \sim (h\nu-E_{OPT})^{1/2}$ Cutoff Wavelength or Photon Energy

 E_{OPT} (a-Si:H) = 1.72eV E_{OPT} (c-Si) = 1.12eV E_{OPT} (μ c-Si:H) = 1.1ev (I) –2.00eV (D) **Other techniques**


5 - Electron Spin Resonance:

Dangling Bond concentration --> D°

6 - Internal Photoemission:

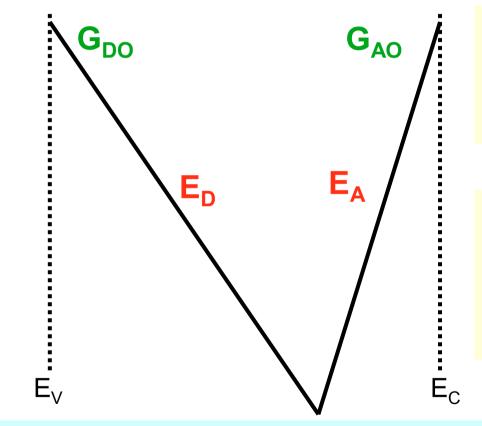

Mobility Gap

SSPG Modulated conductivity Minority carrier diffusion length Conduction Band Tail (**Time of Flight**)

 $\frac{d}{dx}\left(\varepsilon(x)\frac{d\Psi(x)}{dx}\right) = \rho(x)$ Dielectric permittivity $\varepsilon \rightarrow$ books

 $\rho(x) = q[p(x)-n(x) + p_T(x) - n_T(x) + N_D + (x) - N_A - (x)]$

$$n \sim N_{C} \exp(E_{FN} - E_{C})$$


$$p \sim N_{V} \exp(E_{V} - E_{FP})$$

$$E_{G} = E_{C} - E_{V}$$

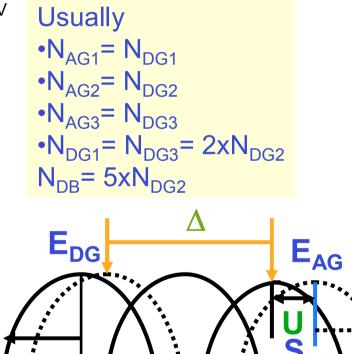
 N_c :effective conduction density of states → input (literature, fitting) (cm-3) N_v :effective valence density of states → input (literature, fitting) (cm-3) Usually $N_c = N_v \rightarrow (1) (1-3x10^{20})$

E_G: mobility gap (eV), (1) → input (experiment)

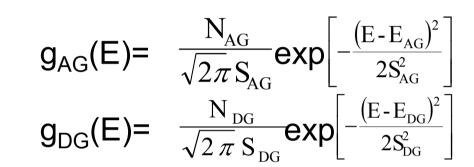
Inputs – Equilibrium Poisson's Equation - DOS

Conduction band tail (acceptor-like) $g_D(E)=G_{DO}exp(-E/E_D) G_{DO}kT \sim N_V$ Valence band tail VBT (donor-like) $g_A(E)=G_{AO}exp(-E/E_A) G_{AO}kT \sim N_C$

 G_{DO} density of localized states at Ec (cm⁻³eV⁻¹) → input (literature) G_{AO} density of localized states at Ev (cm⁻³eV⁻¹) → input (literature) Usually G_{DO} = G_{AO} (2)

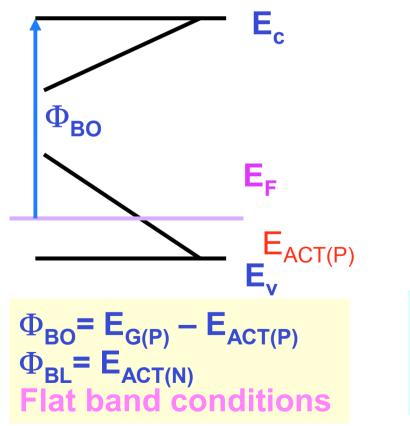

 E_D : donor tail characteristic energy (eV) \rightarrow input (experiment) (2) E_A : acceptor tail characteristic energy (eV) \rightarrow input (literature, fitting) (3)

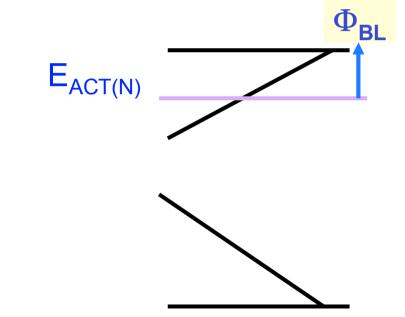
Inputs – Equilibrium Poisson's Equation - DOS


 E_{C}

N_{AG}

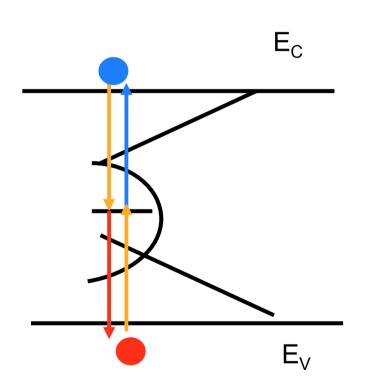
 E_{V}


N_{DG}



 N_{DG} , N_{AG} total number of states enclosed in Gaussians (cm-3) → inputs (4) $N_{DG} = N_{AG}$ E_{DG} , E_{AG} , peak energies (eV) → input We have to reproduce the experimental i-layer activation energy $E_{AG} = E_{DG} + U$ U: correlation energy (literature) S_{DG} , S_{AG} : standard deviations (eV) → inputs (4) Usually $S_{AG} = S_{DG}$

Inputs – Equilibrium Poisson's Equation - DOS


p-layer \rightarrow N_A- (fully ionized, fix DOS) We have to reproduce the p-layer activation energy E_{ACT(P)} (experiment)

n-layer \rightarrow N_D+ (fully ionized, fix DOS) We have to reproduce the n-layer activation energy E_{ACT(N)} (experiment)

Non – Equilibrium Poisson's + Continuity Equations

Tail cross sections $\rightarrow \sigma_{NA}, \sigma_{PA}, \sigma_{ND}, \sigma_{PD}$ \rightarrow inputs (literature, fitting) $\sigma_{NA} << \sigma_{PA}$, and $\sigma_{PD} << \sigma_{ND}$ (6) (6) Often but not always $\sigma_{PA} = \sigma_{ND}$ and $\sigma_{NA} = \sigma_{PD}$ Mid-gap cross sections $\rightarrow \sigma_{NA}, \sigma_{PA}, \sigma_{ND}, \sigma_{PD}$ \rightarrow inputs (literature, fitting) $\sigma_{NA} << \sigma_{PA}$, and $\sigma_{PD} << \sigma_{ND}$ (8) (8) Often but not always $\sigma_{PA} = \sigma_{ND}$ and $\sigma_{NA} = \sigma_{PD}$

Recombination (**R**) and occupation functions (**f**) $(\mathbf{n}_{T} \text{ and } \mathbf{p}_{T})$ are functions of the cross sections.

Non – Equilibrium Continuity Equations

Scattering Electron Mobility μ_N \rightarrow inputs (literature, fitting) (9)

Generation (G) Absorption coefficient $\alpha(\lambda)$ (cm⁻¹) Refractive indexes n(λ) (Experiments)

Scattering Hole Mobility μ_P \rightarrow inputs (literature, fitting) (10) Measured Drift Mobilities μ_N and μ_P : $\mu_{ND=} \mu_N [n/(n+n_t)]$ and $\mu_{PD=} \mu_P [p/(p+p_t)]$ $\mu_N \sim 0$ and $\mu_P \sim 0$ in localized states

Light source described by: •wavelengths (λ_i) (nm) •fluxes Φ_{Oi} . (photons/cm²/sec) Incoming flux $\Phi_O = \Phi(x=0)$

One electron-hole pair/photon

 $\begin{array}{l} J_{N} \ (x=0)= \ \boldsymbol{S}_{NO} \ [n(x=0)-n_{EQ}(x=0)], \ etc\\ Surface \ recombination \ velocities:\\ \boldsymbol{S}_{NO,} \ \boldsymbol{S}_{NL}, \ \boldsymbol{S}_{PO,} \ \boldsymbol{S}_{PL} \ \rightarrow \ inputs \ \rightarrow \ (literature)\\ High \ enough \ to \ avoid \ contact \ limitations \end{array}$

Critical parameters: How many?

• a-Si (~1.8eV)

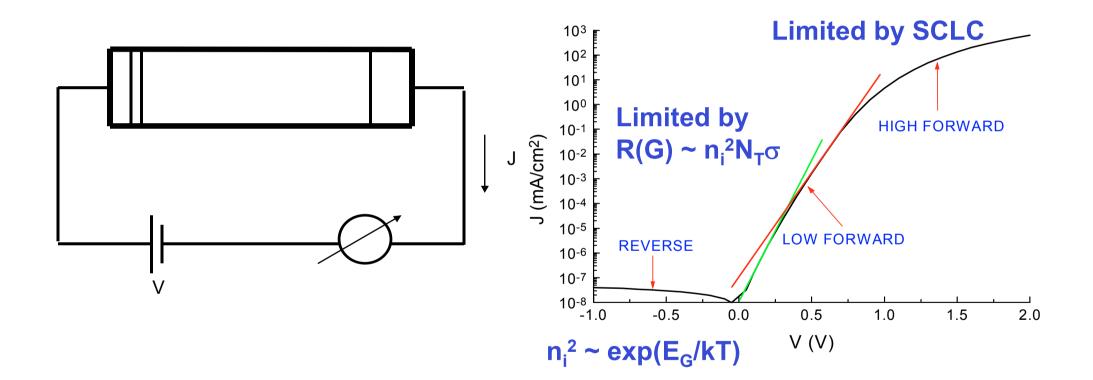
- $\mathbf{E}_{\mathbf{D}}$ and $\mathbf{N}_{\mathbf{DG}}$ can be carefully measured (DBP, PDS).
- E_{G} can be also measured (IPE).
- **E**_A only impacts on the high forward dark J-V.
- $\sigma_{PA,}$ in tails has much less impact on device outputs that $\sigma_{ND,}$

We have **five** critical parameters per layer:

 $\mu_{N}, \mu_{P}, \sigma_{PA}$ (DB), σ_{ND} (DB). and σ_{ND} (T).

