

The Abdus Salam International Centre for Theoretical Physics

Workshop on "Physics for Renewable Energy" October 17 - 29, 2005

301/1679-20

"Hydrogen: State-of-the-Art & Perspectives"

S. Freni CNR-Institute for Advanced Energy Technologies 'Nicola Giordano' Messina, Italy

Hydrogen: state of art and perspectives

Dr. Salvatore Freni

CNR-Institute of Advanced Technologies for Energy

Workshop on 'PHYSICS FOR RENEWABLE ENERGY'

Trieste, Oct. 17-29, 200

Crucial points in energy supply

Growing Energy Demands

• growing population and domestic energy demand

• Developing industry

Population gro

• Increasing of transportation sector

Crucial points in Energy field

- Increasing Environmental
 problems
 - ➢ Global climate change
 - Atmospheric pollution
- Depletion of valuable resources
- Security of supply.

K

Calore che si disperde nello spazio

Calore imprigionato dall'anidride carbonica

Calore del Sole

Atmosfera

Trends of energy policy

Actual trend:

Reduction of local pollutions emissions (industries, traffic)

Reduction of global emissions (CO2, acidic gases)

Diversification of energy sources

Main actions:

Decrease of oil derivates consumption to favour the use of natural gas

Increase of the energy generation plants overall efficiency.

Development of high efficiency energy utilizers

Trends of energy policy

Forecast for energy consumption as a function of used energy source (business-as-usual scenario).

No rise of contribution from solid fuels and renewables can be expected.

Electricity, oil products and natural gas will cover the increase of energy demand.

*) ENEA- Rapporto Energia ed Ambiente

Hydrogen: the energy vector of the future

Easy to obtain from different energy source

Efficient transformation into other energy forms

Easy transmissibility for short and long distances

Good storage capacity

n

Process of Reforming

Research needs: Study on decomposition mechanisms

Research needs: Development of materials and catalysts

Catalysts problems poisoning due to impurities sintering due to temperature deactivation due to carbon formation ageing effects commercial availability

Plant problems development of small scale reformers integration with hydrogen purification sub-modules

Out-of-cell tests: a powerful tool

Aims of out-of-cell tests:

- Determination of catalytic activity
- Detection of catalysts deactivation causes
- Checking of catalysts stability

Out-of-cell tests: catalytic activity

- C2H4 detected for T > 923 K;
- C2H4 produces carbon formation;
- CO2 appears at T= 883 K;
- SR isn't prevailing reaction;
- the catalytic activity of the support seems to be stronger than active metal phase.

Out-of-cell tests: catalytic activity

Solid fuel gasification

Indirectly-heated gasification

<

Solid fuel gasification Oxygen-blown gasification

Consiglio Nazionale delle Ricerche **Solid fuel gasification**

 \square

Ķ

Solid fuel gasification

Research needs:

Higher process efficiencies

System integration

=> lower cost

- Modular system development
- Catalyst regeneration

Feedstock development

- Energy crop yield optimization

Coal gasification

- CG is similar to Partial Oxidation
- Plant requires pure O2 and the coal must be pulverized prior to gasification
- Can achieve ~ 48% efficiency
- Operates at temperatures around 1100-1300°C
- CG is mature technology

Coal gasification

Coal gasification

Carbon Steam Reaction:

 $C + H_2O > CO + H_2$

- WGSR to 500° C and FeO_x catalysts $CO + H_2O > CO_2 + H_2$
- Coal Gasification process

