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Plan.

Lecture 1: Examples of tame and wild algebras
Lecture 2: Geometric approach
« varieties of modules
o tame algebras and varieties
Lecture 3: The Tits (quadratic) form
« Tits form of representation finite and tame algebras
o Combinatorial criteria
Lecture 4: The Tits form and the structure of the Auslander-Reiten quiver of
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k = algebraically closed field

A = finite associative dimensional k-algebra with 1

We shall assume that A is basic, hence A = kQ/I where k() = path algebra
associated to the quiver Q.

mod 4 = category of finite-dimensional left A-modules.

Awvm: Study of mod 4:
description of indecomposable A-modules.

use of combinatorial invariants (the Tits quadratic form)
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Motivation: Let A be a quiver without oriented cycles and consider the associated
hereditary algebra A = kKA. We assume A is connected.

Let Ag = {1,...,n} be the vertices of A and
Ma = (my;) the incidence matriz of A,
2. ifg=74
i e {—# edges between 7 and 7, if i # j
Vt={veV:v(i) >0, Vi} positive cone
Lemma. M'(V¥)nov+ = {0}.

Proof. Assume that 0 #y € MJ'(VH)nov+,

By the connectivity of A we find an edge i j such that y(7) > 0 and y(j) = 0.

Then
0 My)G) = > muy(k) =myy(5) + muy(i) +
k
+ Z miry (k) < myiy(i) <0,
k#i,j
a contradiction. ]
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Proposition. The matriz Ma satisfies one and only one of the properties:
(a) MY (V) cVH
(b) MY (V*) = Ru for some u>> 0. In this cases Ma(u) =0
() M~ (VF)nV+ = {0}

This can be illustrated for n = 2:
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Three type of quives. Classification:

(1) A of type (b), u > 0 with Ma(u) = 0. Then |A| is one of the following

1 e o o ] 1 1
. S e - S Py
Ap: 1 1 Dy, 2 N & 8 2
\1 e o o 1/ 1/ \1
Eg: 1—2 :|% 1 Eos  I——8—8—d—3—2—1
2 2
1
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(2) A of type (a) if and only if |A| does not any diagram of type (a). Hence |A| is
one of the following (Dynkin diagrams).

™
An @ ® e o o ° ]DJ?’L ™ e o o @
o/
E6 ° ° ° ° ° E7 ° ® ® ° ® °

(3) If A is of type (a) and A = kA the corresponding algebra, then there is a
bijection between the isoclasses of indecomposable A-modules and the positive roots
of the quadratic form g4 (v) = vMav?, given by




1. TAME-WILD DICHOTOMY.

Local algebras.

(1) Observe that the algebra A = k[z]/(x™) admits only finitely many indecompos-
able modules, up to isomorphism. We say that A is representation-finite.
Indeed, a module M € mod4 is a nilpotent matrix, hence M is equivalent to

Iy @ - D Jn,

where J; is the 7 X ¢ matrix i )
0 0
j R

O 1 0

with n; < n. If M is indecomposable, M = J,, for some s < n.
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(2) Consider the infinite-dimensional k-algebra k[z].
Let M € mody,), then M is a n X n matrix.
Let x(x) = det(xl, — M) be the characteristic polynomial of M. Then M is
equivalent to
J’nl(/\l) Bissnt Jns (/\3)
where x(z) = (x — A\1)™ ... (x — As)™ is the decomposition of x(x) in linear factors
(k = k!) and .J,,()\;) is the n; x n; Jordan block

e 0

1

0 I 3%

J’”--i. (A%) —

Counsider the k[z] — k[z]-bimodule given by the n X n matrix

1

0 | 1. o

Let S\ = k[z]/(x — A\) be a (one-dimensional) simple k[z]-module. Then
cjn(x) ®k:[;{:] SA - L]n,()\)

Therefore, the indecomposable k[z]-modules of dimension n are isomorphic to mod-
ules in the image of the functor

Ju(2) =

In(T) Rz —: nlOdk:[rr:](l) — MOdy[s].
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(3) The free algebra k(z,y) has a ‘problematic’ behaviour.

Proposition. Let B be any finitely generated k-algebra, then there exists a fully faith-
Jul functor F': modp — mody, -

Proof. Let by, ..., , bs be a system of generators of B. Define the k(z, y) — B-bimodule
M as Mg = B*+2 and the structure of left k{xz,y)-module given by the (s+2) x (s+2)-
matrices

. 1 O- [1) 0 O
M = M =

e 1.0
0 0. 0 g

We set F' = M®p: modp — modg(z,y)-
Exercise: check that F' is full and faithful. E

This means that the representation theory of k(z,y) is as complicated as the rep-
resentation theory of any other algebra.

We say that an algebra A is wild if there is a functor F': mody, .y — mody
which preserves indecomposable modules and iso-classes. We shall say that the
functor F' insets indecomposable modules.
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(4) Fxample: Let p be a prime number > 3. Assume k has characteristic p. The
group algebra A = k[Z, X Z,] is wild.

Proof. Let ¢: klu,v] = A, 2+— g—1,y— h —1, where Z, X Z, = (g) x (h). Then
A = klu,v]/ker ¢ = k[u, v]/(u?, vP).

Moreover k[u,v]/(uP,vP) —» k[u,v]/(u,v)? = k[u,v]/(u?,v3, uv?, vu?) =: B. It is
enough to show that B is wild.

Consider the B—k(x, y)-bimodule M defined as My, ,y = k(x,y)* and the structure
as B-module defined by the matrices

0 0 0 O] 0 0 0 O]
M=17 000 M=loo 00
0 z y 0] 0 1 z 0]
Exercise: check that gM is well defined and
M Qp(zyy —: mody(g )y — modp
insets indecomposable modules. ]
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Return to hereditary algebras.

(1) The indecomposable modules over the quiver

—
L] L]
—

were classified by Weierstrass and Kronecker:

| 0
In I
| 0
=

(preprojective representation)

algebra A:

(preinjective representation)

In JIn (O)
W i — T
Rn ( A ) ;R e Rn (OO) : kT . Kk
w w
Jn(A) I

(regular representations)

Let M, be the A — k[z]-bimodule

e, i e Mol s~ .
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(2) After the work of Dlab-Ringel we know that for the hereditary algebra A = kA
with |A| and Euclidean diagram, for any vector dimension v € N2° there exists
an A — k[t]-bimodule M, such that almost any indecomposable A-module X with
dim X = v is isomorphic to M, Qg Sx for some A € k.

(3) Consider the hereditary algebra B associated to the quiver

AT

\_____/

Then B is wild.
Proof. Consider the B — k(x, y)-bimodule M given by

[1,0]
/’_\
[z,y] ;
k(z,y) k(z,y)*
\_//

[0,1]

Exercise: M Qp(z,) —: Mody(y,y — modp insets indecomposable modules. O
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Definition: An algebra A is tame if for every n € N there is a finite family of
A — k[t]-bimodules M;, ..., My, with the following properties:

(i) M; is finitely generated free as a right k[t]-module;

(ii) almost every indecomposable left A-module X with dim;X = n is isomorphic
to a module of the form M; Qg Sx for some A\ € k.

We say that an algebra A is wild if there is a functor F': mody, ) — modx
which preserves indecomposable modules and iso-classes. We shall say that the
functor F' insets indecomposable modules.

Dichotomy Theorem of Drozd: Every finite dimensional k-algebra is either tame or
wild.
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