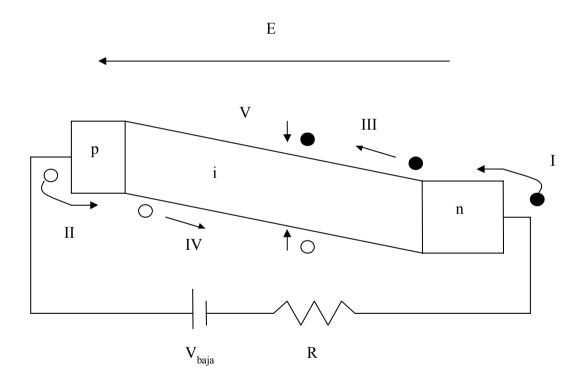
and 13 non-critical inputs.

• μ**c-Si** (~1.2-1.6eV)

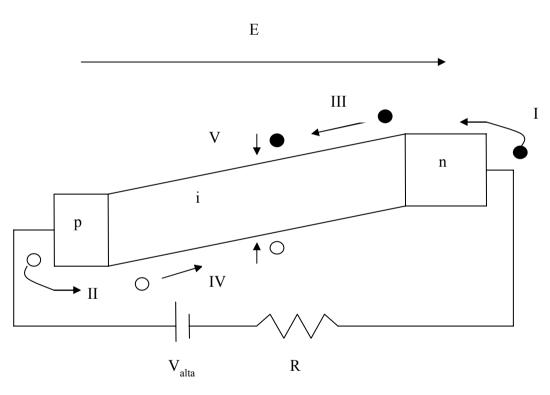

In low gap materials tails do not play a significant role!

We end up with **four** critical parameters per layer:

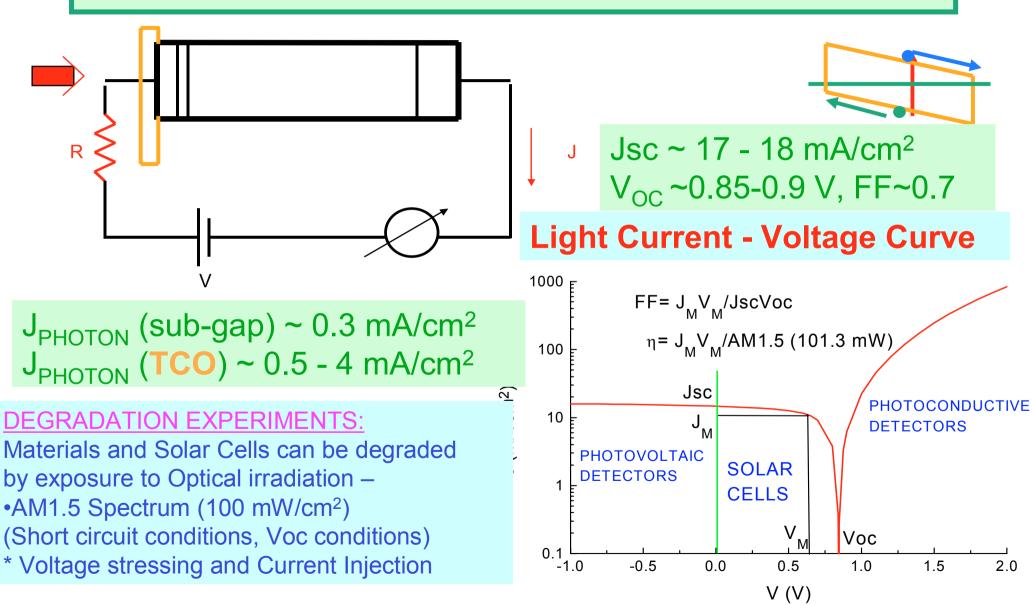
 μ_{N} , μ_{P} , σ_{PA} , (DB) and σ_{ND} (DB)

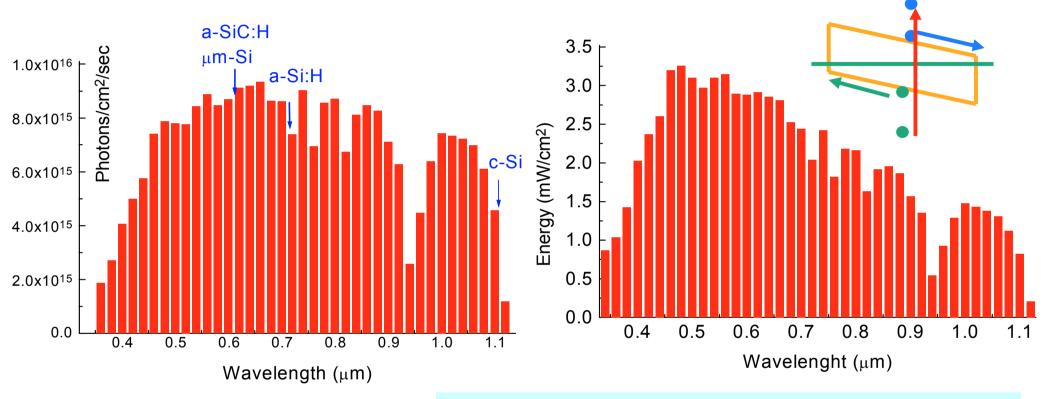

and seven non-critical inputs

Device characterization



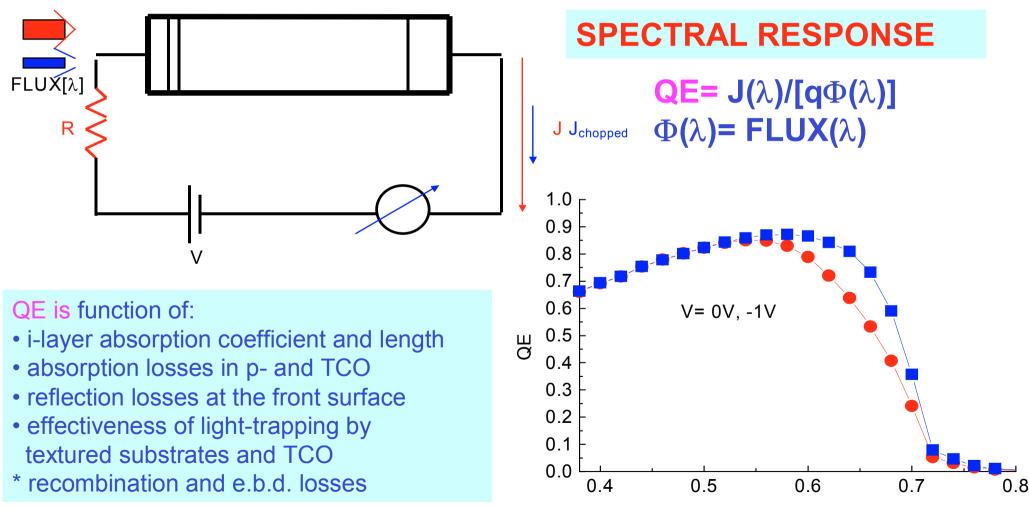
Dark Current - Voltage Curve


Low – forward current mechanisms


High – forward current mechanisms

Device characterization

Solar Spectrum



 $\eta(\%) = J_M V_M / q\Phi < 100\%$ <u>Maximum Currents:</u> $J_{PHOTON} = 43.25 \text{ mA/cm}^2 \text{ (c-Si)}$ $J_{PHOTON} = 15.28 \text{ mA/cm}^2 \text{ (a-SiC:H)}$ $J_{PHOTON} = 22.20 \text{ mA/cm} (\textbf{a-Si:H})$ Experimental Jsc ~ 17 - 18 mA/cm²

Maximum efficiencies:

 $\eta(\%) = 79.7 \text{ (c-Si)} - 50.5 \text{ (a-Si:H)}$ absorbed energy $\eta(\%) = 48.4 \text{ (c-Si)} - 38.2 \text{ (a-Si:H)}$ optical gap $\eta(\%) = 45.6 \text{ (c-Si)} - 23.6 \text{ (a-Si:H)}$ activation energy Highest experimetal efficiencies ~ 15%

Device characterization

Wavelenght (µm)

Working strategy and getting started (1991)

- (a) Collection of experimental data.
- (b) Understanding of the transport mechanisms.
- (b) Fitting of experimental solar cell J-V and SR.
- (c) Moving from simple to complex device structures.
- (d) Gaining confidence in the input parameters.
- (e) Using the computer code as prediction tool.
 - ==> Solar Cell Design.

- 1991 a-Si:H Schottky barriers (Wronski, PSU).
- Characterization of the intrinsic layer: DBP, Photoconductivity.
- Solar Cell characterization: dark J-V and QE.
- three different i-layer thicknesses (0.9, 1.3, 2μm).
- 5 T (25, 50, 75, 90, 110 C).
- Fitting all these experiments
 => lower uncertainty.

Reality

- Dark J-V of Schottky barriers were successfully fitted for:
 (a) different i-layer thicknesses at a fixed temperature.
 (b) at different temperatures for a fixed i-layer thickness.
- The i-layer was grown at different deposition conditions.
 J-V and SR curves were changing on and on.
- <u>Lesson 1:</u> Fitting data with numerical modelling is much more difficult than with analytical modelling where many parameters are ignored.
- Fittings of dark J-V Schottky barriers were possible for different i-layer thicknesses using an uniform density of ionized donors (6x10¹⁴ cm⁻³) inside the i-layer (DB~ 5x10¹⁵ cm⁻³).

Reality

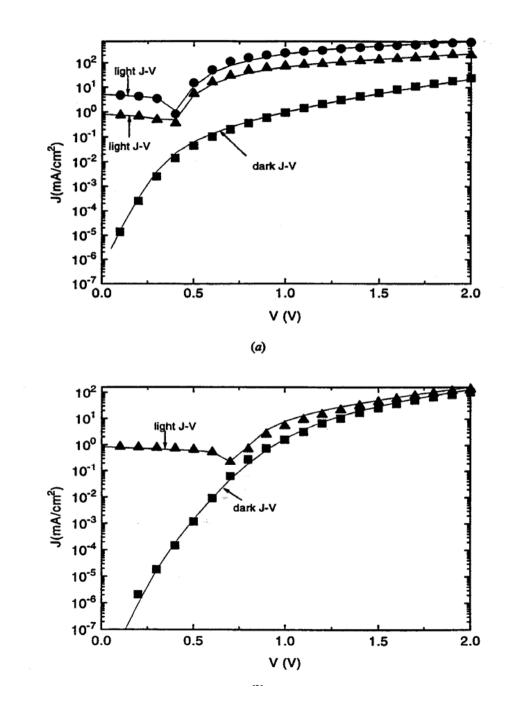
Lesson 2: elaborated modelling does not necessarily helps (DOS).