 $C + 2H_2O > CO_2 + 2H_2$

Water electrolysis

Electrolysis of water is the dissociation of water into hydrogen and oxygen gas

Different types							
type	type Electrolyte / Membrane			Electrodes / Catalysers		global reaction	
Alcaline	KOH/NiO, IMET TM (Inorga Tech.)	anic Membrane Electroly	Anode : Ni, Fer / Ni alloys, metal oxides Cathode : steel + Ni / Ni-Co		Anode : $4HO_{(1)}^{\circ} \Rightarrow O_{2(g)} + 2H_2O_{(1)} + 4e^{\circ}$ Cathode: $4H_2O_{(1)} + 4e^{\circ} \Rightarrow 2H_{2(g)} + 4HO_{(1)}^{\circ}$		
Acid PEM	Solid, proton exchange poly	mer membrane (Nafion [®]	Anode : Graphite-PT Cathode : Graphite +	Anode : Graphite-PTFE + Ti / RuO ₂ , IrO ₂ Cathode : Graphite + Pt / Pt		Anode : $^{6}H_{2}O_{(0)} \Rightarrow O_{2(g)} + ^{4}H_{3}O^{+}_{(0)} + 4e^{\circ}$ Cathode: $^{4}H_{3}O^{+}_{(0)} + 4e^{\circ} \Rightarrow ^{4}H_{2(g)} + ^{4}H_{2}O_{(0)}$	
High temp. steam	a) Zirconia ceramics (0,91Z b) Zirconia oxide ceramics	rO ₂ -0,09Y ₂ O ₃)	Anode : ceramics (M Cathode : Zr & Ni ce	Anode : ceramics (Mn, La, Cr) / Ni Cathode : Zr & Ni cermets / CeOx		 a) Cathode: 2H₂O_(g) + 4e[°] ⇒ 2O₂[°] + 2H_{2(g)} Anode : 2O₂[°] ⇒ O_{2(g)} + 4 e[°] b) Anode : 2H₂O⇒ 4H⁺ + O_{2(g)} + 4 e[°] Cathode: 4H⁺ + 4 e[°] ⇒ 2H_{2(g)} 	
Principle of operation							
Alcaline electrolyser: PEM electrolyser : High temperature electrolyser						er :	
$\begin{array}{c c} 4e^{-} & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline \hline & & & \\ $					$\rightarrow O_2$ $H_2 \leftarrow$ $\downarrow e^2$ e^2 e^2 \downarrow aranyoles b) d come	H ⁺ Electrolyte haction protonique	
Technical data Temperature of State of							
type	operation	Pressure of operation	Electric consumption	Energy Efficiency	Life duration	development	
Alcaline	caline 50 - 100 °C 3 - 30 bars 4		4-5 kWh / Nm^3 of H_2	75 - 90 %	15 - 20 years	marketed	
PEM	PEM 80 - 100 °C 1- 70 bars		$6~kWh$ / Nm^3 of $\rm H_2$	80 - 90 %	150 000 hours (≅17 years)	development	
High temp. st	team 800 - 1000 °C	??	3-3.5 kWh / $\mathrm{Nm^3}$ of $\mathrm{H_2}$	80 - 90 %	??	research	

Water electrolysis

Research needs:

Alkaline water electrolysis:

• Design optimization to reach conversion efficiency of 85% (60-70%) from fluctuating primary energy.

Cost reduction and series

Membrane electrolysis:

• Design optimization to avoid formation of ignitable mixture due membrane fracture or gas cross-over.

• Suitable systems integrated with storage systems (70 MPa)

High-T steam electrolysis:

• Typical problems of materials development correlated to SOFC technology

Other processes

Thermochemical production:

 Based on thermally activated water decomposition (>2200 °C). By coupling chemical reaction, T of split lowers to 900 °C. iodine+sulphur dioxide+water > hydrogen iodide + sulphuric acide (120 °C) Sulphuric acid > oxygen + sulphur dioxide (850 °C) Hydrogen iodide> hydrogen + iodine (300 °C)
 High conversion efficiency (up to 50%)
 Process engineering and material unsolved problems

Photochemical production

Basic reseach stage

Biological production

Basic research stage

Current status of Hydrogen Storage Systems

K

Basic investigation on: thermochemical, Photochemical/biological H2 production

Future perspective Short-term period (next 10-15 years)

Technological goals :

•Improvements of life-time of generators

•High quality of produced hydrogen (reliable feedsotcks clean-up)

•High efficiencient electrolyzers based on PEFC and SOFC technologies

•Developments of CO2 separation and sequestration systems integrated with centralised power plants

Future perspective Medium-term period (2020-2030)

Main goals:

Improving durability and compatness of plants Lower main system components costs

Hydrogen market

Stationary power plant (< 5MW) with advanced electrochemical devices (PEM/MCFC) integrated with cogeneration systems.

> F.C. plant of small power (< MW) to provide electricity/heat for residential/commercial buildings.

Refuelling station service for F.C. or ICE engines vehicles

Local extension pipe network (regional level)

Commercial plants

Co-generated power plant based on N.G. reforming

Co-generated power plant based on coal gasification with CO2 removal and local underground storage

Large power plants based on renewable sources

Earlier demonstrators based on thermochemical, Photochemical/biological H2 production

Hydrogen utilization in Fuel Cell

- Friendly environmental impact
- High electric efficiency independently to the size
- Production of heat usable for co-generation cycles
- Integration with gas turbine
- Fuel flexibility

