

SMR1735/6

Advanced School and Conference on Representation Theory and Related Topics

(9 - 27 January 2006)

Integral Quadratic Forms and the Representation Type of an Algebra

(Lecture 4)

José Antonio de la Peña

Universidad Nacional Autonoma de Mexico - UNAM Instituto de Matemáticas Mexico City D.F., Mexico

INTEGRAL QUADRATIC FORMS AND THE REPRESENTATION TYPE OF AN ALGEBRA

LECTURE 4

Dr. José Antonio de la Peña Instituto de Matemáticas, UNAM Tame algebras and modules on tubes.

Standard tubes in Auslander-Reiten quivers.

Let A be a finite dimensional k-algebra. We say that an A-module X is a brick if $\operatorname{End}_A(X) = k$. In particular, a brick is always an indecomposable module.

We recall that two modules X_1, X_2 are said to be *orthogonal* if $\operatorname{Hom}_A(X_1, X_2) = 0 = \operatorname{Hom}_A(X_2, X_1)$.

Let $E_1, ..., E_s$ be a family of pairwise orthogonal bricks. Define $\varepsilon(E_1, ..., E_s)$ as the full subcategory of mod A whose objects X admit a filtration $X = X_0 \supset X_1 \supset ... \supset X_m = 0$ for some $m \in \mathbb{N}$, with X_i/X_{i+1} isomorphic to some E_j , for any $1 \le i \le n$.

Lemma. The category $\varepsilon = \varepsilon(E_1, ..., E_s)$ is an abelian category, with $E_1, ..., E_s$ being the simple objects of E.

An abelian category ε is said to be *serial* provided any object in E has finite lenght and any indecomposable object in ε has a unique composition series.

Proposition. Let $E_1, ..., E_s$ be pairwise orthogonal bricks in some module category mod A. Assume that (a) $\tau E_i \cong E_{i-1}$ for $1 \leq i \leq s$ with $E_0 = E_s$ and (b) $\operatorname{Ext}_A^2(E_i, E_j) = 0$ for all $1 \leq i, j \leq n$. Then $\varepsilon = \varepsilon(E_1, ..., E_s)$ is serial, it is a standard component of Γ_A of the form $\mathbf{Z}\mathbf{A}_{\alpha}/(n)$.

With the notation of the Proposition above: we denote by $E_i[t]$ the unique module in the serial category E which has socle E_i and length t.

A family $\mathcal{T} = (T_{\lambda})_{\lambda \in L}$ of the Auslander-Reiten quiver of an algebra A is a standard stable tubular family if each T_{λ} is a standard component of the form $\mathbf{Z}\mathbf{A}_{\infty}/(n_{\lambda})$ for some n_{λ} and for $\lambda \neq \mu$ the components T_{λ} and T_{μ} are orthogonal.

Corollary. Let $\mathcal{T} = (T_{\lambda})_{\lambda \in L}$ be a standard stable tubular family in the Auslander-Reiten quiver of A. Then the additive closure add \mathcal{T} of \mathcal{T} in mod A is an abelian category which is serial and is closed under extensions in mod A.

A standard stable tubular family $\mathcal{T} = (T_{\lambda})_{{\lambda} \in L}$ is said to be *separating* if there are full subcategories \mathcal{P} and \mathcal{I} of mod A satisfying the following conditions:

- (i) each indecomposable A-module belongs to one of \mathcal{P} , \mathcal{T} or \mathcal{I} ;
- (ii) for modules $X \in \mathcal{P}, Y \in \mathcal{T}$ and $Z \in \mathcal{I}$ we have $\operatorname{Hom}_A(Z, Y) = 0 = \operatorname{Hom}_A(Z, X)$ and $\operatorname{Hom}_A(Y, X) = 0$.
- (iii) each non zero morphism $f \in \text{Hom}_A(X, Z)$ for indecomposable modules $X \in \mathcal{P}, Z \in \mathcal{I}$, factorizes through each component T_{λ} .