- To fit dark J-V of a-Si p-i-n at different thicknesses we did not need to ionized donors in the i-layer.
- <u>Lesson 3</u>: what is learned in simple devices does not necessarily apply directly to more complex devices.
- <u>Lesson 4</u>: Better quality materials does not imply better solar cells (defect pool model).
- <u>Lesson 5:</u> Physics has to be constantly updated.

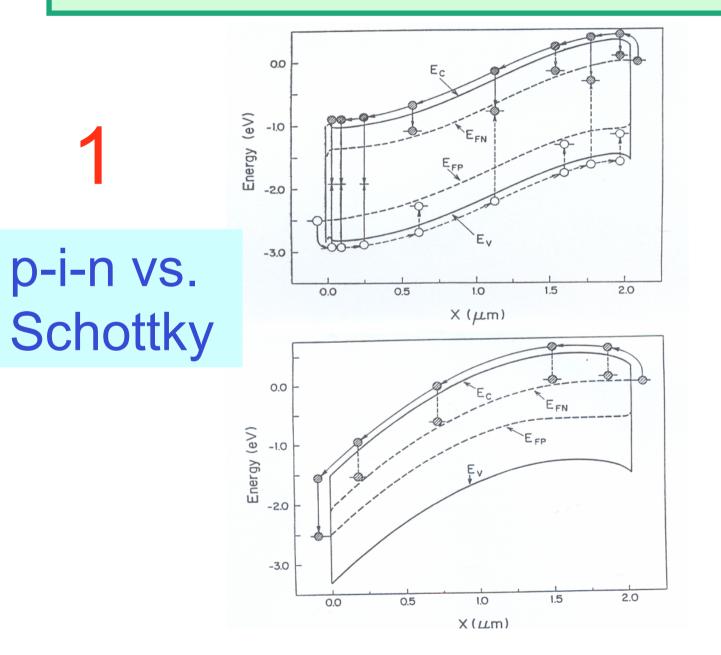
• Inverse modelling: fitting of experiments could be automatically achieved by running the computer code commanded by an auxiliary program that minimizes the mean square deviation between data and simulations.

Some important results (1992-1998)

Basic Device Physics:

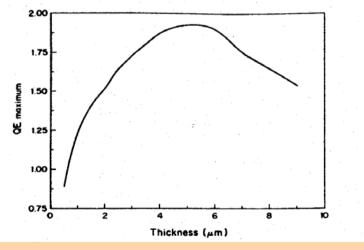

Why the high forward dark J-V in p-i-n a-Si homojunctions is higher than in m-i-n a-Si Schottky barriers?

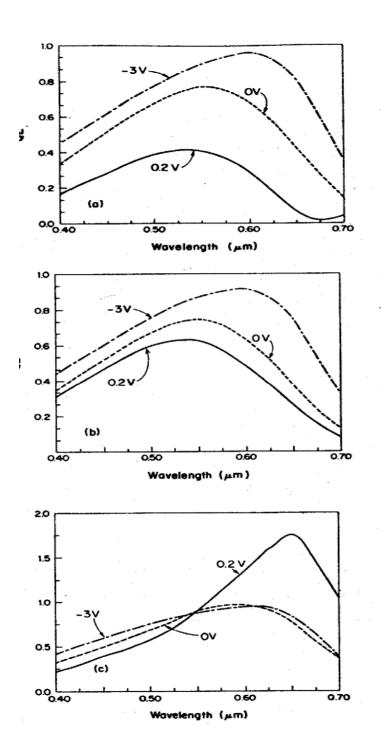
• SR > 1 in a-Si based devices:

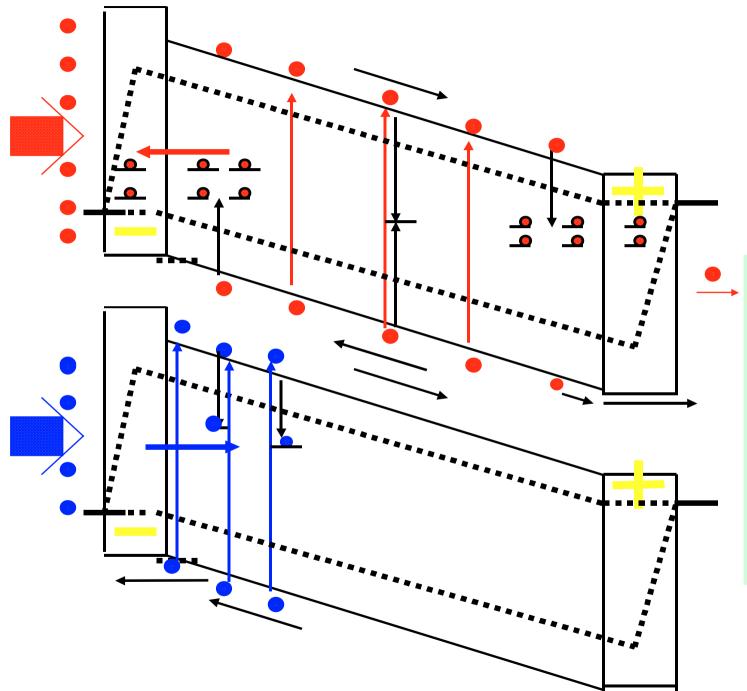

In a-Si based sensors BLUE bias light could give rise to SR >1. The QE peak is function of: bias and monochromatic light intensities, device length, DOS, forward bias voltage..

 a-SiC/c-Si Hybrid Cells - Evidence of Tunneling: Light J-V with good FF can not be explained without invoking tunneling currents flowing through the VB.
 spike present at the a-SiC/c-Si interface. Fitting experimental dark and light J-V in Schottky barriers and in p-i-n a-Si devices

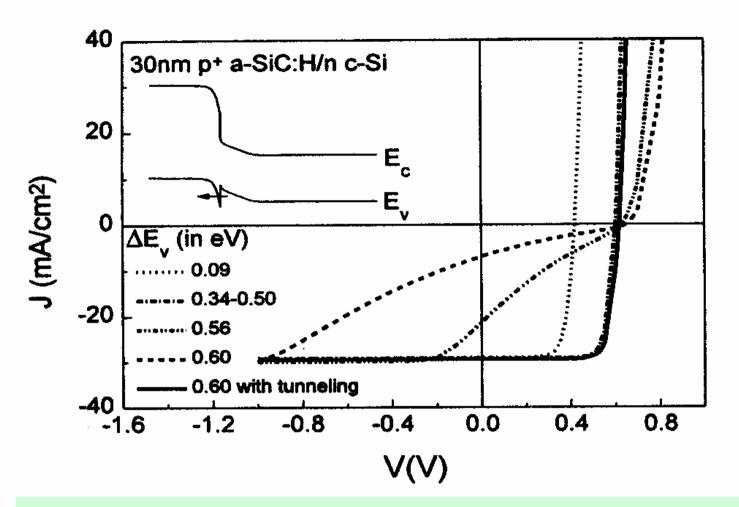
Red light source with intensities of 9x10¹⁵ #/cm²/sec 7x10¹⁶ #/cm²/sec (S)


Transport mechanisms in the dark


2

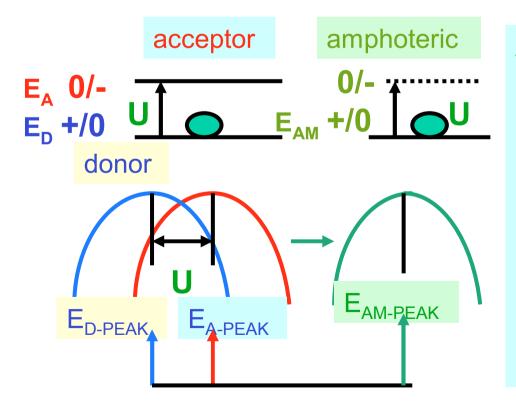

Measured QE characteristics of a Ni/(i)-a-Si/(n)-a-Si Schottky barrier for three different applied voltages: -3, 0, and 0.2V under (a) Dark conditions (b) Red bias light illumination

(c) Blue bias light illumination


Predicted QE peak for different (i)-layer thicknesses

Red and blue bias light generate modifications in the electric field with opposite directions at the front region of the i-layer

2


3

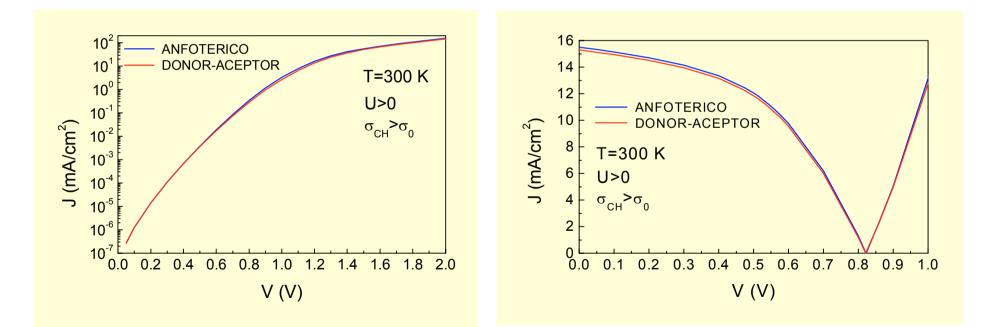
The spike at the a-SiC/c-Si interfaces was measured with internal photoemission and it was found to be $\Delta E_v = 0.6eV$

Only by including the tunneling path at that VB spike it becomes possible to reproduce high experimental FF with our simulations

Modeling refinements: DB are really amphoteric

DB behave as donors and acceptor-like states \rightarrow they are amphoteric DB can be represented by two energy levels separated by U D⁺ (0 electrons), D⁰ (1 electron) and D⁻ (2 electrons)

