

SMR1735/4

Advanced School and Conference on Representation Theory and Related Topics

(9 - 27 January 2006)

Integral Quadratic Forms and the Representation Type of an Algebra

(Lecture 1)

José Antonio de la Peña

Universidad Nacional Autonoma de Mexico - UNAM Instituto de Matemáticas Mexico City D.F., Mexico

INTEGRAL QUADRATIC FORMS AND THE REPRESENTATION TYPE OF AN ALGEBRA

LECTURE 1

Dr. José Antonio de la Peña Instituto de Matemáticas, UNAM

Integral quadratic forms and the representation type of an algebra

J. A. de la Peña

Instituto de Matemáticas, UNAM

ICTP, Trieste January 2006.

Plan.

- Lecture 1: Examples of tame and wild algebras
- Lecture 2: Geometric approach
 - varieties of modules
 - tame algebras and varieties
- Lecture 3: The Tits (quadratic) form
 - Tits form of representation finite and tame algebras
 - Combinatorial criteria
- Lecture 4: The Tits form and the structure of the Auslander-Reiten quiver of an algebra

k = algebraically closed field

A =finite associative dimensional k-algebra with 1.

We shall assume that A is basic, hence A = kQ/I where kQ = path algebra associated to the quiver Q.

 $\text{mod}_A = \text{category of finite-dimensional left } A\text{-modules}.$

Aim: Study of mod_A :

description of indecomposable A-modules.

use of combinatorial invariants (the Tits quadratic form)

Motivation: Let Δ be a quiver without oriented cycles and consider the associated hereditary algebra $A = k\Delta$. We assume Δ is connected.

Let $\Delta_0 = \{1, \ldots, n\}$ be the vertices of Δ and

$$M_{\Delta} = (m_{ij})$$
 the incidence matrix of Δ ,

$$m_{ij} = \begin{cases} 2, & \text{if } i = j \\ -\# \text{ edges between } i \text{ and } j, & \text{if } i \neq j \end{cases}$$

 $V^+ = \{v \in V : v(i) \ge 0, \forall i\}$ positive cone

Lemma.
$$M_{\Delta}^{-1}(V^+) \cap \partial V^+ = \{0\}.$$

Proof. Assume that $0 \neq y \in M_{\Delta}^{-1}(V^+) \cap \partial V^+$.

By the connectivity of Δ we find an edge i —— j such that y(i) > 0 and y(j) = 0. Then

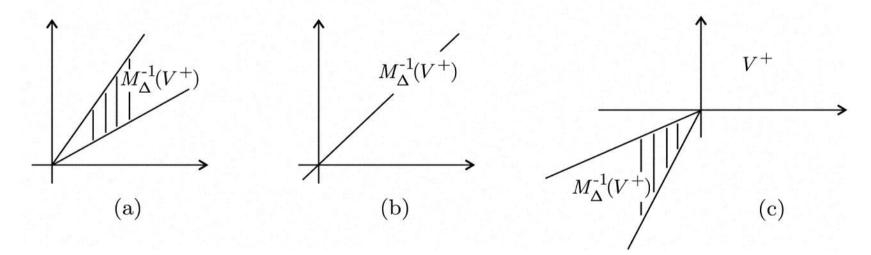
$$0 \le M(y)(j) = \sum_{k} m_{jk} y(k) = m_{jj} y(j) + m_{ji} y(i) + \sum_{k \ne i,j} m_{jk} y(k) \le m_{ji} y(i) < 0,$$

a contradiction.

Proposition. The matrix M_{Δ} satisfies one and only one of the properties:

- (a) $M_{\Delta}^{-1}(V^{+}) \subset V^{+}$
- (b) $M_{\Delta}^{-1}(V^{+}) = \mathbb{R}u$ for some $u \gg 0$. In this cases $M_{\Delta}(u) = 0$ (c) $M^{-1}(V^{+}) \cap V^{+} = \{0\}$

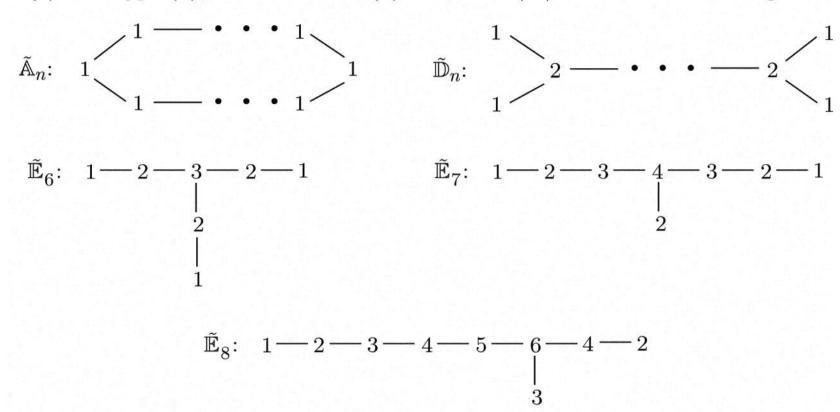
This can be illustrated for n = 2:



INTEGRAL QUADRATIC FORMS

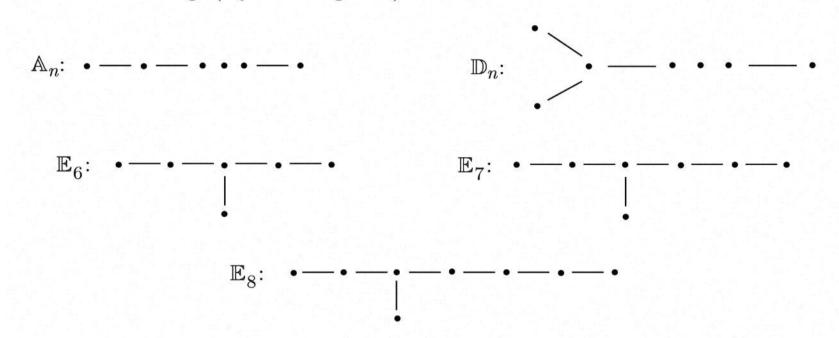
Three type of quives. Classification:

(1) Δ of type (b), $u \gg 0$ with $M_{\Delta}(u) = 0$. Then $|\Delta|$ is one of the following



(Euclidean diagrams).

(2) Δ of type (a) if and only if $|\Delta|$ does not any diagram of type (a). Hence $|\Delta|$ is one of the following (Dynkin diagrams).



(3) If Δ is of type (a) and $A = k\Delta$ the corresponding algebra, then there is a bijection between the isoclasses of indecomposable A-modules and the positive roots of the quadratic form $q_A(v) = vM_{\Delta}v^t$, given by

$$[X] \mapsto \operatorname{\mathbf{dim}} X = (\operatorname{\mathbf{dim}}_k X(i))_{i \in \Delta_0}.$$

1. Tame-wild dichotomy.

Local algebras.

(1) Observe that the algebra $A = k[x]/(x^n)$ admits only finitely many indecomposable modules, up to isomorphism. We say that A is representation-finite. Indeed, a module $M \in \text{mod}_A$ is a nilpotent matrix, hence M is equivalent to

$$J_{n_1} \oplus \cdots \oplus J_{n_s}$$

where J_i is the $i \times i$ matrix

$$\begin{bmatrix} 0 & & & 0 \\ 1 & \ddots & & \\ & \ddots & \ddots & \\ 0 & & 1 & 0 \end{bmatrix}$$

with $n_i \leq n$. If M is indecomposable, $M \cong J_s$, for some $s \leq n$.

(2) Consider the infinite-dimensional k-algebra k[x].

Let $M \in \text{mod}_{k[x]}$, then M is a $n \times n$ matrix.

Let $\chi(x) = \det(xI_n - M)$ be the characteristic polynomial of M. Then M is equivalent to

$$J_{n_1}(\lambda_1) \oplus \cdots \oplus J_{n_s}(\lambda_s)$$

where $\chi(x) = (x - \lambda_1)^{n_1} \dots (x - \lambda_s)^{n_s}$ is the decomposition of $\chi(x)$ in linear factors $(k = \bar{k}!)$ and $J_{n_i}(\lambda_i)$ is the $n_i \times n_i$ Jordan block

$$J_{n_i}(\lambda_i) = egin{bmatrix} \lambda_i & & & 0 \ 1 & \ddots & & \ & \ddots & \ddots & \ 0 & & 1 & \lambda_i \end{bmatrix}$$

Consider the k[x] - k[x]-bimodule given by the $n \times n$ matrix

$$J_n(x) = \begin{bmatrix} x & & & 0 \\ 1 & \ddots & & \\ & \ddots & \ddots & \\ 0 & & 1 & x \end{bmatrix}$$

Let $S_{\lambda} = k[x]/(x-\lambda)$ be a (one-dimensional) simple k[x]-module. Then

$$J_n(x) \otimes_{k[x]} S_{\lambda} = J_n(\lambda).$$

Therefore, the indecomposable k[x]-modules of dimension n are isomorphic to modules in the image of the functor

$$J_n(x) \otimes_{k[x]} -: \operatorname{mod}_{k[x]}(1) \to \operatorname{mod}_{k[x]}.$$

(3) The free algebra $k\langle x,y\rangle$ has a 'problematic' behaviour.

Proposition. Let B be any finitely generated k-algebra, then there exists a fully faithful functor $F \colon \operatorname{mod}_B \to \operatorname{mod}_{k\langle x,y\rangle}$.

Proof. Let b_1, \ldots, b_s be a system of generators of B. Define the $k\langle x, y \rangle - B$ -bimodule M as $M_B = B^{s+2}$ and the structure of left $k\langle x, y \rangle$ -module given by the $(s+2) \times (s+2)$ -matrices

$$_{x}M=egin{bmatrix} 0&1&&&&0\ &0&\ddots&&&\ &&\ddots&\ddots&&&\ 0&&&0&1\ 0&&&&&0 \end{bmatrix} \qquad _{y}M=egin{bmatrix} 0&&&&&&0\ 1&&0&&&\ b_{1}&&1&&&&\ &&\ddots&\ddots&&&\ 0&&&\ddots&1&0&\ 0&&&&b_{s}&1&0 \end{bmatrix}$$

We set $F = M \otimes_B : \operatorname{mod}_B \to \operatorname{mod}_{k\langle x,y\rangle}$.