Example: Let A be the algebra given by the quiver with relations below

Then A is the one-point extension $A_0[E_0]$ as follows

$$A_0[E_0] = \begin{bmatrix} A_0 & E_0 \\ 0 & k \end{bmatrix}$$

with the usual matrix operations and where E_0 is considered as an $A_0 - k$ -bimodule. Moreover rad $P_0 = E_0$.

The algebra A_0 is tame hereditary with an Auslander-Reiten quiver of the shape

where \mathcal{P}_{A_0} is a preprojective component, \mathcal{I}_{A_0} a preinjective component and \mathcal{T}_{A_0} is a separating tubular family of tubular type (2,3,3). In $\mathcal{T}_{A_0} = (T_{\lambda})_{\lambda}$ almost all tubes are of rank one with a module on the mouth with

The tubes of rank 2 and rank 3 have modules on the mouths with the unique indecomposable A_0 -modules with the indicated dimension vectors:

and where the Auslander-Reiten translation is given by $\tau_{A_0}E_1 = E_0$, $\tau_{A_0}X_i = X_{i-1}$ and $\tau_{A_0}Z_i = Z_{i-1}$ cyclically.

The structure of Γ_A is given as follows:

where $\mathcal{T}_0 = \bigvee_{\lambda \neq 2} T_\lambda \vee T_2[E_0]$ is the family of tubes \mathcal{T}_{A_0} with the exception of the tube of rank 2 which appears now 'inserted' with the new projective at the extension vertex 0.

For each positive rational number $\delta = \frac{a}{b}$, (a, b), \mathcal{T}_{δ} is a separating family of tubes of tubular type (3, 3, 3) with all homogeneous tubes but 2 of rank 3. The homogeneous tubes have modules on the mouths of vector dimension

$$az_0 + bz_\infty$$

when z_{∞} is given by

Observe that A_{∞} is tame concealed and $A = [E_{\infty}]A_{\infty}$ is a one-point coextension where the module E_{∞} lies on a regular tube of $\Gamma_{A_{\infty}}$. The algebra A is typical tubular algebra as defined by Ringel.

Proposition. Let $\mathcal{T} = (T_{\lambda})_{\lambda}$ be a standard separating tubular family for the module category mod A. Then

- a) For almost every λ , the tube T_{λ} is homogeneous.
- b) Let T_{λ} be a homogeneous tube of the family \mathcal{T} . Let X be a module in the mouth of T_{λ} and $v = \dim X$. Then $q_A(v) = 0$.

Proof of (b): Let X be a module in the mouth of a homogeneous tube T_{λ} in \mathcal{T} . Let B be the convex closure in A of \cup supp X with $X \in T_{\lambda}$. Since B is convex in A and $gl\dim B \leq 2$, then

$$q_A(\operatorname{\mathbf{dim}} X) = q_B(\operatorname{\mathbf{dim}} X) = \dim_k \operatorname{End}_A(X) - \dim_k \operatorname{Ext}_A^1(X, X).$$

Since T_{λ} is standard and $X \simeq \tau X$, then $\operatorname{Ext}_{A}^{1}(X, X) \cong D\operatorname{Hom}_{A}(X, \tau X)$ and we get q_{A} (dim X) = 0.

Notation: Let $\mathcal{T} = (T_{\lambda})_{\lambda}$ be a standard separating stable tubular family in mod A. Let $r(\lambda)$ be the period (or rank) of the tube T_{λ} . Consider those $r(\lambda_1), \ldots, r(\lambda_s)$ which are strictly bigger than 1 (finite number by (1.4)). We define the star diagram T_{τ} of the family \mathcal{T} as the diagram with a unique ramification point and s branches of lengths $r(\lambda_1), \ldots, r(\lambda_s)$. For example, the tame concealed algebra of tubular type (2,3,3) has the star diagram depicted below.

