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where kQ = path algebra

Aim: Study of modA:

description of indecomposable A-modules.

use of combinatorial invariants (the Tits quadratic form)

k = algebraically closed field
A = finite associative dimensional k-algebra with 1.
We shall assume that A is basic, hence A = kQ/I

associated to the quiver Q.
modA = category of finite-dimensional left A-modules.






Motivation: Let be a quiver without oriented cycles and consider the associated
hereditary algebra A = kA. We assume Li is connected.

Let & = {1,.. . ,n} be the vertices of L and
= (mjj) the incidence matrix of L,

Mij - 12,

	

if i=j-
-# edges between z and j, if z j

{v V: v(i) ˆ 0, Vi} positive cone
Lemma. M' (V) fl 3V = {0}

Proof. Assume that 0 y M'(V) fl 3V
By the connectivity of L we find an edge i

Then

OM(y)(j) = EMjkY(k)
j such that y(i) > 0 and y(j) = 0.

mjjy(j) + mjiy(i) +

+ E mky(k) mjy(i) <0,
kˆi,j

a contradiction.






Proposition. The matrix M satisfies one and only one of the properties:
(a) I'(V) C V
(b) I' (V) = Rn for some u>> 0. In this cases MA ('u) = 0
(c) m-1 (v+) fl V = {0}

This can be illustrated for n = 2:

(a) (b)






Three type of quives. Classification:

(1) A of type (b), ii >> 0 with M(u) = 0. Then A is one of the following





A:		1	 1	 IDE:	 2

	

2

E6:1-2-3-2-1

	

11E7:1-2-3-4-3-2-1

2

	

2

1




E8:1-2-3-4-5-6-4-2

3

(Euclidean diagrams).






(2)		of type (a) if and only if	 does not any diagram of type (a). Hence	 is
one of the following (Dynkin diagrams).

. . . .An:				Dn:	

. . . .		 .	 .E6:			 E7:

.		 .	 .

.

.		 .







S

E8:






(3) If L is of type (a) and A = kA the corresponding algebra, then there is a
bijection between the isoclasses of indecomposable A-modules and the positive roots
of the quadratic form qA(v) = vMvt, given by

[X] F-* dimX = (dimkX(i))EO.






1. TAME-WILD DICHOTOMY.

Local algebras.
(1) Observe that the algebra A = k[x] /(xTh) admits only finitely many indecompos-

able modules, up to isomorphism. We say that A is representation-finite.
Indeed, a module M e modA is a nilpotent matrix, hence lvi is equivalent to

where J is the i x i matrix

0

0	 1 0

with n		n. If Al is indecomposable, lvi	 J, for some s <m.






(2) Consider the infinite-dimensional k-algebra k[x].
Let M E modk[1, then M is a n x n matrix.
Let x(x) = det (x-In - M) be the characteristic polynomial of M. Then Al is

equivalent to

where (x) = (x -	 ... (x - A)	 is the decomposition of x(x) in linear factors
(k	 k!) and J(A) is the ri x ri Jordan block

01".

0	 1 A
Consider the k[x] - k[x]-birnodule given by the ri >< ii matrix

0
J(x) =

	

".
0

Let S,, = k[x]/(x - A) be a (one-dimensional) simple k[x]-module. Then

J(x) ®k[x] SA = J(A).
Therefore, the indecomposable k[x]-modules of dimension ri are isomorphic to mod-
ules in the image of the functor

J(x) ®k[x] -: modk[X](1) -± mod].






(3) The free algebra k(x, y) has a 'problematic' behaviour.

Proposition. Let B be any finitely generated k-algebra, then there exists a fully faith-
ful functor F: modB - modk(,.

Proof. Let b1,. . . , b8 be a system of generators of B. Define the k (x, y) - B-bimodule
Al as MB = B2 and the structure of left k(x, y)-module given by the (s+2) x (s+2)-
matrices

01		 0
0".




01

-0		 0-

We set F = MOB: modB - modk(,).
Exercise: check that F is full and faithful.

This means that the representation theory of k(x, y) is as complicated as the rep-
resentation theory of any other algebra.

We say that an algebra A is wild if there is a functor F: modk(,) -+ modA
which preserves indecomposable modules and iso-classes. We shall say that the
functor F insets indecomposable modules.	

010
b1 1	

10
_o		 b3 10"






(4) Example: Let p be a prime number ˆ 3. Assume k has characteristic p. The
group algebra A = k[Z x Z] is wild.

Proof. Let p: k[u, v] -+ A, x g - 1, y F- h - 1, where Z x = (g) x (h). Then
A k[u,v]/kercp =

Moreover k[u,v]/(u,v) -* k[u,v]/(u,v)3	 k[u,v]/(u3,v3,uv2,vu2)	 B. It is
enough to show that B is wild.

Consider the B-k(x, y)-bimodule NI defined as	 = k(x, y)4 and the structure
as B-module defined by the matrices

ro		o	 o	 01		r0 o		 0	 01
10		0	 0	 0		 I1 0		0	 01			NIIi		0	 0	 0	 V	

=	
0	 0	 01

[o	 0]	 1

	

0]
Exercise: check that BM is well defined and

'i" ®k(x,y -: modk(,) - modB
insets indecomposable modules.






Return to hereditary algebras.

(1) The indecomposable modules over the quiver algebra A:
.

were classified by V%Teierstrass and Kronecker:




	O 		I?,
In		 -	 -	

o	 o		 0

kn±
	0""" 0


	

In		 -	
I-nIn

(preprojective representation)		(preinjective representation)	

in	 J-(O)

Rn(.A): k	 Rn(oo): k7	 kn	
Jn(A)		I

(regular representations)
Let 1I?2 be the A k[x]-bimodule




In




k[t]n

then M Øk[t] k[t]/(t - \) R(A).






(2) After the work of Diab-Ringel we know that for the hereditary algebra A =
with JAI and Euclidean diagram, for any vector dimension v E N0, there exists
an A - k[t]-birnodule M such that almost any indecomposable A-module X with
dim X v is isomorphic to M ®k[t] SA for some e k.

(3) Consider the hereditary algebra B associated to the quiver

>		 .
Then B is wild.

Proof. Consider the B - kc(x, y)-bimodule M given by

[x,y]
k(x,y)	 k

	

y)'

[0,1]

Exercise: Al ®k(x,y) -: modk(,) -k modB insets indecomposable modules.






Definition: An algebra A is tame if for every n E N there is a finite family of
A - k[t]-bimodules MI,..., M77 with the following properties:

(i) M is finitely generated free as a right k[t]-module;

(ii) almost every indecomposable left A-module X with dimkX = ri is isomorphi
to a module of the form Mj ®k[t] SA for some A E k.

We say that an algebra A is wild if there is a functor F: modk() , rnod
which preserves indecomposable modules and iso-classes. We shall say that the
functor F insets indecomposable modules.

Dichotomy Theorem of Drozd: Every finite dimensional k-algebra is either tame or
wild.




