Latest Results from the IAEA Fusion Energy Conference

ICTP, Italy

Guenter Mank NAPC, Physics Section

8 March 2005, Trieste

Outline

- 1. Basic Remarks
- 2. Status
- 3.1. Long Pulse Operation
- 3.2. Confinement Scenarios
- 3.3. Transport
- 4. ITER
- 5. Materials Research and Safety
- 6. Inertial Fusion Energy (IFE)
- 7. Summary

Energy Sources - Trends

World Primary Energy Consumption

Sources: **History:** Energy Information Administration (EIA), International Energy Annual 2001, DOE/EIA-0219(2001) (Washington, DC, February 2003), web site www.eia.doe.gov/ iea/. **Projections:** EIA, System for the Analysis of Global Energy Markets (2004).

Why Fusion?

Energy Sources – CO₂ Problem

Sources: **History:** Energy Information Administration (EIA), International Energy Annual 2001, DOE/EIA-0219(2001) (Washington, DC, February 2003), web site www.eia.doe.gov/ iea/. **Projections:** EIA, System for the Analysis of Global Energy Markets (2004).

World Energy-Related Carbon Dioxide Emissions by Region, 1990-2025

Sources: **1990 and 2001:** Energy Information Administration (EIA), *International Energy Annual 2001*, DOE/EIA-0219 (2001) (Washington, DC, February 2003), web site www. eia.doe.gov/iea/. **Projections:** EIA, System for the Analysis of Global Energy Markets (2004).

Why Fusion?

4th State of Matter

Basic Remarks

ITER: Intl. Toroidal Experimental Reactor

Status Magnetic Confinement

Basic Remarks

The goal

Basic Remarks

Energy Confinement - Tokamaks

Source: IEA

Energy Confinement - Stellarators

International stellarator database has been extended and new gyro-Bohm scaling has been extracted.

Long Pulse Operation

Long Pulse Operation

Heat Removal

Long Pulse Operation

Heat Removal, Edge Poloidal Rot.

Long Pulse Operation

Demands I

Demands:

Long Pulse Operation

IAEA activities:

TM on Steady State Operation of Magnetic Fusion Devices and MHD of Advanced Scenarios

TM on Energetic particles in magnetic confinement systems

TM on H-mode physics and transport barriers

TM on 1st Generation of Fusion Power Plant: Design and Technology

TM on Control, data acquisition and remote participation for fusion research.

Scenarios

•
$$G = \beta_N \cdot H / q_{95}^2$$

$$I_{\text{boot}} / I_{\text{p}} \sim \beta_{\text{N}} \cdot \mathbf{q}_{9}$$

q-profile

DIII-D Scenarios

ITER Requirements

Hybrid Scenarios

ASDEX-U

Combined Methods

JT-60U: n_e/n_{GW}>1, n_e(0)/n_{GW} ~1.5 Ne , Ar, D-pellet

Edge Radiation and Fueling

TEXTOR, PRL 85, 11 (2000) 2312 pp

Demands II

Demands:

IAEA activities:

School on Plasma Physics and Integrated Modelling and Plasma Instability

Confinement Regimes

TM on H-mode physics and transport barriers

TM on Energetic particles in magnetic confinement systems

TM on Theory of plasma instabilities: Transport, Stability and their Interaction

Summary

Cost of Electricity

The COE will decrease with increasing of the β_N

SE-P3/40 by R.Hiwatari et al.

Transport Physics

No.	Topics	Device/paper No.
1	Zonal flow Reynolds stress, GAM, Zonal flow	HT-7, Extrap-T2R JFT-2M, CHS, T-10
2	Electron transport Critical ∇T _e , non-linear χ _e ~ (∇T _e) ^β T _e ^α	AUG, JET, JT-60, DIII-D, LHD. TCV
3	Particle transport G ~ -D[c _q ⊽q/q- c _⊤ ⊽T _e /T _e], n _e * dep.	Tore-Supra, FTU, AUG, JET, LHD, MAST, ET
4	Momentum transport Rotation without torque	Tore-Supra, C-Mod, FTU, DIII-D, TEXTOR
5	Radial electric field E _r control, Flow damping	LHD, GAMMA-10, TJ-II, HSX ISTTOK

Transport Studies

IAEA Co-ordinated Research Project:

Joint Research Using Small Tokamaks

Aim:

- 1. Basic Studies (Transport, Wall, Instrumentation, Heating, etc.)
- 2. Exchange of knowledge and manpower
- 3. Strengthening efforts of small tokamaks
- 4. New research "beyond" ITER