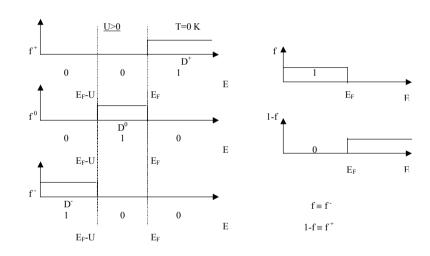
Amphoteric states with energy E_{AM} can be approximated by donor – acceptor pairs with energies E_D and E_A

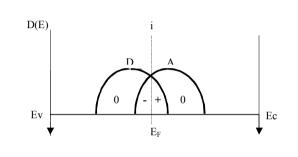

 $\sigma_{ND} (\sigma_N^{+}) >> \sigma_{NA} (\sigma_N^{0}) \text{ (charged >> neutral)}$ $\sigma_{PA} (\sigma_P^{-}) >> \sigma_{PD} (\sigma_P^{0}) \text{ (charged >> neutral)}$ U > 0 (positive correlation energy)

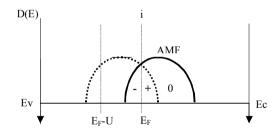
$$\bullet E_{AM-PEAK} = E_{D-PEAK}$$
$$\bullet E_{A-PEAK} = E_{D-PEAK} + U$$

DB approximated by donor-acceptor pairs

• U > 0

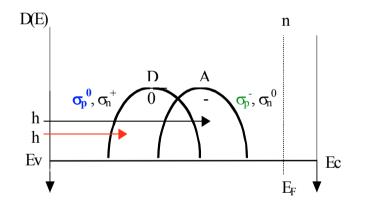

• $\sigma_{CH} >> \sigma_0$ CH= Charged 0= Neutral

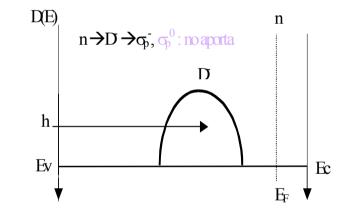



Approximation fails when U>0 and $\sigma_{CH} \leq \sigma_0$, or when U<0.

Trap density U>0 Acceptor-Donor or Amphoteric

<u>U>0</u>



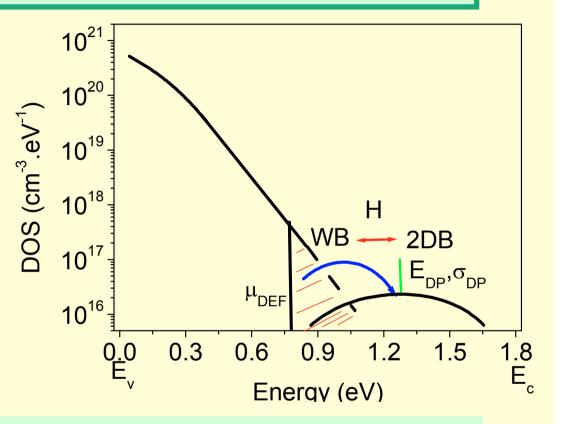


$$\begin{split} \rho &= q \cdot \int_{E_v}^{E_c} N(E) \cdot \left[1 - f(E) \right] \cdot dE \quad \text{donor} \\ \rho &= \stackrel{\bullet}{-q} \cdot \int_{E_v}^{E_c} N(E) \cdot f(E) \cdot dE \quad \text{acceptor} \\ \rho &= q \cdot \int_{E_v}^{E_c} N(E) \cdot \left[f^+(E) - f^-(E) \right] \cdot dE \quad \text{amphoteric} \end{split}$$

Double occupied states move U to the left The approximation keeps unaltered the charge distribution

U>0 and
$$\sigma_p^- = \sigma_p^0 (\sigma_n^+ = \sigma_n^0,)$$

amphoteric state (-) \rightarrow only can trap holes

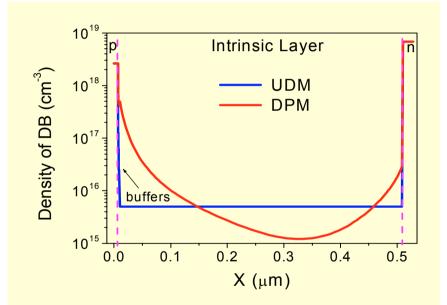


Defect Pool Model

Successful in describing the defect density in doped and un-doped a-Si

Accounts for the origin of DB WB ↔ DB conversion H mediates in the reaction

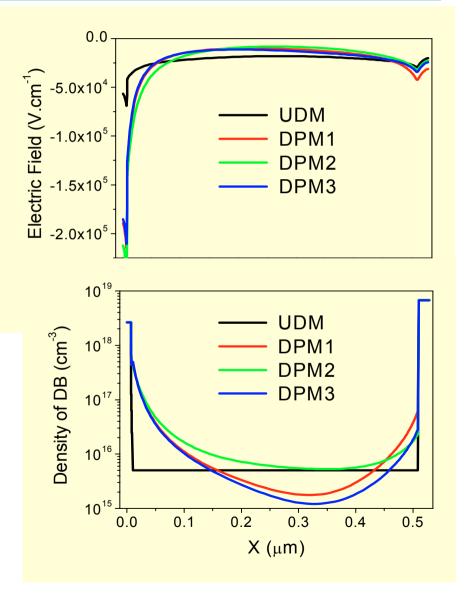
 $\begin{array}{l} \mathsf{WB} \leftrightarrow \mathsf{2DB} \ (\mathsf{i=0}) \\ \mathsf{Si} - \mathsf{H} + \mathsf{WB} \leftrightarrow (\mathsf{DB} + \mathsf{Si}\text{-}\mathsf{H}) + \mathsf{DB} \ (\mathsf{i=1}) \\ \mathsf{2}(\mathsf{Si} - \mathsf{H}) + \mathsf{WB} \leftrightarrow (\mathsf{Si}\text{-}\mathsf{H}\text{-}\mathsf{H}\text{-}\mathsf{Si}) + \mathsf{2DB} \ (\mathsf{2}) \end{array}$

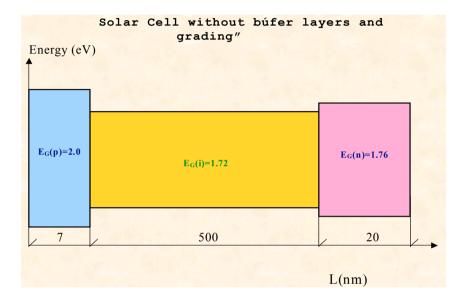

Energy distribution of WB \rightarrow VB tail state distribution $g_D(E)=G_{DO}exp(-E/E_D)$ P(E): distribution of available defect sites: Gaussian distribution E_{DP} : peak position or defect pool center σ_{DP} : defect pool standard deviation

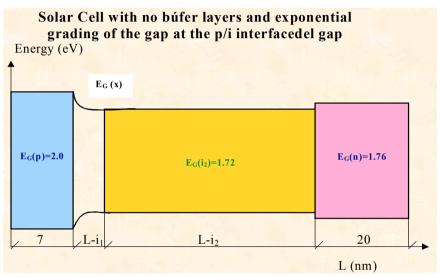
$$P(E) \equiv \left[\frac{1}{\sigma_{DP}\sqrt{2\pi}}\right] \exp\left[\frac{-\left(E - E_{DP}\right)^{2}}{2\sigma_{DP}^{2}}\right]$$

Defect Pool

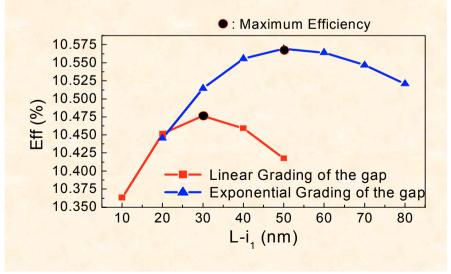
DB density results from minimizing the free energy G of the system WB + DB + Si-H + H Chemical Defect Potential $\mu_D = \langle e \rangle - kTs_e (+ H \text{ term})$ $\sim E_F (D^+ \rightarrow p-a-Si)$ $\sim E (D^0 \rightarrow i-a-Si)$ $\sim 2E - E_F + U (D^- \rightarrow n-a-Si)$ Two (one) algorithms of Powell and Deane (Schuum) No evidences of defect pool in μ c-Si


DB density becomes function of the E_F position T_{EQ} : freezing or equilibration temperature D(E) at $T < T_{EQ} = D(E)$ at T_{EQ} (frozen at T_{EQ}) E_{DP} coincides with D⁺ peak = $E_F + \Delta/2$ $\sigma_{DP} \leftarrow \Delta = 2\rho\sigma_{DP}^{2}/E_{D} - U \sim 0.44eV$

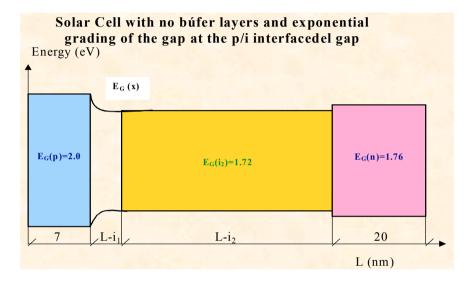

Out	New	Same
N _{G1} , N _{G2} , N _{G3}	T _{EQ}	ED
E _{G1,} E _{G2} , E _{G3}	E _{DP}	G _{DO}
S _{G1} = S _{G2} = S _{G3}	Н	$\sigma_{N}^{0}, \sigma_{P}^{-}, \sigma_{N}^{+}, \sigma_{P}^{0}$

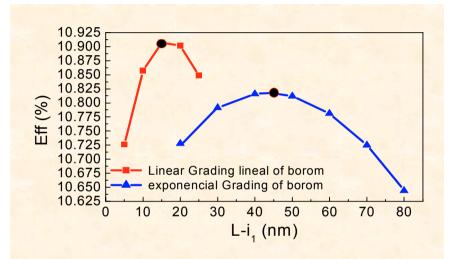

a-Si solar cell characteristics

- The electric field inside the ilayer of a p-i-n cell becomes less uniform.
- There are more defects near the p/i and i/n interfaces.
- Stronger F near interfaces and weaker F in the bulk.
- At equilibrium we have F ~ 10⁵ V/cm (interfaces) F ~ 10⁴ V/cm (bulk).
- At maximum power we have $F \sim 10^2$ V/cm in the bulk.

