

The Abdus Salam International Centre for Theoretical Physics

Workshop on "Physics for Renewable Energy" October 17 - 29, 2005

301/1679-29

"Geothermal Energy Clean & Renewable Power from the Earth"

> F. Batini ENEL Rome, Italy

Strada Costiera 11, 34014 Trieste, Italy - Tel. +39 040 2240 111; Fax +39 040 224 163 - sci_info@ictp.it, www.ictp.it

THE ABDUS SALAM

INTERNATIONAL CENTRE FOR THEORETICAL PHYSISCS

WORKSHOP ON "Physics for Renewable Energy"

GEOTHERMAL ENERGY

CLEAN AND RENEWABLE POWER FROM THE EARTH

Fausto Batini

Enel – International department

Roma – Italy

Trieste, October 27th 2005

Content

- 1. Basic concepts
 - Heat sources
 - Geothermal systems and technologies
 - Exploration & production process
- 2. The geothermal industry worldwide
 - Electric energy generation
 - Direct use application
- 3. Drivers & barriers for the geothermal energy growth
 - Technological challenges
 - Economic and environmental sustainability
- 4. Conclusions

Enel company profile

Enel s.p.a.

- The principal electricity operator in Italy with the leading position in the generation, transmission*, distribution and sale of electricity
- Strong presence in the gas market
- One of the world largest operators in the energy sector Market capitalization as of April 18 th 2005

Source: Bloomberg

* Enel owns 36,14% of the share capital of Terna and has already signed an agreement for the sale of up to 30% of the company

Enel in the Italian Electricity Sector

- 26,837 MW Thermal
- 14,318 MW Hydroelectric
- 642 MW Geothermal
- 250 MW Wind and other renewable

Enel owns 36% of Terna, that owns 90% of the transmission assets of Italy's national electricity grid

Italy

DISTRIBUTION

82% of the total electricity distributed in

SUPPLY

nearly 30 million customers.

Data as of December 31st 2004

Use: Public

Enel in the world

North and Latin America

🌺 Enel North America

- 286 MW Hydroelectric
- 67 MW Wind
- 21 MW Biomass and Biogas

Merica

171 MW Hydroelectric
 20 MW Wind

Economic and Financial results

Millions €

	2000	2001	2002	2003	2004
Revenues	25.109	28.781	29.977	31.317	36.489
EBIT	4.753	3.478	2.880	4.732	6.325
Net income	2.188	4.226	2.008	2.509	2.706
Current assets	9.456	11.902	14.464	14.520	16.902
Fixed Assets	35.744	35.004	37.533	37.155	36.459
Equity	18.312	20.966	20.772	21.124	19.847
Short-term Debt	6.406	7.107	8.371	8.643	6.419
Long-term Debt	7.984	16.072	17.172	18.005	20.241

Headcount @ 31/12/2004 61.898

Enel's worldwide renewables portfolio

Use: Public

Content

- 1. Basic concepts
 - Heat sources
 - Geothermal systems and technologies
 - Exploration & production process
- 2. The geothermal industry worldwide
 - Electric energy generation
 - Direct use application
- 3. Drivers & barriers for the geothermal energy growth
 - Technological challenges
 - Economic and environmental sustainability
- 4. Conclusions

Heat sources

Earth Dynamics Continental Volcanic Chain Continental Lithosphere Rising Magma Heating and Melting Oceanic Lithosphere Subduction Adapted from: Volcanoes: Crucibles of change Princeton University Press, 1997

A mean heat flux at the earth's surface of around 16 kilowatts of heat energy per square kilometre which is dissipated to the atmosphere and space.

Geothermal areas worldwide

This heat flux tends to be strongest along tectonic plate boundaries where volcanic activity transports high temperature material to near the surface.

However, even in parts of the world far from plate boundaries, there can still exist areas of higher than average natural heat flow.

Geothermal systems

•Heat source : magmatic body molten or partially molten at depth < 8-10 km

- **Reservoir** : Porous& fractured rocks
- Fluid: meteoric and magmatic water
- Sealing: impervious rocks

Temperature gradient in the earth 33°C/km Temperature gradient in the geothermal areas > 100 °C/km

11 /18

L'ENERGIA CHE TI ASCOLTA.