Exercise: check that F is full and faithful.

This means that the representation theory of $k\langle x,y\rangle$ is as complicated as the representation theory of any other algebra.

We say that an algebra A is wild if there is a functor $F : \text{mod}_{k\langle x,y\rangle} \to \text{mod}_A$ which preserves indecomposable modules and iso-classes. We shall say that the functor F insets indecomposable modules.

(4) Example: Let p be a prime number ≥ 3 . Assume k has characteristic p. The group algebra $A = k[\mathbb{Z}_p \times \mathbb{Z}_p]$ is wild.

Proof. Let $\varphi \colon k[u,v] \to A$, $x \mapsto g-1$, $y \mapsto h-1$, where $\mathbb{Z}_p \times \mathbb{Z}_p = \langle g \rangle \times \langle h \rangle$. Then $A \cong k[u,v]/\ker \varphi = k[u,v]/(u^p,v^p)$.

Moreover $k[u,v]/(u^p,v^p) \rightarrow k[u,v]/(u,v)^3 = k[u,v]/(u^3,v^3,uv^2,vu^2) =: B$. It is enough to show that B is wild.

Consider the $B-k\langle x,y\rangle$ -bimodule M defined as $M_{k\langle x,y\rangle}=k\langle x,y\rangle^4$ and the structure as B-module defined by the matrices

$${}_{u}M = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & x & y & 0 \end{bmatrix} \qquad {}_{v}M = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & x & 0 \end{bmatrix}$$

Exercise: check that $_BM$ is well defined and

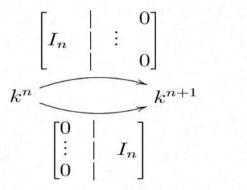
$$M \otimes_{k\langle x,y\rangle} -: \operatorname{mod}_{k\langle x,y\rangle} \to \operatorname{mod}_B$$

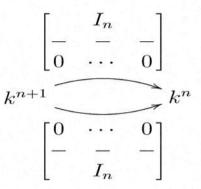
insets indecomposable modules.

Return to hereditary algebras.

(1) The indecomposable modules over the quiver algebra A:

were classified by Weierstrass and Kronecker:





(preprojective representation)

(preinjective representation)

$$R_n(\lambda)$$
: $k^n \underbrace{\int_{J_n(\lambda)}^{I_n} k^n}$

$$R_n(\lambda)$$
: $k^n \underbrace{\int_{J_n(\lambda)}^{J_n(0)} k^n} \qquad R_n(\infty)$: $k^n \underbrace{\int_{J_n(0)}^{J_n(0)} k^n} k^n$

(regular representations)

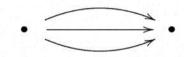
Let M_n be the A - k[x]-bimodule

$$k[x]^n \underbrace{\int_{J_n(x)}^{I_n} k[t]^n}_{J_n(x)}$$

then $M_n \otimes_{k[t]} k[t]/(t-\lambda) \cong R_n(\lambda)$.

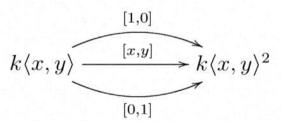
INTEGRAL QUADRATIC FORMS

- (2) After the work of Dlab-Ringel we know that for the hereditary algebra $A = k\Delta$ with $|\Delta|$ and Euclidean diagram, for any vector dimension $v \in \mathbb{N}^{\Delta_0}$, there exists an A k[t]-bimodule M_v such that almost any indecomposable A-module X with $\dim X = v$ is isomorphic to $M_v \otimes_{k[t]} S_{\lambda}$ for some $\lambda \in k$.
 - (3) Consider the hereditary algebra B associated to the quiver



Then B is wild.

Proof. Consider the $B - k\langle x, y \rangle$ -bimodule M given by



Exercise: $M \otimes_{k\langle x,y\rangle} -: \operatorname{mod}_{k\langle x,y\rangle} \to \operatorname{mod}_B$ insets indecomposable modules.

Definition: An algebra A is tame if for every $n \in \mathbb{N}$ there is a finite family of A - k[t]-bimodules $M_1, \ldots, M_{t(n)}$ with the following properties:

- (i) M_i is finitely generated free as a right k[t]-module;
- (ii) almost every indecomposable left A-module X with $\dim_k X = n$ is isomorphic to a module of the form $M_i \otimes_{k[t]} S_{\lambda}$ for some $\lambda \in k$.

We say that an algebra A is wild if there is a functor $F : \text{mod}_{k\langle x,y\rangle} \to \text{mod}_A$ which preserves indecomposable modules and iso-classes. We shall say that the functor F insets indecomposable modules.

Dichotomy Theorem of Drozd: Every finite dimensional k-algebra is either tame or wild.