Theorem. [Ringel, Lenzing-de la Peña]

Let A = kQ/I be a k-algebra. Let n be the number of vertices of Q. Let $\mathcal{T} = (T_{\lambda})_{\lambda \in L}$ be a standard separating stable sincere tubular family in mod A. Let $r(\lambda)$ be the rank of the tube T_{λ} . Then

$$\sum_{\lambda \in L} (r(\lambda) - 1) = n - 2.$$

Moreover, A is a tame algebra if and only if the star diagram \mathbf{T}_r is a Dynkin or extended Dynkin diagram.

Tubes and isotropic roots of the Tits form.

We say that a property P is satisfied by almost every indecomposable if for each $d \in \mathbb{N}$, the set of indecomposable A-modules of dimension d which do not satisfy P form a finite set of isomorphism classes. The following is a central fact about the structure of the representation-quiver Γ_A of a tame algebra A.

Theorem [Crawley-Boevey]

Let A be a tame algebra. Then almost every indecomposable lies in a homogeneous tube. In particular, almost every indecomposable X satisfies $X \simeq \tau X$.

Open problem: Is it true that an algebra is of tame type if and only if almost every indecomposable module belongs to a homogeneous tube?

Proposition. Let A be an algebra such that almost every indecomposable lies in a standard tube. Then A is tame.

Proof. Our hypothesis implies that almost every indecomposable X satisfies $\dim_k \operatorname{End}_A(X) \leq \dim_k X$. We show that this condition implies the tameness of A.

Indeed, assume that A is wild and let M be a $A - k\langle u, v \rangle$ -bimodule which is finitely generated free as right $k\langle u, v \rangle$ -module and the functor $M \otimes_{k\langle u, v \rangle}$ -insets indecomposables. Consider the algebra B given by the quiver $t_1 \bigcirc t_2$ and with radical J

satisfying $J^2 = 0$. Then there is a A - B-bimodule N such that N_B is free and $N \otimes_B - :$ mod $B \longrightarrow \text{mod } A$ is fully faithful. Therefore the composition $F = M \otimes_A (N \otimes_B -)$ is faithful and insets indecomposables. Moreover, $\dim_k FX \le m \dim_k X$ for any $X \in \text{mod } B$ if we set $m = \dim_k (M \otimes_A N)$.

Consider also the functor $H: \operatorname{mod} A \longrightarrow \operatorname{mod} B$ sending X to the space $X' = X \oplus X$ with endomorphisms

$$X'(t_1) = \begin{bmatrix} 0 & X(w) \\ 0 & 0 \end{bmatrix}, X'(t_2) = \begin{bmatrix} 0 & X(v) \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad X'(t_3) = \begin{bmatrix} 0 & 1_{\chi} \\ 0 & 0 \end{bmatrix}$$

This functor insets indecomposables. For the simple A-modules X of dimension n, we get indecomposable A-modules FH(X) with

$$\dim_k FH(X) \le m \dim_k H(X) = 2mn$$

and

$$\dim_k \operatorname{End}_A(FH(X)) \ge \dim_k \operatorname{End}_B(H(X)) = n^2 + \dim_k \operatorname{End}_A(X) = n^2 + 1.$$

Let A = kQ/I be a triangular algebra. In case A is tame, we would like to find the dimensions $z \in \mathbb{N}^{Q_0}$ where indecomposable modules X with $\dim X = z$ and X in a homogeneous tube exist.

Proposition. Assume that A is tame and $q_A(z) = 0$. Then there is a decomposition $z = w_1 + ... + w_s$ with $w_i \in \mathbf{N}^{Q_0}$ and an open subset \mathcal{U} of $\text{mod}_A(z)$ satisfying:

- (a) dim $\mathcal{U} = \dim \operatorname{mod}_A(z)$.
- (b) Every $X \in \mathcal{U}$ has an indecomposable decomposition $X = X_1 \oplus ... \oplus X_s$ such that dim $X_i = w_i$ and the module X_i lies in the mouth of a homogeneous tube. Moreover, dim_kHom_A $(X_i, X_j) = \delta_{ij} = \operatorname{Ext}_A^1(X_i, X_j)$ for $1 \leq i, j \leq s$.