Diagnostic

SELECTED DIAGNOSTICS for ITER

Magnetic Diagnostics	Spectroscopic and NPA Systems
Vessel Magnetics	CXRS Active Spectr. (based on DNB)
In-Vessel Magnetics	H Alpha Spectroscopy
Divertor Coils	VUV Impurity Monitoring (Main Plasma)
Continuous Rogowski Coils	Visible & UV Impurity Monitoring (Div)
Diamagnetic Loop	X-Ray Crystal Spectrometers
Halo Current Sensors	Visible Continuum Array
Neutron Diagnostics	Soft X-Ray Array
Radial Neutron Camera	Neutral Particle Analysers
Vertical Neutron Camera	Laser Induced Fluorescence (N/C)
Microfission Chambers (In-Vessel) (N/C)	MSE based on heating beam
Neutron Flux Monitors (Ex-Vessel)	Microwave Diagnostics
Gamma-Ray Spectrometers	ECE Diagnostics for Main Plasma
Neutron Activation System	Reflectometers for Main Plasma
Lost Alpha Detectors (N/C)	Reflectometers for Plasma Position
Knock-on Tail Neutron Spectrom. (N/C)	Reflectometers for Divertor Plasma
Optical Systems	Fast Wave Reflectometry (N/C)
Thomson Scattering (Core)	Plasma-Facing Comps and Operational Diag
Thomson Scattering (Edge)	IR Cameras, visible/IR TV
Thomson Scattering (Divertor region)	Thermocouples
Toroidal Interferom./Polarimetric System	Pressure Gauges
Polarimetric System (Pol. Field Meas)	Residual Gas Analyzers
Collective Scattering System	IR Thermography Divertor
Bolometric System	Langmuir Probes
Bolometric Array For Main Plasma	Diagnostic Neutral Beam
Bolometric Array For Divertor	IT-P3/19 by A.Donne et

Diagnostic

al.

ICRH

ITER ICRF Launcher (Baseline Design)

Design goal:

- 20 MW through single port, 40-55 MHz
- produce launcher with input impedance insensitive to changes in loading
- minimize electric fields
 in antenna structure for a
 given level of current on
 radiating elements

Plasma Heating

- The world wide NB R&D is getting close to the ITER requirement.
- The R&D status is reaching almost on the envelope of the existing facilities.
 - Ion source R&D: ≤ 20 A, 500 keV,
 - Accelerator R&D: ≤1 A, 1 MeV.
- However, integration test at 40 A, 1 MeV would be necessary for ITER.
- Discussion on the full-scale testbed for the ITER NB system has been started among interested parties.

Demands III

Demands:

Transport and Heating

IAEA activities:

School on Plasma Physics and Integrated Modelling and Plasma Instability

TM on Theory of plasma instabilities: Transport, Stability and their Interaction

TM on ECRH physics and technology for ITER

TM on Negative Ion Based Neutral Beam Injectors

TM on Research use of small fusion devices

TM on H-mode physics and transport barriers

Summary

ITER: Intl. Toroidal Experimental Reactor

ITER Performance

B. Spears, FPA 2003, Washington

ITER Parameters

Total fusion power Q = fusion power/auxiliary heating power Average neutron wall loading **Plasma inductive burn time Plasma major radius Plasma minor radius** Plasma current (inductive, I_p) Toroidal field @ 6.2 m radius Plasma volume Plasma surface Auxiliary heating/current drive power

500 MW (700MW) ≥10 (inductive) 0.57 MW/m² (0.8 MW/m²) ≥ 300 s 6.2 m 2.0 m 15 MA (17.4 MA) 5.3 T 837 m³ 678 m² 73 MW (100 MW)

ITER Site Lay-out

ITER Cost

	killa
Construction Costs	
Direct Capital	3012
Management & Support	477
R&D During Construction	~70
Operation Costs	
Permanent Personnel	60
Energy	~30
Fuel	~8
Maintenance Improvements	~90
Decommissioning	335

 $1 \text{ kIUA} = \$_{1998} 1 \text{ M} = \$_{2000} 1.392 \text{ M} = \pounds_{2000} 1.279 \text{ M} = \pounds_{2000} 148 \text{ M} = \texttt{C}\$_{2000} 1.509 \text{ M}$

B. Spears, FPA 2003, Washington

Construction schedule

ITER site

Japan (Rokkasho)

New Devices

New devices under construction

Name	Country&Institution	Status F	irst pla	asma	Reference
SST-1	India IPP	Assembled		2005	FT-3/4
EAST	China ASIPP	Under Construction		2005	FT-3/3
KSTAR	Korea. Rep. KBSI	In fabrication and te	esting	2007	FT-3/2
Wendelstein 7->	Germany IPP	In fabrication and to	esting	2010	FT-3/5
NCSX	USA PPPL	Production will begin	n soon	?	FT-P7/22

Fast Track to Fusion

PRELIMINARY

Issues and their resolution: pillars only

Issue	Today's expts	ITER	IFMIF	DEMO Phase 1	DEMO Phase 2	Power Plant
Disruption avoidance	2	3		3	R	R
Steady-state operation	1	3		3	r	r
Divertor performance	2	3		r	R	R
Burning plasma Q>10		3		R	R	R
Power plant plasma performance	1	3		3	R	R
T self-sufficiency		1		3	R	R
Materials characterisation			3	R	R	R
Plasma-facing surface lifetime	1	1		2	3	R
FW /blanket materials lifetime		1	2	2	3	R
FW /blanket components lifetime		1		1	3	R
Divertor materials lifetime		1	2	2	3	R
NB/RF heating systems performance	1	3		R	R	R
Electricity generation at high availability				1	3	R
Superconducting machine	1	3		R	R	R
Tritium issues	1	3		R	R	R