Geothermal systems and energy conversion

Reservoir Temperature	Reservoir Fluid	Common Use	Technology commonly chosen
High Temperature >220°C (>430°F).	Water or Steam	Power Generation Direct Use	 Flash Steam Combined (Flash and Binary) Cycle Heat Exchangers Heat Pumps
Intermediate Temperature 100-220°C (212 - 390°F).	Water	Power Generation Direct Use	 Binary Cycle Direct Fluid Use Heat Exchangers Heat Pumps
Low Temperature 50-150°C (120-300°F).	Water	Direct Use	 Direct Fluid Use Heat Exchangers Heat Pumps

Electric energy generation

Single Flash Power Plant

Direct use of geothermal heat

Principal uses (minimum temperature, °C):

- Heating buildings (50°)
- Greenhouse heating (35°)
- Processing agricultural/forest products (100°)
- Heating fishponds (35°)
- Spas and baths (35°)
- Mineral water (no requirement)
- Processing mineral/chemical products (120°)

Geothermal exploration & production process

Geothermal exploration

Delineation of geothermal system and drilling target definition

Fractured reservoirs (very low permeabiliy) n granite rocks at around 5000 m depth

Reservoir permeability controlled by fracture systems

Exploration & resource assessment

MULTIDISCIPLINARY APPROACH AND INTEGRATED INTERPRETATION

Exploration & resource assessment

Predictive geothermal model ...

for better definition of drilling targets

... for optimization of the reservoir management

Fluido-dynamic model

Drilling

Depth: up to 5200m

Use: Public

Drilling

Montieri 1 well (Tuscany – Italy)

Well production : over 240 tonnes/h of steam

Design & construction of the power systems

Steam pipeline (lenght range :1-10 km)

2 Power plants 20 MW each one

Field and power plant O & M

Integrated management of geothermal resources for production optimization

Environmental sustainability

Reduction of gas emission AMIS (process for H2S and Hg removal)

Abatement

✓ Hg	>90%
✓ H ₂ S	70-80%

Architectural solutions to minimize the visual impact

Geo-heat supply in Italy

GREEN

HOUSES

Geo-heat supply -

A fish farm in Colorado.

तिलं**ट, War**en

Content

- 1. Basic concepts
 - Heat sources
 - Geothermal systems and applied technology
 - Exploration & production process
- 2. The geothermal industry worldwide
 - Electric energy generation
 - Direct use application
- 3. Drivers & barriers for the geothermal energy growth
 - Technological challenges
 - Economic and environmental sustainability
- 4. Conclusions

The dawn of geothermal industry in Italy

Once upon a time at Larderello (Italy)...

... in the early 1800 with boric salts production and direct uses of steam

...at the underworld watchdog site...

The dawn of geothermal industry in Italy

... in 1904 the first experiment of electric energy generation

... in 1827 the first approach to explore the hell ...

Geothermal highlights in Italy

Use: Public

L'ENERGIA CHE TI ASCOLTA.

Geothermal Energy Worldwide – Ytd 2004

Use: Public

Geothermal growth

The trend has not improved since 2000, increasing by 960 MW, only 190 MW per year.
The geothermal contributes for 0,4% on world electricity as in year 2000

Fonte: IGA 2005

Installed capacity

•2/3 of the total installed capacity are for dry steam and single flash units

•Binary units are increasing, but with a lower value of capacity per unit.

Energy saving & pollution avoided

Electric use

•Energy saving (*) of fuel oil per year 96,6 million barrels or 14, 5 millions tonnes

•Carbon pollution avoided (millions tonnes year) 3 (natural gas) or 13 (oil) or 15 (coal)

Direct uses

•Energy saving (*) of fuel oil per year 123,4 million barrels or 18,5 millions tonnes

•Carbon pollution avoided (millions tonnes year) 4 (natural gas) or 16 (oil) or 18 (coal)

(*) generating electricity with 0,35 efficiency factor

Total energy saving of fuel oil per year over 220 million barrels Total carbon pollution avoided per year over 39 (oil) million tonnes

Content

- 1. Basic concepts
 - Heat sources
 - Geothermal systems and applied technology
 - Exploration & production process
- 2. The geothermal industry worldwide
 - Electric energy generation
 - Direct use application
- 3. Drivers & barriers for the geothermal energy growth
 - Technological challenges
 - Economic and enveronmental sustainability
- 4. Conclusions

Drivers & barriers for geothermal growth

Drivers

- ✓ Great number of areas with an interesting geothermal potential
- Electrical energy demand growing within the next years
- Base load capacity, renewable and domestic energy
- ✓ Employment opportunity

Barriers

- Technological challanges for deep seated resourses
- Economic . High development cost (logistics, transmission, exploration risk in "green field" project
- Environmental adverse impacts in some areas
- Regulatory / market / political risks

Geothermal energy

... up to 72.500 MW exploitable with existing technologies while future technologies will allow the exploitation of up to 140.000 MW ...