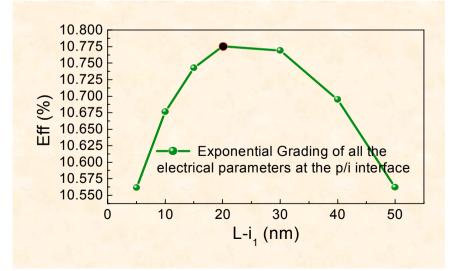


Design to increase the efficiency: Gap Grading





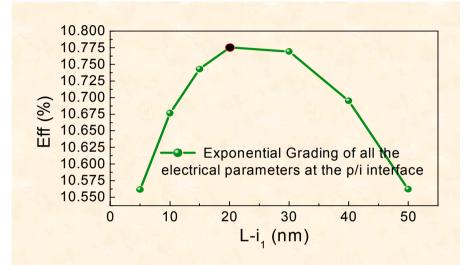
• Band-gap profiling of the intrinsic layer assisting transport of holes in the low field region

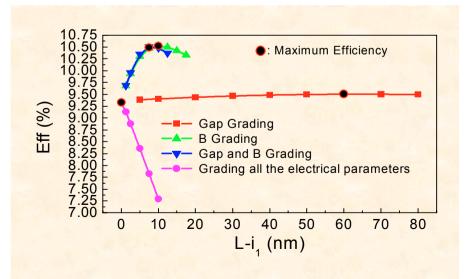


Doping and Gap Grading

- Field redistribution using low-level of impurity doping
- •They will also introduce more defects

Exponential Grading of all electrical parameters


- $E_G, \chi, E_{DP}, \sigma_{DP}, N_A, E_D, E_A, \mu_n, \mu_p, N_c, N_v, \sigma_{CH,0}.$
- Eff_{máx}=10.77%.
- Highest impact: E_D.


UDM: p/i interface

- Grading $N_{DB} \rightarrow$ decrese of Eff.
- Recommend removal of buffer layers to increase the Eff → contradicts experimental findings.

i/n interface

- Gap grading increases Eff.
- P grading decreases Eff.

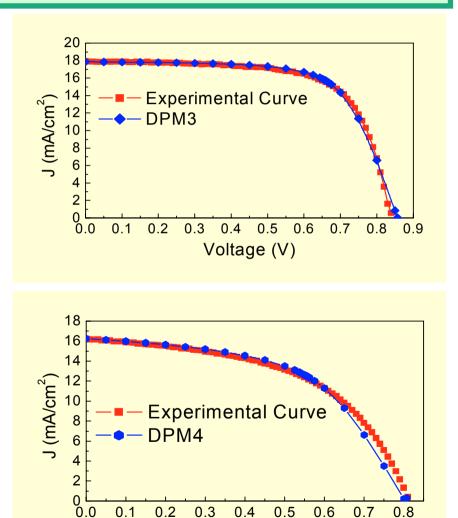
Metastability in a-Si

- Discovered by Steabler and Wronski (SWE) (1977)
- After illumination in a-Si:

 (a) E_F shifts towards mid-gap
 (b) Dark and Photo conductivity decrease

SWE is a bulk effect (??)

- Evidence of increasing density of neutral Si DB
- Metastable DB can be removed by annealing 1-3 hours above 150C


- SWE is caused by ?? (more than 15 models were proposed) →
 - Recombination of excess free carriers generated by light or by contact injection
- Saturated defect density ~ 10¹⁷ cm⁻³ (initial defect density ~5-810¹⁵ cm⁻³⁾
- Light induced DB (LDB) are intrinsic to a-Si:H

Metastability in a-Si Solar Cells

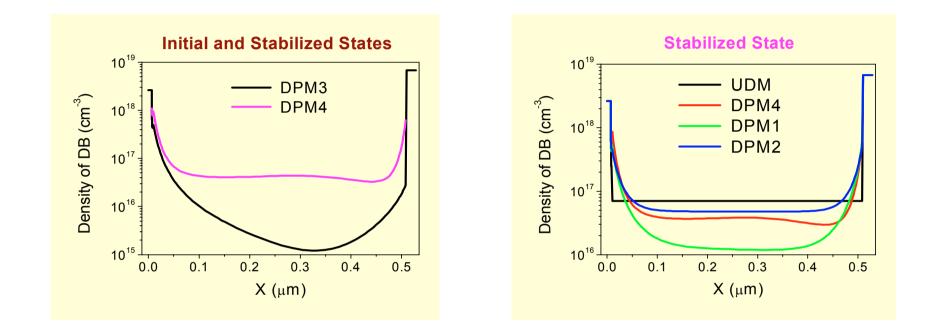
- (a) Largest changes occur in FF.
- (b) Changes in J_{SC} and and V_{OC} are small.
- (c) Thicker cells degrade deeper.
- (d) Cells with high impurity concentration (> 10¹⁸cm⁻³) in the intrinsic layer degrade deeper than cells with highly pure intrinsic layers.
- (e) Cells operating at high T (60-90C) stabilize at higher efficiencies than cells operating a 300K.
- (f) Exposure to high (low) intensity illumination causes deeper (reduced) degradation.
- (g)– Cells with intrinsic layers made with highly hydrogen-diluted silane stabilize at a higher η .
- (h) No correlation between films and cell stability. Defect pool model influences results on cells. Fermi level change with position in cells.

Metastability in a-Si Solar Cells

- Rate of degradation under 1 sun is (a) - high during first tens of hours
 - (b) decreases over time
 - (c) stabilizes after hundreds of hs
 - (d) initial efficiency can be recovered by annealing
 - (150C for several hours)
- Degradation not caused by • (1) – diffusion of ions or dopants
 - (2) electrical migration
- LDB introduce extra recombination and trapping
- SWE modifies the electric field inside the device

0.3 0.4 0.5 0.6

Voltage (V)

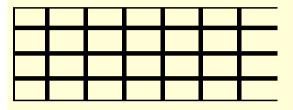

0.7

0.8

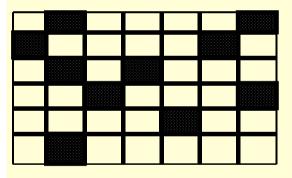
0.1

0.2

Comparing the DB densities



- Schuum's model → :reasonable fittings at different ilayr thicknesses for the initial and stabilized state
- Cross sections are slightly different in each case .


$\mu c - Si$

- Poly Si:
- Large grains \geq 100nm
- no amorphous phase
- crystalline grains and boundaries
- Columnar structure \rightarrow 2D
- μ**c Si** :
- Small grains ~ 20-30nm
- Mixture of crystalline grains, grain boundaries, amorphous phase and voids
- contain amorphous tissue
- crystalline grains and grains boundaries
- 1D or 2D?

Polycrystalline Si: Grain Size of $0.1\mu m$ - $100\mu m$

Microcrystalline Si: Grain Size of 30nm or less

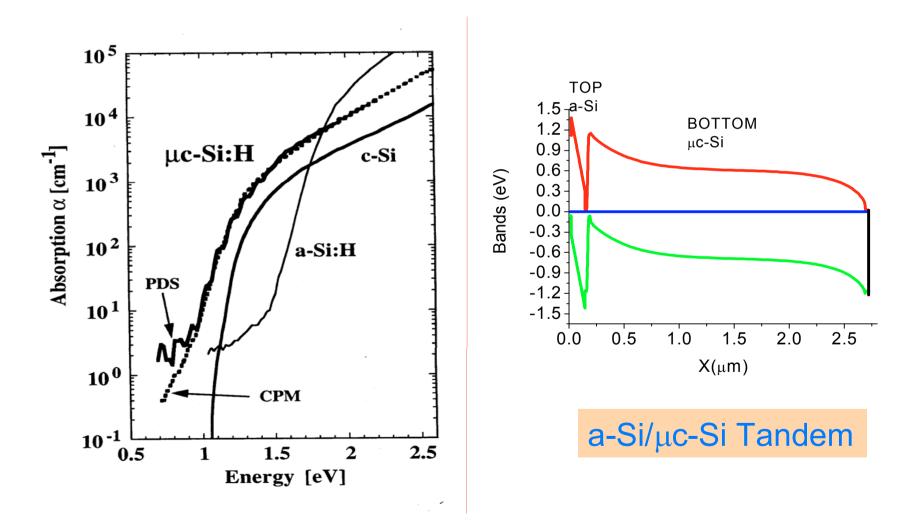
Best Material: High Deposition Rate Low Substrate Temperature Small Fraction of Voids Low content of Oxygen Low or Lack of Degradation upon Light Soaking

Comparing a-Si and µc-Si

a-Si:H

- Frequency deposition: 13.5 MHz - 200MHz
- Low temperature deposition T_S ~ 420 - 520K
- Deposition rate (PECVD) ~ 0.3 nm/sec at 13.5 MHz
 5 times higher at VHF-GD
- Staebler Wronski Effect
 Degradation of its electrical properties under illumination
 Dark conductivity increases
 Photoconductivity decreases

μ**c-Si:H**


- Same frequency deposition: but prepared at higher H dilutions and RF power
- Low substrate temperature T_S < 500C (High T_S poly-Si)
- Advantages over a-Si:
- (a) lower SWE
- (b) higher light absorption in the infrared region
- Drawbacks:
- (a) thick absorbing layers at low deposition rates
- (b) anomalous incorporation of impurities (mainly O)

Device Quality Material Intrinsic a-Si and μc-Si

- Dark conductivity < $10^{-10} \Omega^{-1} \text{ cm}^{-1}$
- AM1.5 conductivity > $10^{-8} \Omega^{-1} \text{ cm}^{-1}$
- Activation Energy ~ 0.8eV
- Mobility Gap < 1.8eV (1.72eV)
- Density of Dangling Bonds $\leq 10^{16} \text{ cm}^{-3}$ (opto-electrical) and 8x10¹⁵ cm⁻³ (ESR)
- $\mu \tau_{\text{ELECTRONS}} \sim 10^{-6} \text{ cm}^2/\text{V}$
- $\mu \tau_{HOLES} \sim 10^{-8} \text{ cm}^2/\text{V}$
- Minority $L_D \sim 100-200$ nm
- Absorption Coefficient $\geq 3.5 \times 10^4 \text{ cm}^{-1}$ at 600nm and $5 \times 10^5 \text{ cm}^{-1}$ at 400nm

- Dark conductivity < $10^{-7} \Omega^{-1} \text{ cm}^{-1}$
- AM15 conductivity > $10^{-5} \Omega^{-1} \text{ cm}^{-1}$
- Activation Energy ~ 0.53-0.57eV
- Mobility Gap: 1.2 –1 6 eV
- Density of Dangling Bonds $\leq 10^{16} \text{ cm}^{-3} \text{ (ESR)}$
- $\mu \tau_{HOLES} \sim 10^{-7} \text{ cm}^2/\text{V}$
- Minority $L_D > 500$ nm
- Crystalline volume fraction (Raman) > 90%
- Lower values are acceptable in μ c-Si cells.