Hypercritical algebras.

Let $q = \sum_{i=1}^{n} x_i^2 + \sum_{i \neq j} a_{ij} x_i x_j$ be a unit form. Let M be the symmetric matrix associated with q.

Proposition:

The following are equivalent:

- (a) q is weakly non negative
- (b) Every critical restriction q^I of q with v the positive generator of rad q^I , satisfies $v^0 M \geq 0$.

Proof: a) \Rightarrow b): Assume that q^I is critical and v^0M has its j-th component negative. Then $0 \le 2v^0 + e_j \in \mathbb{Z}^n$ and $q(2v^0 + e_j) = 2v^0Me_j^t + 1 < 0$

b) \Rightarrow a): Assume q satisfies (b) but not (a). By induction, we may suppose that $q^{(i)}$ satisfies (a), $1 \le i \le n$. Let $0 \ll z$ be such that q(z) < 0. Let q^I be a critical restriction. Let v be the positive generator of $rad\ q^I$. We can find a number $a \le 0$ such that $0 \le z + av^0$ and $(z + av^0)(j) = 0$ for some $1 \le j \le n$. Then

$$0 \le q^{(j)}(z + av^0) < av^0 M z^t \le 0,$$

a contradiction.

Corollary:

The unit form q is weakly non negative if and only if $0 \le q(z)$ for every $z \in [0, 12]^n$.

Conjeture:

Let A be a good algebra. Then A is tame if and only if its Tits form q_A is weakly non negative.

Which are the good algebras?

Theorem [Brüstle]

Let A be tree algebra. Then A is tame if and only if q_A is weakly non-negative.

Proposition:

Let A be a tree algebra. Then q_A is weakly non negative if and only if A has no convex hypercritical subalgebras.

Let A be a tree algebra and assume that q_A is not weakly non negative. Therefore, there is a hypercritical restriction q_A^I . Then $I = J \cup \{x\}$ such that q_A^I is critical and $q_A(v^0, e_x) < 0$, where v is the positive generator of $radq_A^J$.

Hence, $q_A^J = q_B$, where B is a convex critical subalgebra of A. Since $q_A(v^0, e_x) < 0$, there is an arrow connecting x and A. Let C be the full (convex!) subcategory of A with vertices x and those of B. Therefore $q_A^I = q_C$ is hypercritical.

We recall that a triangular algebra A = kQ/I is said to satisfy the separation condition if every vertex $x \in Q_0$ has separated radical. The algebra A is strongly simply connected if every convex subcategory B of A satisfies the separation condition.

Theorem [Brüstle-de la Peña-Skowroński].

Let A be a strongly simply connected algebra, then the following are equivalent:

- (a) A is tame
- (b) q_A is weakly non-negative
- (c) A does not contain a full convex subcategory which is hypercritical.