Geothermal energy worldwide development

8900 MW (running) forecast to year 2010

Technological challenges

Current efforts are focused on:

Identifying Resources development and opportunities

Resources Assessment

•Exploration and Drilling

- **•Optimizing Resource Utilization and Management**
 - Resource Management
 - •Generation Technologies
- Investigating Applications that Increase
 - system reliability
 - environmental compatibility

Resources assessment

More accuracy is requested for investment valuation

Exploration & drilling technology

3D seismic is applied for target location of deep wells

OIL & GAS TECHNOLOGICAL KNOW-HOW TO BE APPLIED

Optimizing Resource Management

SUBJECT	ANALYSIS	MITIGATION	CHECK
Permeability	Hydrogeology, Reservoir modeling	Well acidification, stimulation, etc.	Well production tests
Temperature	Geological/geophysical model, geochemistry	Nothing	Temperature log, Well production tests
High gas content	Geochemistry	Abatement for some gases, reinjection	Fluid geochemistry, O&M
Cold water ingress	Hydrogeology, Reservoir modeling	 Reinjection management, Nothing (natural recharge) 	O&M
Scaling	Geochemistry	P-T operation management, inhibitor, pipe cleaning, etc	O&M
Corrosion	Geochemistry	Inhibitor	O&M
Self sealing	Geochemistry	Well acidification	Production monitoring, Geochemical monitor.
Volcanic hazard	Volcanology	-Nothing -Civil works	O&M
Seismic hazard	Seismology	Civil works Reinjection management	O&M
Subsidence	Geophysical model, Reservoir modeling,	Nothing	Topographic monitoring

Heat mining

HDR Project at Soultz : the Pilot Plant concept

Develop advanced technology to use the huge thermal energy amount contained in the earth crust

Economic challenges

Comparison of investment expenditures for different renewable energy project

Expenditures & risks of a geothermal project

Content

- 1. Basic concepts
 - Heat sources
 - Geothermal systems and applied technology
 - Exploration & production process
- 2. The geothermal industry worldwide
 - Electric energy generation
 - Direct use application
- 3. Drivers & barriers for the geothermal energy growth
 - Technological challenges
 - Economic and enveronmental sustainability
- 4. Conclusions

Conclusions

Geothermal energy, like other renewable energy sources (RES), plays an important role to:

- complement existing energy production systems
- tackle climate change
- contribute to an overall strategy of sustainable development
 - reduce dependence on energy imports, thereby ensuring sustainable security of energy supply
 - have a positive impact on regional development and employment

Tanks for your attention

For any further information please contact me at the following e-mail address: fausto.batini@enel.it

Enel's worldwide geothermal development

Enel was the first geothermal operator worldwide...

Enel carried out geothermal exploration in more than 15 countries, mostly in the framework of co-operation and know-how transfer programs in 1921 at EL Tatio in the North of Chile Mr.Tocchi of the Larderello S.p.A. performed the first geothermal exploration including the drilling of two shallow wells.

Enel's worldwide geothermal development

El Salvador \Rightarrow Strategic partnership with LaGeo

achieved through international bid (114 MW geothermal in operation)

New project under development (50 MW)

- Geo scientific studies to define the integrated model of the geothermal system
- Drilling of 12 wells at 1500 2500 meters
- Steam gathering system
- 2 new units for electric energy generation
 Berlin 40 MW (operation in 2006)

•Cuyanausul 10 MW (operation in 2007)

Enel's worldwide geothermal development

Chile

Strategic partnership with ENAP EMPRESA NACIONALE GEOTERMICA S.A. (51% ENEL and 49% ENAP)

has been established for the exploration and development of Calabozo and Chillan geothermal concessions

50 /18

0

z

4

ш

C