Light absorption of a-Si and µc-Si

Main breakthroughs in solar cells over the past 25 years (MRS –2004)

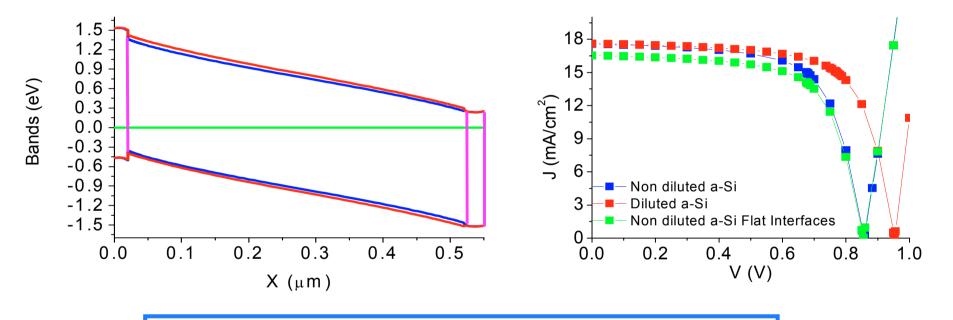
- (1) Textured transparent contacts for light trapping
- (2) a-Si deposited with hydrogen dilution for greater stability
- (3) a-SiC and $\mu c\text{-Si}$ doped layers for higher Voc and better blue response
- (4) TCO/silver and TCO/aluminum rear contact for enhanced reflectivity
- (5) Multi-gap, multi-junction devices for optimum utilization of the solar spectrum
- (6) μc-Si intrinsic layers for improved red-response and stability
- (7) Band gap tailoring and engineering of device structure for optimum performance (a-SiGe and a-Si)

Front electrode

Textured contacts – Light trapping

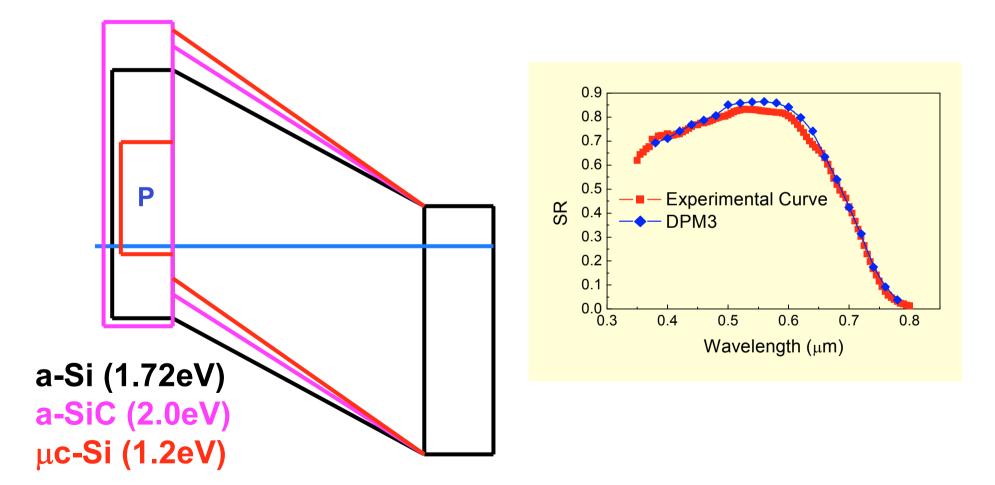
TCO (pin) SnO₂:F, ZnO:AI, relatively thick ~ 600nm and textured. (nip). ITO (In₂O₃:Sn) 70-80 nm

TCO

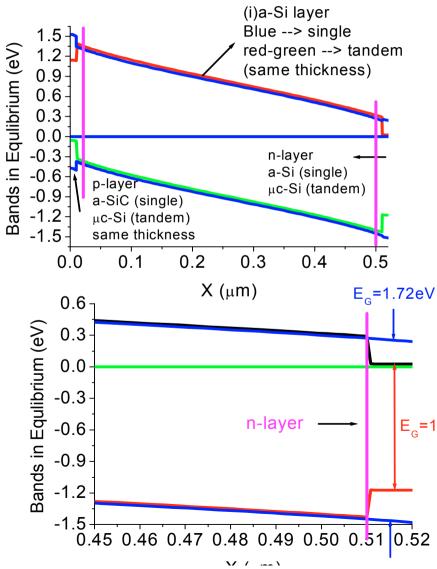

rms

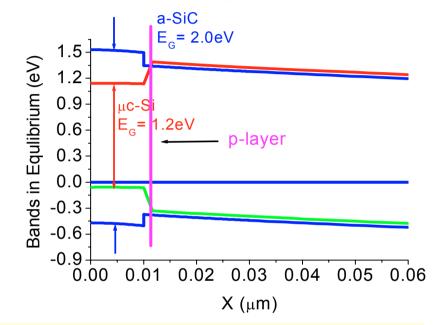
р

- **Requirements:** Highly transparent lo light and highly conductive air (Glass)
- Ability to scatter light \rightarrow Haze ratio (T_{DIFFUSE}/T_{TOTAL})
- $(T_{TOTAL} = T_{DIFFUSE} + T_{SPECULAR}$ usually taken in air)
- Optimum Haze Ratio ~ 6-15%.
- Should provides an antireflection layer.
- Sheet resistance is high.
- \rightarrow Metal grid to reduce series resistance.
- \rightarrow And to keep FF reasonably high.



Rough and Flat TCO Hydrogen diluted a-Si


Rough TCO increases Jsc by ~ 1mA/cm²
 a-Si gap is increased from 1.72 to 1.82eV
 → Voc increases ~ 0.1V= ∆E_G


a-SiC and µc-Si doped layers

Device Quality Material Doped a-Si and µc-Si (p)-a-SiC (2 eV)E_{ACT}= 0.47eV 1.5 (p)-µm-Si (1.2 eV) (n)-a-Si (1.72 eV) 1.5 1.2 E_{ACT}= 0.059eV E_{ACT}= 0.25eV 1.2 0.9 (n)-µc-Si (1.12 eV) 0.9-E_{ACT}= 0.026eV 0.6 3ands (eV) 0.6 0.3 3ands (eV) 0.3-0.0 0.0--0.3-E_c= 1.72 eV -0.3 -0.6 E_c= 1.72 eV -0.6 -0.9 -0.9--1.2 (i)-a-Si (1.72eV) -1.2 (i)-a-Si (1.72eV) -1.5 E = 0.77eV -1.5 E. = 0.77eV 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 a-Si X (μm) •p-type (20nm thick) •Conductivity > $10^{-7} \Omega^{-1} \text{ cm}^{-1}$ •p-type (20nm thick) µC-Si •Activation Energy < 0.5 eV •Conductivity $2.6X10^{-2} \Omega^{-1} \text{ cm}^{-1}$ •Band Gap (Tauc) > 2.0 eV Activation Energy ~ 0.059eV •Absorption Coefficient at 400nm < 3x10⁵ cm⁻¹ •Absorption Coefficient at 600nm < 10⁴ cm⁻¹ •n-type (15nm thick) •n-type (15nm thick) •Conductivity $2.5 \Omega^{-1} \text{ cm}^{-1}$ •Conductivity > $10^{-4} \Omega^{-1} \text{ cm}^{-1}$ •Activation Energy < 0.3 eV •Activation Energy ~ 0.026eV •Band Gap (Tauc) > 1.75 eV

(i)layer built-in potentials μc-Si vs. non μc-Si doped layers

μc-Si doped layers provide high built-in potentials

E_g=1.2^e Similar built-in potentials
 can be obtained in the
 (absorbing) i-layers with μc-Si or
 with a-Si based doped layers

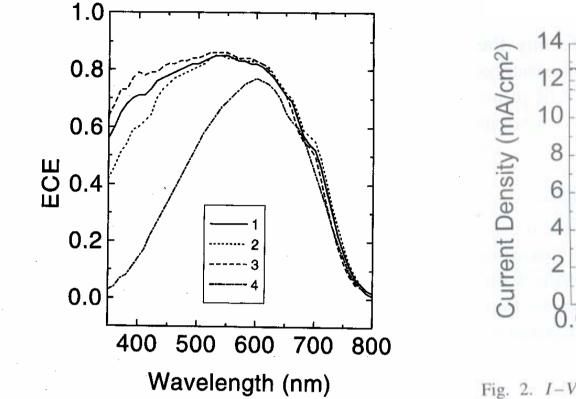


Fig. 1. Spectral response (ECE) of the $p-\mu c-Si:H/i-a-Si:H/n-a-Si:H$ cell with different buffer layers at p/i interface. Cell 2: 1.5 nm a-SiC:H buffer, Cell 3: 1.5 nm a-Si:H (WB) buffer, Cell 4: 3.0 nm a-Si:H (WB) buffer. Cell 1 is a reference cell (p-a-SiC:H/i-a-Si:H/n-a-Si:H) for comparison.