REFERENCES

- [1] R. Bautista, P. Gabriel, A. V. Roiter and L. Salmerón. Representation-finite algebras and multiplicative bases. Invent. Math. 81 (1984) 217–285.
- [2] K. Bongartz. Algebras and quadratic forms. J. London Math. Soc. (2) 28 (1983) 461–469.
- [3] K. Bongartz. Critical simply connected algebras. Manuscripta math. 46 (1984) 117–136.
- [4] S. Brenner. Quivers with Commutative conditions and some phenomenology of forms. In Representations of Algebras, Springer LNM 488 (1975), 29–53.
- [5] Th. Brüstle. Kit algebras. J. Algebra 240 (2001), 1–24.
- [6] Th. Brüstle, J. A. de la Peña and A. Skowroński. *Tame algebras and Tits quadratic form*. To appear.
- [7] W. W. Crawley-Boevey. On tame algebras and bocses. Proc. London Math. Soc. III, 56 No. 3 (1988) 451–483.
- [8] W. W. Crawley-Boevey and J. Schröer. *Irreducible components of varieties of modules*. J. Reine Angew. Math. 553 (2002), 201–220.
- [9] V. Dlab and C. M. Ringel. *Indecomposable representations of graphs and algebras*. Mem. Amer. Math. Soc. 173 (1976).
- [10] Ju A. Drozd. On tame and wild matrix problems. In Representation Theory II. Proc. ICRA II (Ottawa, 1979), Springer LNM 831 (1980) 242–258.
- [11] P. Gabriel. Unzerlegbare Darstellungen I. Manuscripta Math. 6 (1972), 71–103.
- [12] P. Gabriel. Indecomposable representation II. Symposia Math. Inst. Naz. Alta Mat. 11 (1973) 81–104.
- [13] P. Gabriel. Finite representation type is open. In Representations of Algebras, Springer LNM 488 (1975) 132–155.
- [14] P. Gabriel. Auslander-Reiten sequences and representation-finite algebras. Proc. ICRA II (Ottawa 1979). In Representation of Algebras, Springer LNM 831 (1980) 1–71.
- [15] P. Gabriel and A. V. Roiter. Representations of finite-dimensional algebras. Algebra VIII, Encyclopaedia of Math. Sc. Vol 73. Springer (1992).
- [16] Ch. Geiss. On degenerations of tame and wild algebras. Arch. Math. 64 (1995) 11-16.

- [17] Ch. Geiss and J. A. de la Peña. On the deformation theory of finite dimensional algebras. Manuscripta Math. 88 (1995) 191–208.
- [18] D. Happel and D. Vossieck. Minimal algebra of infinite representation-type with preprojective component. Manuscripta math. 42 (1983) 221–243.
- [19] R. Hartshorne. Introduction to algebraic geometry. Springer Verlag (1977).
- [20] H. Kraft. Geometric Methods in Representation Theory. In Representations of Algebras. Springer LNM 944 (1981) 180–258.
- [21] H. Kraft. Geometrische Methoden in der Invariantentheorie. Vieweg. Braunschweig (1985).
- [22] H. Lenzing and J. A. de la Peña. Concealed canonical algebras and separated tubular families. Proc. London Math Soc (3) 78 (1999), 513–540.
- [23] J.A. de la Peña. Quadratic forms and the representation type of an algebra. Sonderforschungsbereich Diskrete Strukturen in der Mathematik. Ergänzungsreihe 343, 90–003. Bielefeld (1990).
- [24] J. A. de la Peña. On the dimension of the module-varietes of tame and wild algebras. Comm. in Algebra 19 (6), (1991) 1795–1807.
- [25] J. A. de la Peña. Sur les degrés the liberté des indecomposables. C.R. Acad. Sci. Paris, t. 412 (1991), 545–548.
- [26] J. A. de la Peña. *Tame algebras: some fundamental notions*. Universität Bielefeld. Ergänzungsreihe 95–010. (1995).
- [27] J. A. de la Peña. The Tits form of a tame algebra. In Canadian Math. Soc. Conference Proceedings. Vol. 19 (1996) 159–183.
- [28] C. M. Ringel. Tame algebras. Representation Theory I. Proc. ICRA II (Ottawa, 1979), Springer LNM 831 (1980) 137–287.
- [29] C.M. Ringel. Tame algebras and integral quadratic forms. Springer, Berlin LNM 1099 (1984).
- [30] A. Shafarevich. Basic algebraic geometry. Graduate Texts Springer 213 (1977).
- [31] A. Skowroński. On omnipresent tubular families. To appear in the Proceedings of ICRA VII. CMS Proceedings Series of AMS.
- [32] D. Voigt. Induzierte Darstellungen in der Theorie der endlichen algebraischen Gruppen. Springer LNM 592 (1977).