

The Abdus Salam International Centre for Theoretical Physics

International Atomic Energy Agency

SMR 1698/3

WORKSHOP ON PLASMA PHYSICS

7 - 11 March 2005

Measurements of Plasma Opacity using X-Ray Lasers

G. Tallents

University of York, U.K.

These are preliminary lecture notes, intended only for distribution to participants.

FeX11/FeX1 ratio

Using lasers to measure the solar opacity

Greg Tallents Department of Physics University of York

He II emission

Acknowledgements

- I would like to acknowledge members of my research group: Matthew Edwards, Pritesh Mistry, David Whittaker and the team at the Prague Asterix Laser headed by Bedrich Rus.
- Funding from EU Access to Large Scale Facilities and EPSRC.

Outline

- Explanation of opacity in plasmas.
- Previous laboratory methods to measure opacity.
- Why opacity measurements are needed-relevant to solar plasmas?
- Opacity measurements using x-ray lasers.
- Conclusions.

The equation of radiative transfer

• For a beam of light of single frequency, the change in light intensity dI_v in passing through a slab of matter of thickness ds is dI_v

$$\frac{dI_{\upsilon}}{ds} = -k_{\upsilon}I_{\upsilon} + j_{\upsilon}$$

- where j_v is the emissivity (and scatter into the beam) and k_v is the total opacity at the particular frequency.
- In modelling solar and stellar energy flow (and other thermal plasmas), a frequency averaged measure of opacity *k* is used known as the Rosseland mean opacity so that radiation outflow can be modelled as a diffusion process

$$\frac{1}{\bar{k}} = \frac{\int_0^\infty \frac{1}{k_v} \frac{dB_v}{dT} dv}{\int_0^\infty \frac{dB_v}{dT} dv} = \int_0^\infty \frac{1}{k_v} f(u) du$$

- where B_v is the black-body radiation distribution, f(u) is a weighting function and u = h v/kT.

Black body radiation

• The radiation field when radiation is in equilibrium with matter.

• The peak of intensity is at photon energy 2.8 *kT*

• 11605 degrees Kelvin = 1 eV.

Taken from AWE website

The Rosseland mean opacity weighting

Important photon absorption processes

Processes contributing to opacity

Taken from AWE website

Previous measurements of plasma opacity in the laboratory

Sample x-ray backlighter measurement of opacity

Plasma Conditions: 4.13 eV and 0.014 g cm⁻³.

Taken from AWE website

Opacity from thin heated targets

Plasma conditions deduced by fitting simulation of emission for a buried Al layer in CH directly heated by a laser: electron density 6.9x 10²²/cm³ (~0.3 gcm⁻³) electron temperature 400 eV.

Opacity deduction from thin heated targets

Plasma conditions deduced by fitting simulation to experimental Fe spectrum for Fe layer buried in CH: electron density 10^{24} cm⁻³ (~ 3 gcm⁻³), temperature 150 eV.

Are laboratory opacity measurement relevant to the sun?

• Backlighter measurements with x-ray heating of targets have measured the opacity of plasmas around 10⁻² gcm⁻³ and up to 40 eV: corresponding to the outer regions of the sun.

• Direct heating of thin layers and deduction from emissivity (assuming LTE) has measured opacities up to 500 eV and density close to solid (0.1 - 10 gcm⁻³): $\Rightarrow R/R_0 \sim 0.5$

Taken from AWE website

Opacity dominates solar energy outflow at the solar centre and is important in the outer solar region

- Takes ~ million years for light to travel from the Solar centre to the photosphere.
- Mean free path for light absorption at the Solar centre is 1 mm.

X-ray lasers are much brighter than conventional backlighters

- X-ray lasers produce pulses of 60 200 eV photon energy over durations of 3-100 ps.
- Saturated irradiances are $\sim 3 \times 10^{10}$ Wcm⁻².
- Photons are produced in a beam with divergence 5 20 mrad.
- Spectral bandwidth is very narrow ($v/\Delta v > 10^4$).

Beam-like nature and narrow spectral bandwidth should enable x-ray lasers to 'out-shine' emission from solar condition plasmas (solar surface flux is $\sim 6 \times 10^{17}$ Wcm⁻²).

Two pulses - typically of 75 ps separated by 2 ns or 1-2 ps superimposed on a 300 ps background pulse.

Adjusting an x-ray laser target

Electron collisional pumping in laserproduced plasma creates x-ray lasing

Ground state $1s^22s^22p^6 3s^23p^63d^{10} J = 0$

Shortest wavelength saturated laser is at 5.9 nm (210 eV)

X-ray laser pulse duration as short as 3 ps have been measured

An experiment to use x-ray laser output as a backlighter to measure plasma opacity

Targets

room temperature material

The opacity of solid iron at EUV photon energies

Experiment at 21.2nm has a high opacity in cold Fe. Opacity rapidly decreases with ionisation.

Arrow shows photon energy for 21.2 nm.

Signal to noise for Fe target transmission measurement

Temperature (eV)

Transmission minimum producing 10X x-ray laser flux compared to plasma background (as labelled).

Transmission of 21.2 nm x-ray laser through 0.8 µm Al heated by laser

Transmission of X-ray laser through heated and ionised material

X-ray laser shining through unheated Al

Another probed Al plasma

Probed Al with a measure of self-emission

Self-emission from the hot Al plasma

Transmitted X-ray laser beam through heated plasma +self emission

Transmitted / X-ray laser beam through unheated Al

Aluminium is well ionised

Aluminium spectrum produced by a 10J, 130 micron spot on a 0.8 micron Al foil

Wavelength (Angstroms)

Opacity of thin targets of Fe

Thin iron targets are also well ionised

Schematic of physics of transmission with thin non-tamped foils.

Iron transmission over the laser heated area

XRL beam profile

Transmission of XRL thru heated 0.05 µm Fe under 0.05 µm plastic (100 ps)

Transmission can be deduced taking account of XRL variation

Iron transmission when buried under plastic

Schematic of physics with tamped Fe targets

Conclusions

- Plasma opacity is important in astrophysical plasmas and can be measured in the laboratory using lasers to heat the plasma samples and to produce 'backlighters': opacities for temperatures up to 40 eV for densities ~ 10⁻² gcm⁻³ have been previously measured.
- An 'X-ray laser' backlighter at 60 eV photon energy has been demonstrated to be able to measure opacity in plasmas heated to 100's eV at near solid density $(1 8 \text{ gcm}^{-3})$.