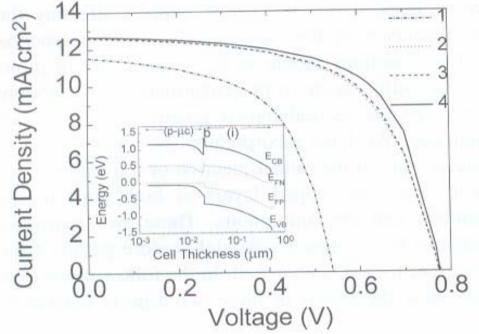
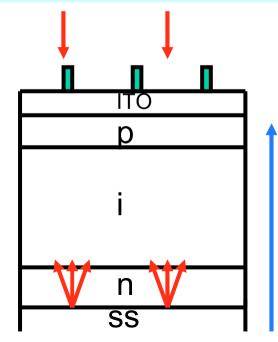
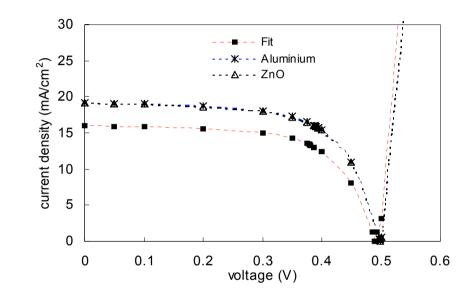


Fig. 2. I-V characteristics from the computer simulations by AMPS for p- μ c-Si:H/i-a-Si:H/n-a-Si:H cell with different buffer layers at p/i interface. (1) Without buffer, (2) 1.5 nm a-SiC:H buffer, (3) 3 nm a-Si:H (WB) buffer, (4) 1.5 nm a-Si:H (WB) buffer. Inset is the computer generated band diagram at J_{sc} condition of the cell with 1.5 nm a-Si:H (WB) buffer layer.


p(µc-Si)/(i)a-Si/(n)a-Si


TCO/silver and TCO/aluminum rear contact for enhanced reflectivity

- Silane/ hydrogen dilution: 0.95 (5%)
- Substrate configuration:

SS: cells were deposited onto SS
-n-type μc-Si: doped with P, 0.05μm, PECVD.
-intrinsic μc-Si:H: 3μm, HWCVD technique
-p-type μc-Si: doped with B, 0.025μm, PECVD
-ITO: Indium Tin Oxide,

•Au (gridlines).

- Al or/and zinc oxide (ZnO) at the back contact
- Back reflector is included in simulations
- $\bullet J_{sc}$ increases ~4mA/cm², resulting in an efficiency enhancement from 5.1% to 6.2%
- Extra light absorbed at back region of the i-layer reflected off the back contact
- The enhancement of Jsc is more significant in solar cells with thinner i-layers

μc-Si (i)-layers Single p-i-n solar cells

AM1.5 illumination a-Si alloy top cell on SS (4 different hydrogen dilutions)

	Jsc (mA/cm ²)	Voc (V)	FF	Pmax(mW/cm ²)
Near optimum	10.04	1.018	0.732	7.48
Optimum	9.88	1.028	0.761	7.73
On-the-edge	9.82	0.624	0.426	2.61
Over-the-edge	8.95	0.459	0.562	2.31
	$(\mathbf{C}_{1}, \mathbf{C}_{2}, C$			

(MRS 2004, (R. S.Guha))

Order improves in the growth direction at any given dilution Problems in solar cells with intrinsic layers in excess to $1\mu m$

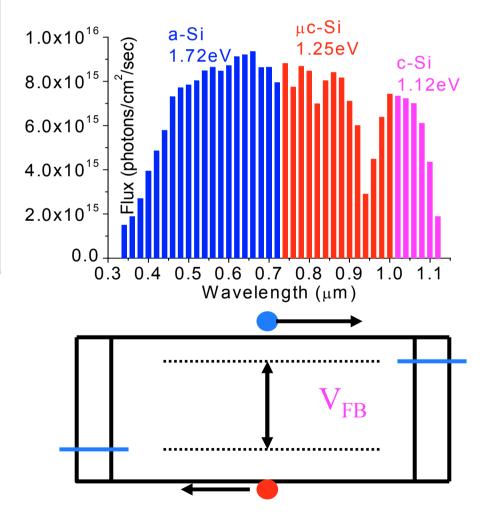
Thickness (nm)	Jsc (mA/cm ²)	Voc (V)	FF	Pmax(mW/cm ²)
335	9.45	0.47	0.651	2.89
470	10.98	0.466	0.672	3.44
720	12.99	0.439	0.640	3.65
1040	14.8	0.434	0.621	3.99
1395	16.51	0.414	0.578	3.95
1980	17.87	0.393	0.510	3.58

(MRS 2004, (R. S.Guha))

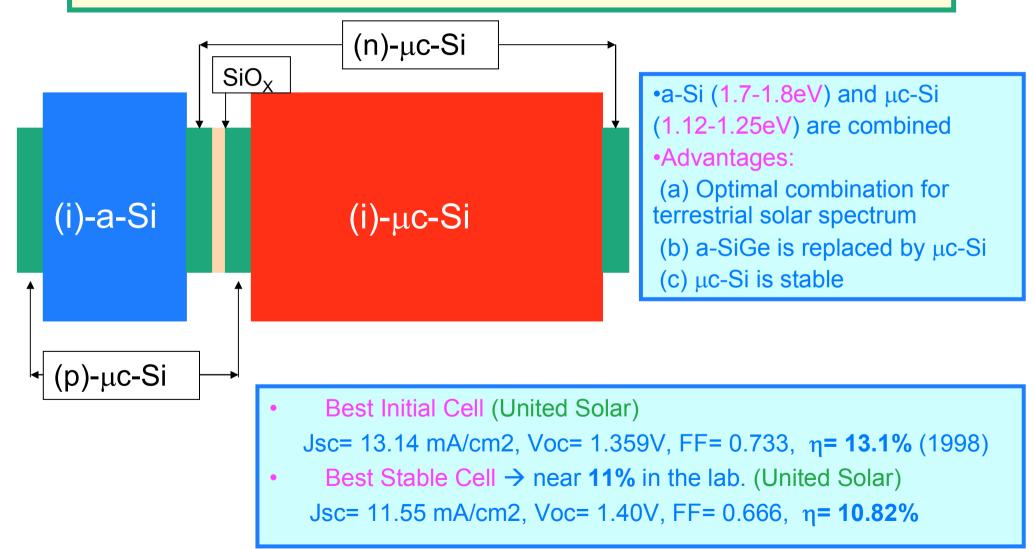
FF decays with thickness \rightarrow deterioration of the material quality with increasing thickness; Voc decays with thickness \rightarrow grain size is increasing

μc-Si (i)-layers Single p-i-n solar cells

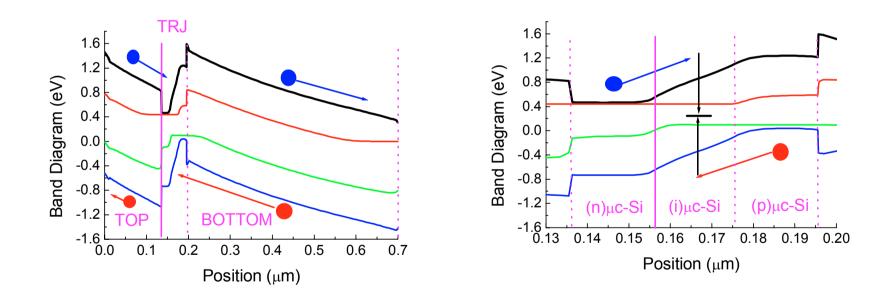
Beginning with a very high H dilution to reduce the incubation layer Decreasing the hydrogen dilution with time deposition conditions are kept near the edge Small and uniform grain size throughout the whole film thickness **1D Modeling is applicable !! (we are lucky)**

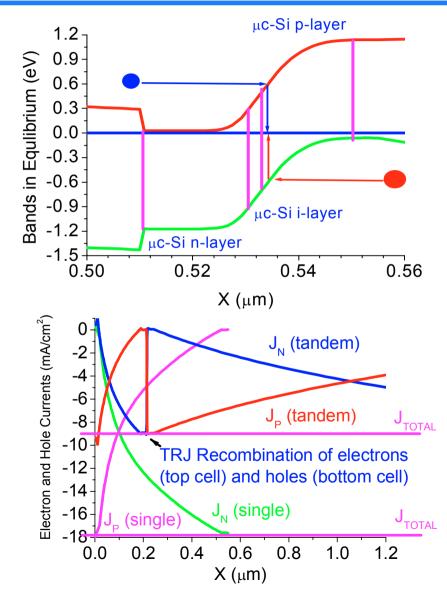

Thickness (nm)	Jsc (mA/cm ²)	Voc (V)	FF	Eff (%)
Baseline	22.58	0.495	0.603	6.74
20% ticker	21.48	0.482	0.632	6.54
No profiling				
20% ticker	25.15	0.502	0.663	8.37
with profiling				

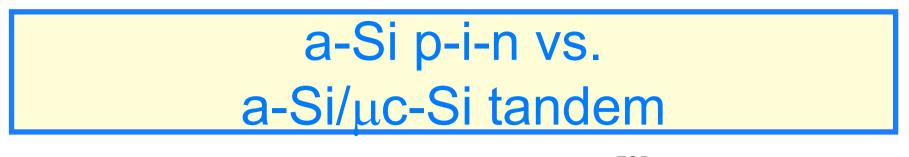
(MRS 2004, (R. S.Guha))

