

The Abdus Salam International Centre for Theoretical Physics

International Atomic Energy Agency

301/1679-22

"Process Heat Applications of Nuclear Energy: Hydrogen & Seawater Desalination"

> M. Methnani International Atomic Energy Agency (IAEA) Vienna, Austria

Process Heat Applications of Nuclear Energy:

Hydrogen & Seawater Desalination

Mabrouk Methnani

International Atomic Energy Agency

ICTP Workshop on Physics for Renewable Energy Oct 27, 2005

CONTENT

- High-temperature process heat
 - Ex.: Nuclear hydrogen production
- Low-temperature process heat
 - Ex.: Seawater desalination
- IAEA role

- Hydrogen production
- Coal gasification
- Heavy oil recovery (Tar sands)

Why hydrogen?

- Possibly, a future alternative to fossil fuels.
- Arguments
 - Population growth
 - Limited fossil fuel resources
 - Concern over long-term emissions

US Primary Energy Use (2001) Coal Conventional 22.6% Natural Gas Hydroelectric 23.9% 2.4% Wood, Waste, Alcohol 2.8% Other 5.8% Geothermal Petroleum 0.4% 39.4% Solar 0.1% Wind Nuclear 0.1% 8.3% **Source: Energy Information Administration** Department of Nuclear Energy International Atomic Energy Agency

United States CO₂ Emissions by Sector and Fuels 2000

Methods of Hydrogen Production

- Steam Methane Reforming
- Thermo-chemical splitting
- Electrolysis

Nuclear Role in Hydrogen Production

 Nuclear power could provide hightemperature heat (850 – 950 C), which would increase H2 production efficiency up to 50%.

Technology Challenges

- Upscaling of production process
- Material challenges under higher temperatures
- Hydrogen storage:
 - (High pressures needed) 5000-10000 psi) to account for H2 low energy density.

Safety Challenges

- Physical separation needed for H2 - NPP coupling:
 - Barriers against Tritium migration downstream and **Hydrogen migration** upstream
 - H2 flammability concern

Economic Challenges

Efficiency needs to be demonstrated under process up scaling.

Economic Challenges

- To replace 50% of fossil fuel used for transportation in the **US alone:**
 - The generating capacity of ~1000 GWe needs to be doubled (~1000 large nuclear power plants)

Public Perception Challenges

- Anti-nuclear "ideolog" chatting with friend who is asking about the viability of the hydrogen economy:
- "The good news is that there is an efficient way to produce hydrogen. The bad news is that it is with nuclear power!"

- Seawater desalination
- District heating

Global water picture

- Currently, 20 % of world population lack access to clean water.
- By 2025, 30% may be lacking access to clean water.

Nuclear desalination prospects

 Addresses escalating global needs for fresh water, taking into consideration **1.Population growth** 2.Limited fossil fuel resources **3.Concern over long-term** emissions

Who is interested in nuclear desalination?

- Pakistan (Demonstration Project)
- India (Demonstration Project)
- China
- Indonesia (SMART)
- North Africa

Viability of nuclear desalination

- **High Temperature Gas Cooled Reactors offer cost-free waste** heat at right temperature for desalination processes (120 C)
- Estimates for water costs are less US\$.5/m³ (very competitive @ today's prices)

Challenges

- Safety of the coupling
 - Intermediate loop
- Economics
 - Cost of steam & intermediate loop
- Public perception

Other Key Issues

- Both for hydrogen as well as water production:
 - Distribution over long distances adds a significant cost.

This may provide an argument for focusing on providing cheap nuclear electricity & opting for distributed

- H2 production at gas stations using electrolysis
- Stand-alone water production units using RO

The flexibility to use off-peak load reserves in the production process is another incentive for distributed electricitybased systems.

Potential Nuclear Non-electric Applications

- High-Temperature steam for heavy oil recovery + hydrogen for heavy oil cracking
- Small & medium reactors for small grid areas in developing countries, producing electricity & water (SMART – **PBMR**)

Useful Numbers

- For hydrogen production:
 - Need 2 MWe to produce 1 tonne / day
 - 1 tonne/day would fuel ~ 2000 cars.
 - Estimated H2 production costs > \$2000/tonne

Useful Numbers

- For water production:
 - Need 3-20 MWe to produce 40,000 tonne / day (serving ~ **100,000** inhabitants)
 - Estimated production costs $.5 - 1 USS/m^3$

IAEA Activities on Process Heat Applications

Support Member States with 1.Information 2.Tools (such as DEEP) 3.Educational training

IAEA Activities on Process Heat Applications

2. Support collaborative research projects & focused on process safety & economics.

IAEA Activities on Process Heat Applications

3. Support selected demonstration projects focused on process safety & economics.

New IAEA Subprogram on "Non-electric Applications of Nuclear Power"

- Will cover both nuclear desalination & nuclear hydrogen production activities
- Will be run under the nuclear power division.

Concluding Remarks

- Nuclear power plants have potential for both high-T and low-T process heat applications
- Examples include nuclear hydrogen & seawater desalination
- Challenges include
 - Technology & safety demonstration
 - Economics
 - Public acceptance