Key:

2 3 r R

1

W ill help to resolve the issue May resolve the issue Should resolve the issue Solution is desirable

Solution is essential

C. Llewellyn Smith

Radiation Damage

Progress of Radiation Damage Evaluation for DEMO and ITER blankets

		2002		2004		Traget level		
		ITER TBM	DEMO	ITER TBM	DEMO	ITER TBM	DEMO	
Short Te	rm Mechanical Properties							
	Tensile					>3dpa	>150dpa	
	Fracture Toughness				20dpa	>3dpa	>150dpa	
Fatigue				4dpa	K	>3dpa	>150dpa	IFMIF
Creep						>3dpa	>150dpa	n rem
Compatil	bility							High
	Cracking (EAC)			2dpa		>3dpa	>150dpa	Damage
	Corrosion					>3dpa	>150dpa	Levels
Materials Engineering		10	0%					
	Joining	75	5%			>3dpa	>150dpa	
	Condition Change		10/	2dpa		>3dpa	>150dpa	
	Plasticity/Ductility	26	50/	5dpa	ς	>3dpa	>150dpa	
Codes		25	-70		K			
	Design							
	Maintenance							

Fission reactor irradiation produces too small level of He atoms. For evaluation with high enough accuracy, facility like IFMIF is needed.

Materials Research

IFMIF

International Fusion Materials Irradiation Facility

Materials Research

Safety Event Analysis

Event Family	Events				
Plasma events	Loss of plasma control/exceptional plasma behaviour (i,a)				
Loss of electrical power	Loss of on-site power for up to 1 h (i)				
	Loss of off-site power for up to 32 h (a)				
	Loss of off site power and on site class III power for up to 1 h (a)				
In-vessel events	In-vess				
	Multip Dicruptions				
Ex-vessel HTS events	Loss o				
	Pump trip/loss of flow in divertor HTS (i)				
	Pump seizure in divertor HTS (a)				
	Vacuum vessel HTS break (a)				
	Large ex-vessel divertor HTS break (a)				
	Heat exchanger leakage (i)				
	Heat exchanger tube rupture (a)				
Tritium plant and fuel cycle events	Tritium process line leakage (i)				
	Transport hydride bed mishandling (a)				
	Isotope separation system failure (a)				
	Fuelling line with impaired confinement (a)				
Maintenance events	Stuck divertor cassette in transport cask (a)				
	Maintenance accident on vacuum vessel (a)				
Magnet events	TF short (a)				
	Magnet arc (a)				
Cryostat event	Air ingress (a)				
	Water/air/helium ingress (a)				
Hot cell events	Failure of confinement (a)				

Disruption Mitigation

Runaway avalanche suppressed with sufficient electron injection.

Machine	Gas	$\frac{N_{e}}{V_{plasma}} \left[/ m^{3} \right]$	$\frac{N_{0,inj}[/m^3]}{V_{plasma}}$
DIII-D	Ne,Ar	3e19	2e21
Tore Supra	He	3e19	3e21
JT-60U	Ar,Kr, Xe,H ₂	1e19	6e19

Demands IV

Demands:

IAEA activities:

TM on the Atomic and Molecular Data Centres and ALADDIN Network

Materials and Wall

School on pulsed neutron sources: Enhancing the capacity for material science

CRP on Joint Research Using Small Tokamaks

Summary

Inertial Fusion Energy

Main route to ignition: indirect laser drive with central hot-spot ignition

Baseline target and driver designs for NIF have been worked out more than 10 years ago.

Pellet Improvement

<u>Latest discovery</u>: with graded Cu doping of the Be ablator, the ablator surface roughness \Rightarrow 60 x NIF standard (~ 500 µm); ice roughness 1 µm \Rightarrow 5 µm! (J.Lindl, OV-3/1)

Fast Ignition

Fast ignition offers an alternate, potentially more efficient, route to ICF. <u>Principal option:</u> a cone-guide implosion of the cold fuel is followed by a fast ignition pulse.

The FI approach to ICF does not have the highest priority, but is also making a steady progress.

Fast Ignition - Status

IFE

Heavy Ion Fast Ignition

Ignition and burn propagation

Ignition pulse:

beam energy:	E _{igb} = 400 kJ
pulse duration:	t _{igp} = 200 ps
beam power:	W _{igb} = 2 PW
focal radius:	r _{foc} = 50 μm
irradiation intensity:	$I_{igb} = 2.5 \times 10^{19} \text{ W/cm}^2$

Z-pinch Wire Array

Demands V

Demands:

New Concepts and IFE

IAEA activities:

TM on Innovative concepts and theory of stellarators

TM on Negative Ion Based Neutral Beam Injectors

TM on Spherical Tori.

RCM on Dense magnetised plasmas

RCM on Inertial Fusion Energy

TC support

Summary

Summary

Future Option of Energy Production

Controlled Nuclear Fusion

Acknowledgement to participants of the FEC2004 and IAEA meetings

Summary