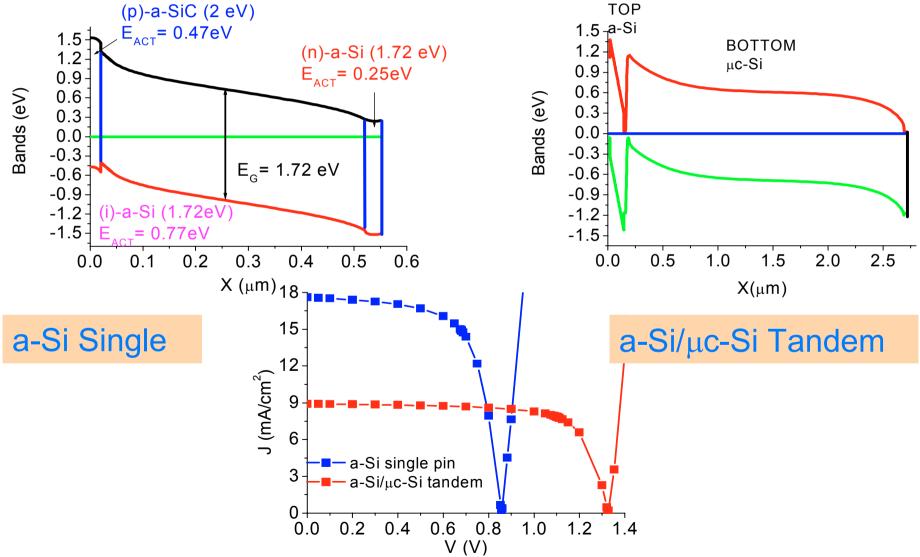

Multi-junction devices for optimum utilization of the solar spectrum

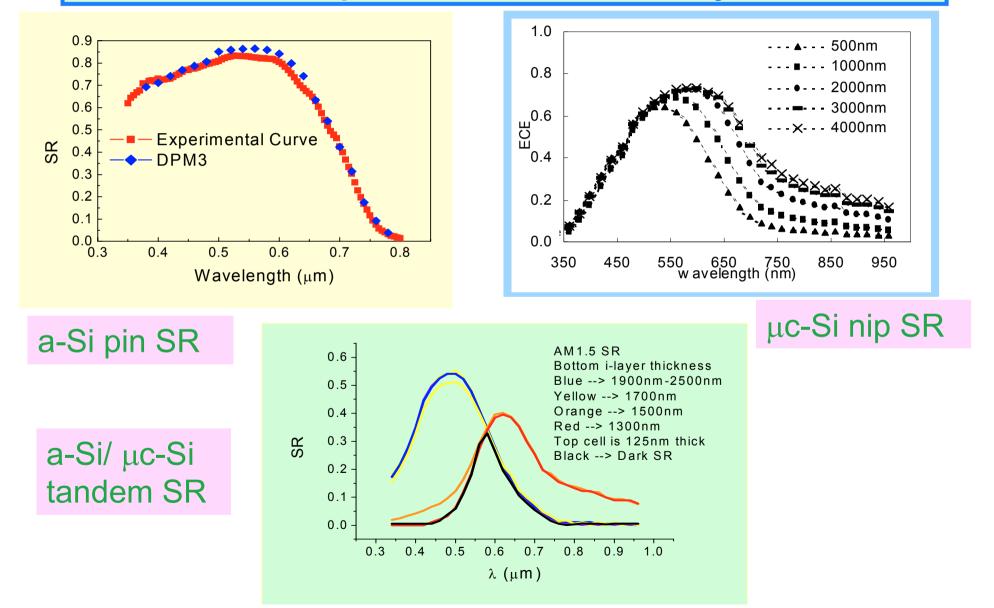
Total fluxes (#/cm ² /sec)	Flat Band Voltage (V _{FB})	Jsc Voc
1.328 x 10 ¹⁷	1.72-0.33- 0.25=	17 mA/cm ²
21.2 mA/cm ²	1.14V	0.9V
0.996 x 10 ¹⁷	1.2-0.059-0.026=	25 mA/cm ²
37.1 mA/cm ²	1.11V	0.53V
0.339 x 10 ¹⁷	1.12-0.08-0.09=	35 mA/cm ²
58.3 mA/cm ²	0.95V	0.52V

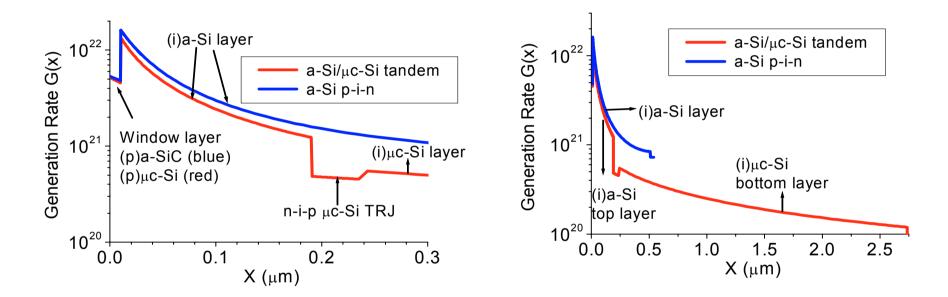

Single a-Si (17x0.9) \rightarrow 15.3mW Single µc-Si: (25x0.53) \rightarrow 13.2mW Single c-Si: (35x0.52) \rightarrow 18.2 mW a-Si/ µc-Si Tandem: [(25/2)x(0.9+0.53)= 17.9mW a-Si/ µc-Si/c-Si Triple: [(35/3)x(0.9+0.53+0.52)= 22.7mW


Micromorph concept a-Si/μc-Si Tandem




Tandem and TRJ Bands


TRJ $\rightarrow \mu c$ -Si doped layers provide efficient recombination junctions for photo-carriers



μc-Si intrinsic layers for improved redresponse and stability

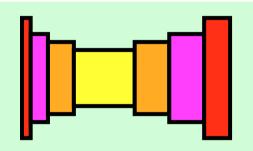
Generation profiles in a-Si p-i-n and a-Si/µc-Si tandem

Generation profile in the second junction is much more uniform than in the first junction μ c-Si doped layers provide low optical losses

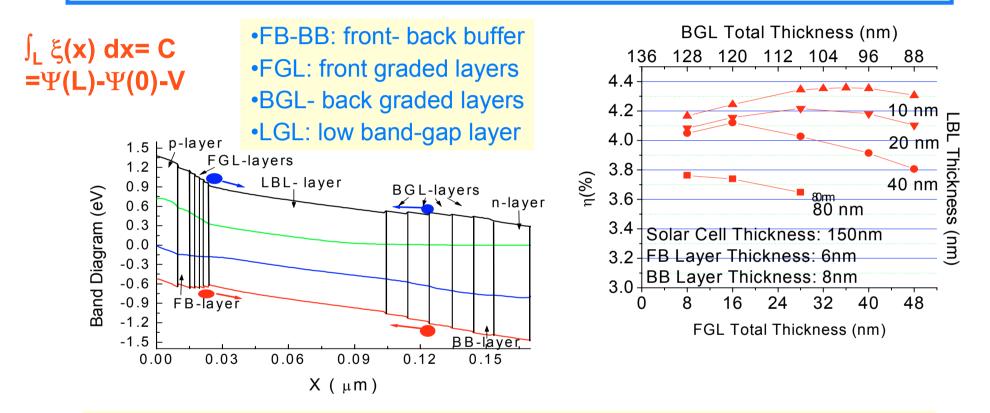
Multi-junction technology

- More efficient utilization of absorbed photon energy.
- Smaller thickness of each component.
- Less sensitive to light-induced degradation.
- Strong electric field even after degradation.
- Reduced photo-current density in bottom cell.

Differences with single junction.

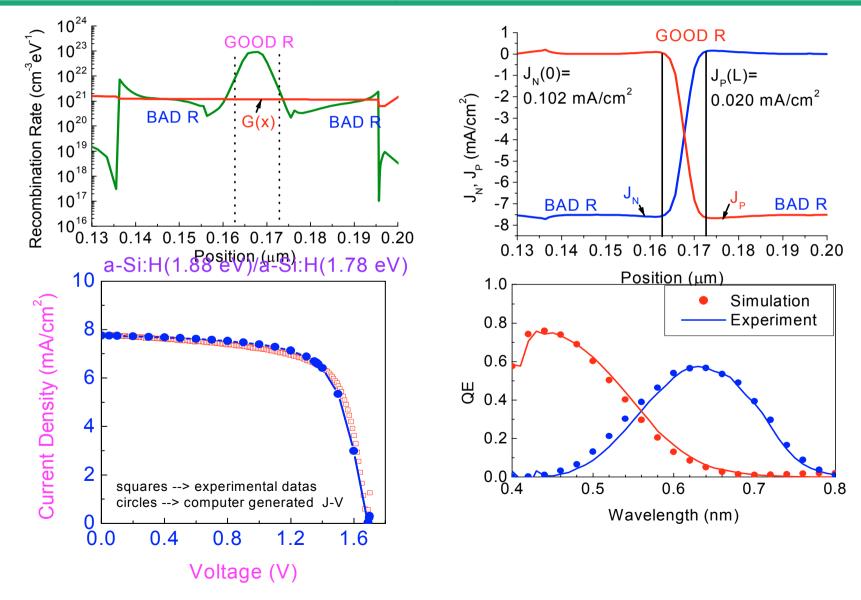

- Current density in all component cells has to be equal.
- μc-Si doped layers provide high built-in potentials, low optical losses and efficient recombination in TRJ for photo-carriers.
- Generation profile in the second and third junction is much more uniform than in the first junction.
- Band-gap engineering is needed in a-SiGe components.

Device quality a-SiGe


- Dark conductivity < $5X10^{-8} \Omega^{-1} \text{ cm}^{-1}$
- AM1.5 photoconductivity > $1 \times 10^{-5} \Omega^{-1} \text{ cm}^{-1}$
- Urbach Tail < 60 meV
- Activation Energy ~ 0.7eV
- Gaps ~ 1.45 1.7eV

- Photo-electronic properties of a-SiGe deteriorate with Ge content.
- Urbach tail slope does not change for decreasing gaps (> 1.25eV)
- Transport properties of a-SiGe are not as good as in a-Si
- Band gap engineering scheme: decreasing gap from the top and from the bottom towards the inner bulk
- The best valence between absorption profile and internal electric field has to be designed (transport and recombination)

a-SiGe Band Gap Engineering


•Profiling in the (i)a-SiGe E_G has strong influence Voc and FF. •Minimum E_G is placed closer to the p/i interface than to the i/n interface •U-, V-, W- shape profiles has been proposed \rightarrow Exponential Grading •In practice several thin layers with different E_G are deposited

Some conclusions

- Computer modeling allow us to explain the physics behind of some characteristic signatures present in the J-V and SR curves of different cell structures.
- The code calibration made by relying in simple cell structures have to be re-adapted to be used in more complex devices.
- More elaborate physical models do not necessarily lead us to a better fitting and interpretation of experimental results.
- Lack of agreement between computer predictions and experiments could teach us what is missing in our modeling.
- Cell structures to be modeled are becoming more complex.
- Numerical modeling is a very time consuming task.
- Computer modeling can be used as prediction tool.
- The most fruitful effort is to reproduce the experimental trends rather than accurate fittings.

Modeling Tandem Solar Cells

Anybody interested?

